• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
인공지능
배터리
양자컴퓨팅
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'Q'통합검색 결과 입니다. (1338건)

  • 영역
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

[현장] 나델라 MS CEO, 韓 코파일럿 응용 사례 감탄…"브라보 코리아"

"'코파일럿'은 인공지능(AI) 그 이상입니다. 앞으로 AI 분야 사용자 인터페이스(UI) 중심축 역할을 맡을 것입니다. 전 산업을 키우고 고객 경험을 강화할 것입니다. 코파일럿은 '에이전틱 AI' 시대를 여는 출발점이 될 것입니다." 사티아 나델라 마이크로소프트 최고경영자(CEO)는 양재 aT타워에서 열린 '마이크로소프트 AI 투어 인 서울' 기조연설에서 이같이 밝혔다. 나델라 CEO는 코파일럿이 AI 플랫폼 역할을 넘어설 것으로 내다봤다. 그는 "코파일럿 사용자는 전사 데이터 기반으로 추론 모델을 호출해 일반 업무부터 전문 영역 연구까지 실시간으로 진행할 수 있을 것"이라며 "실행버튼 하나로 음성 에이전트와 연결된 개인 AI 사용도 지금보다 확산할 것"이라고 예측했다. 이에 대한 예시로 나델라 CEO는 '마이크로소프트 365 코파일럿'에 오픈AI의 추론 모델을 적용한 AI 에이전트 '리서처 에이전트'와 '애널리스트 에이전트'를 전 세계 최초로 공개했다. 두 에이전트 추론은 AI가 업무 데이터와 웹 정보 등 복잡한 데이터를 기반으로 진행된다. 다양한 맥락을 통합해 고도화된 문제 해결을 지원할 수 있다. 리서처 에이전트는 오픈AI의 o3 추론 연구 모델과 코파일럿의 조합 및 심층 검색 기능을 통합한 형태다. 새로운 시장 전략, 분기 미팅을 위한 고객 조사 등의 복잡한 분석 작업을 수행할 수 있다. 애널리스트 에이전트는 최신 추론 모델의 연쇄 추론 능력을 기반으로 작동한다. 흩어진 데이터를 분석해 새로운 제품의 수요 예측부터 소비자 구매 패턴 분석, 매출 데이터 트렌드 파악 등 비즈니스 핵심 인사이트를 도출한다. 두 AI 에이전트는 내달부터 마이크로소프트 365 코파일럿 라이선스 고객 대상으로 '프런티어 프로그램'을 통해 순차적으로 제공될 예정이다. "한국 기업 AI 응용 수준 우수…협력 꾸준할 것" 나델라 CEO는 한국 기업의 마이크로소프트 솔루션 활용 사례에 대한 견해도 밝혔다. 그는 "한국 기업은 마이크로소프트의 AI 응용 수준이 가장 높다"며 "이를 더 활성화하기 위해 아낌없이 지원할 것"이라고 강조했다. 나델라 CEO는 국내 고객 사례도 소개했다. GS리테일은 실제 업무 현장에 마이크로소프트 코파일럿을 도입해 프론트라인 생산성을 높인 것으로 전해졌다. 이를 통해 셀프서비스율은 35%까지 올랐으며, 마케팅·영업·인사 등 모든 부서에서 투자대비수익률(ROI)이 실질적으로 발생하고 있다고 설명했다. 그는 LG전자가 오픈AI 기반의 스마트 홈 로봇 'Q9'을 출시한 사례도 소개했다. 씨젠이 마이크로소프트 솔루션으로 만든 개발 자동화시스템으로 진단 혁신을 가속화한 예시도 나왔다. 또 LG CNS가 자사 고객이 마이크로소프트 365 코파일럿을 업무에 적용해 생산성을 혁신할 수 있는 인사이트를 얻고 AI 서비스를 기획을 했던 사례를 공개하기도 했다. 나델라 CEO는 "코파일럿은 전 산업 커뮤니케이션 방식을 근본적으로 변화시키는 혁명"이라며 "에이전틱 세상을 여는 출발점"이라고 강조했다.

2025.03.26 14:42김미정

내달부터 중점검역관리지역 체류·경유자, Q-CODE 제출해야

방역당국이 올해 2분기 '중점검역관리지역'과 '검역관리지역'으로 18개국을 지정해 다음 달 1일부터 시행한다. 해당 지역에서 체류하거나 경유했다면 입국 시 검역관에게 Q코드나 건강상태질문서 제출로 건강 상태를 신고해야 한다. 중점검역관리지역은 검역관리지역 중 유행하거나 유행할 우려가 있는 검역감염병이 치명적이고 감염력이 높아 집중적인 검역이 필요한 지역을 말한다. 검역관리지역은 검역감염병이 유행하거나 유행할 우려가 있어 국내로 유입될 가능성이 있는 지역이다. 총 15종의 검역감염병 대상 167개국이 지정됐으며, 마찬가지로 해당 지역을 체류·경유 시 감염병 증상이 있다면 입국 시 검역관에게 신고해야 한다. 기존에 반기별로 지정됐던 중점·검역관리지역은 올해부터 분기마다 지정된다. 우선 '페스트' 중점검역관리지역은 기존 마다가스카르와 콩고민주공화국에 중국 내몽골자치구도 새로 포함됐다. '동물인플루엔자인체감염증'의 경우, 1분기에 포함됐던 멕시코가 빠지고, 중국 일부 지역 변화가 있었다. 2분기 미국은 ▲미네소타주 ▲미시간주 ▲워싱턴주 ▲캘리포니아주 ▲콜로라도주 ▲펜실베니아주 등이 1분기와 마찬가지로 유지됐다. 중국은 ▲광둥성 ▲광시좡족자치구 ▲구이저우성 ▲쓰촨성 ▲충칭시 ▲후난성 ▲후베이성 등으로 지정됐다. 캄보디아는 2분기에도 지정이 유지됐다. '중동호흡기증후군(MERS)' 중점검역관리지역은 ▲레바논 ▲바레인 ▲사우디아라비아 ▲시리아 ▲아랍에미리트 ▲예멘 ▲오만 ▲요르단 ▲이라크 ▲이란 ▲이스라엘 ▲카타르 ▲쿠웨이트 등이 1분기와 마찬가지로 유지됐다. 지영미 질병청장은 “올해부터 분기별 위험도 등에 따른 중점검역관리지역 지정과 여행자 호흡기 감염병 검사 서비스 시범사업을 추진한다”라며 “검역소를 통한 서비스를 확대해 나가겠다”라고 밝혔다.

2025.03.26 11:25김양균

라온시큐어-쓰리에이로직스, DPP 사업 협력

라온시큐어가 자사의 블록체인 기반 디지털 ID 기술을 기반으로 제품의 생산·유통·폐기 등 전 생애주기 정보를 디지털 형태로 저장하고 공유하는 디지털제품여권(Digital Product Passport, DPP) 분야 경쟁력 확보에 나섰다. IT 보안·인증 플랫폼 기업 라온시큐어(대표 이순형, 이정아, 042510)는 서울 여의도 본사에서 근거리 무선 통신(NFC) 팹리스 기업 쓰리에이로직스(대표 이평한, 박광범)와 '디지털제품여권(DPP) 사업 협력을 위한 업무 협약(MOU)'을 체결했다고 밝혔다. 이번 협약을 통해 양사는 유럽연합(EU)의 '지속 가능한 제품을 위한 에코디자인 규정(ESPR)' 도입과 국내 ESG 경영 및 자원순환 강화 등 사회적·제도적 변화에 따라 향후 급성장할 것으로 전망되는 DPP 분야에서의 경쟁력을 확보하고 상호 사업 시너지를 창출을 위해 협력한다. 라온시큐어와 쓰리에이로직스는 이번 협약을 계기로 ▲DPP 기술 공동연구 및 개발 ▲NFC/RFID 태그와 블록체인 기반 디지털 ID 시스템의 연계 및 통합 솔루션 개발 ▲국내외 DPP 시장 공동 대응 및 협력 사업 추진 등의 업무를 상호 협력한다. DPP는 제품의 생산 및 판매, 사용, 폐기에 이르기까지의 디지털 데이터를 QR코드나 바코드, NFC에 담은 디지털 신분증으로, 소비자가 DPP를 통해 제품의 원료, 부품, 출처, 재활용 가능성, 수리 용이성, 탄소발자국, 재생원료 함량 등 정보를 확인할 수 있다. 오는 2027년부터 EU 시장에 진출하는 모든 제품과 서비스에 의무화될 예정이다. 라온시큐어는 DPP 사업 진출을 통해 블록체인 기반 디지털 ID 사업 확장에 한층 더 박차를 가할 계획이다. 회사는 공공 영역과 민간 영역에서 더욱 확산되고 있는 모바일 신분증 대응과 함께 진단서·의료 증명서 등 각종 모바일 증명서까지 사업을 확대 중이며, 이번 협약을 통해 블록체인 기반 디지털 ID 기술을 기반으로 한 DPP 분야까지 사업 영역을 넓힐 방침이다. 쓰리에이로직스는 국내 NFC 산업을 선도하는 기업으로, 자동차용 NFC 리더 칩 분야에서 AEC-Q100 인증과 NFC Forum의 디지털 키(Digital Key) 인증을 획득해 주요 완성차 업체에 공급하고 있으며 이외에도 전자가격표시기, 정품인증용 NFC 칩을 세계적인 세트 제조사에 납품하고 있다 이순형 라온시큐어 대표는 “쓰리에이로직스와의 DPP 통합 솔루션 공동 협력을 통해 블록체인 기반 디지털 ID 기술을 활용해 디지털제품여권 시장에서 선도적인 입지를 확보할 계획"이라며 “DPP가 유럽을 시작으로 북미, 아시아 등 전 세계로 본격 확산할 것으로 전망하고 있어 해외 파트너십 및 글로벌 프로젝트 참여 등을 통해 글로벌 사업으로 확대해 나가겠다”고 말했다.

2025.03.26 09:52방은주

엔비디아, 7초만에 초고해상도 이미지 생성하는 신기술 발표

확산 모델의 품질과 7.7배 빠른 속도를 동시에 구현한 HART의 하이브리드 접근법 MIT와 NVIDIA 연구팀이 개발한 하이브리드 자기회귀 트랜스포머(HART)는 고해상도 이미지를 직접 생성할 수 있는 혁신적인 자기회귀(AR) 모델이다. 연구팀이 발표한 논문에 따르면, HART는 최신 확산 모델과 견줄 만한 이미지 품질을 제공하면서도 처리 속도는 최대 7.7배 빠르다는 강점을 지닌다. 기존 AR 모델들은 이산형 토크나이저(discrete tokenizer)의 낮은 재구성 품질과 1024×1024 해상도 이미지 생성의 한계에 직면해 왔다. HART는 이러한 문제를 하이브리드 토크나이징 접근법으로 해결했다. 하이브리드 토크나이저는 오토인코더의 연속적인 잠재 출력을 두 가지 구성 요소로 분해한다. 하나는 VAR 토크나이저에서 파생된 이산 잠재 변수의 합으로, 다른 하나는 이산 토큰으로 표현할 수 없는 정보를 나타내는 연속적인 잔차(residual)다. 이미지의 전체적인 구조는 이산 토큰이 담당하고, 세부 디테일은 연속적인 잔차 토큰으로 처리한다. 이 두 잠재 변수는 하이브리드 트랜스포머를 통해 모델링된다. 이산 잠재 변수는 확장 가능한 해상도를 가진 VAR 트랜스포머로 처리되는 반면, 연속적인 잠재 변수는 단 37M 매개변수와 8단계로 구현된 경량 잔차 확산 모듈을 통해 예측된다. FID 31% 향상, 계산량 13.4배 감소: HART의 기술적 혁신이 가져온 성능 도약 HART는 기존의 이산형 전용 VAR 토크나이저와 비교해 이미지 토크나이징과 생성 모두에서 상당한 개선을 이루었다. MJHQ-30K 데이터셋에서 1024×1024 해상도의 재구성 FID(Frechet Inception Distance)를 2.11에서 0.30으로 낮췄으며, 이는 31%의 생성 FID 향상(7.85에서 5.38로)을 가능하게 했다. 또한 ImageNet에서 클래스 조건부 생성에 대해 VAR 대비 최대 7.8%의 FID 개선을 달성했으며, MAR보다 13배 높은 처리량을 제공한다. HART는 여러 텍스트-이미지 생성 지표에서 최신 확산 모델의 품질에 근접하거나 능가하면서도, 3.1-5.9배 빠른 추론 지연 시간, 4.5-7.7배 높은 처리량, 그리고 6.9-13.4배 적은 연산량(MACs)을 제공한다. 특히 SD-XL과 비교했을 때 모든 벤치마크에서 우수한 품질을 보이면서도 3.1배 낮은 지연 시간과 4.5배 높은 처리량을 달성했다. '큰 그림'과 '세부 디테일'의 완벽한 결합: 하이브리드 자기회귀 모델링과 잔차 확산의 시너지 하이브리드 토크나이징은 이산형 토크나이징보다 우수한 재구성 FID와 더 나은 생성 상한선을 제공한다. HART는 연속적인 이미지 토큰을 두 구성 요소의 합으로 모델링한다: (1) 확장 가능한 해상도의 자기회귀 트랜스포머로 모델링된 이산 토큰과 (2) 효율적인 잔차 확산 과정을 통해 적합화된 잔차 토큰이다. HART는 텍스트 토큰을 시각 토큰과 연결하여 텍스트-이미지 생성으로 확장하였고, 높은 해상도에서의 확장성을 개선했다. O(n⁴) 훈련 비용을 완화하기 위해 사전 훈련된 저해상도 체크포인트에서 미세 조정을 진행했다. VAR의 모든 절대 위치 임베딩을 보간 호환 가능한 상대 임베딩으로 변환했으며, 텍스트 토큰에는 1D 회전 임베딩, 시각 토큰에는 2D 회전 임베딩을 구현했다. 이러한 상대 임베딩은 높은 해상도에서 HART의 수렴을 크게 가속화했다. 1024px 해상도에서 1.9배 가속: 토큰 서브샘플링과 커널 최적화로 구현한 HART의 효율성 강화 HART의 확장 가능한 해상도 AR 트랜스포머와 잔차 확산 설계는 고품질, 고해상도 이미지 생성에 중요하지만, 추론과 훈련 시 오버헤드를 도입한다. 이러한 효율성 과제를 해결하기 위해 다양한 최적화 기법을 적용했다. 훈련 중에는 마지막 단계의 토큰 중 80%를 폐기하고 서브샘플링된 토큰에만 감독을 적용하는 방식으로 512px에서 1.4배, 1024px에서 1.9배 훈련을 가속화하고 메모리 사용량을 1.1배 줄였다. 추론 시에는 상대 위치 임베딩이 도입한 여러 메모리 바운드 GPU 커널 호출을 두 개의 커널로 융합하여 전체적인 실행 시간을 7% 개선했다. 또한 RMSNorm의 모든 연산을 단일 GPU 커널로 융합하여 총 실행 시간을 10% 개선했다. FAQ Q: HART가 기존 확산 모델과 비교해 어떤 장점이 있나요? A: HART는 확산 모델과 유사한 고품질 이미지를 생성하면서도 처리 속도가 최대 7.7배 빠르고, 연산량은 최대 13.4배 적습니다. 특히 1024×1024 해상도에서 기존 확산 모델보다 3.1-5.9배 낮은 지연 시간을 제공하여 실시간 응용 프로그램에 더 적합합니다. Q: 하이브리드 토크나이저란 무엇이며 왜 중요한가요? A: 하이브리드 토크나이저는 이미지를 이산 토큰(큰 그림 구조)과 연속 잔차 토큰(세부 디테일)으로 분해합니다. 이 접근법은 기존 이산형 토크나이저의 한계를 극복하여 재구성 품질을 크게 향상시키고, 이는 최종 생성 이미지의 품질 향상으로 이어집니다. Q: HART가 실제 응용에서 어떻게 활용될 수 있을까요? A: HART의 고속 처리 능력과 고품질 이미지 생성 기술은 텍스트 기반 이미지 생성, 콘텐츠 제작, 게임, VR/AR 등의 분야에서 실시간 응용을 가능하게 합니다. 특히 컴퓨팅 자원이 제한된 환경에서도 고품질 시각 콘텐츠 생성이 가능해져 모바일 기기나 엣지 컴퓨팅 환경에서의 활용도가 높아질 것으로 기대됩니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)

2025.03.25 22:48AI 에디터

[Q&AI] 싱크홀 사고 대체 왜…AI로 원인 분석했더니

질문: 명일동에 싱크홀이 발생했는데, 사건 경위와 싱크홀이 생긴 이유를 정리해서 알려줘. 그록 답변: 2025년 3월 24일 서울 강동구 명일동에서 발생한 싱크홀 사건에 대해 사건 경위와 발생 원인을 아래와 같이 정리해 드리겠습니다. 사건 경위 발생 시각: 2025년 3월 24일 오후 6시 29분경 위치: 서울 강동구 명일동 대명초등학교 앞 사거리(대명초교입구교차로) 상황 전개: 오후 6시 28분경, 흰색 카니발 승합차와 오토바이가 도로를 지나가던 중 갑작스럽게 1차 붕괴가 발생했습니다. 카니발은 도로 잔해에 충격을 받아 튕겨져 나왔으나, 뒤따르던 오토바이는 싱크홀 속으로 추락했습니다. 오후 6시 29분, 붕괴 직후 싱크홀 테두리가 점차 무너지며 2차 붕괴가 이어졌고, 구멍이 반대 차선까지 확장되었습니다. 이 과정에서 상수도관으로 보이는 파이프가 파열되며 물이 대량으로 분출되었습니다. 싱크홀 규모는 초기 가로 18m, 세로 20m, 깊이 20m 정도로 추정되었으나, 이후 더 커진 것으로 확인되었습니다. 피해 상황: 오토바이 운전자 1명이 싱크홀에 매몰되어 구조 작업이 진행 중이며, 25일 새벽 오토바이와 휴대전화는 발견되었으나 운전자는 아직 찾지 못했습니다. 카니발 운전자(40대 여성)는 경상을 입고 병원으로 이송되어 치료 후 귀가했습니다. 대응: 소방당국은 약 35명의 구조대원을 투입해 수색을 진행 중이나, 싱크홀 내부에 토사와 물 2,000톤이 섞여 있고 균열 위험이 있어 작업에 난항을 겪고 있습니다. 서울시는 사고 현장을 통제하고 주변 교통을 우회 조치했으며, 오세훈 시장이 현장을 방문해 구조와 안전 조치를 지시했습니다. 인근 상수도관 단수와 전기 공급 중단 조치가 이루어졌고, 일부 학교는 휴업에 들어갔습니다. 싱크홀 발생 원인 정확한 원인은 현재 조사 중이지만, 여러 추정과 관련 요인을 종합하면 다음과 같습니다: 상수도관 파열: 사고 직후 상수도관으로 보이는 파이프 파열로 물이 분출된 점으로 미루어, 지하 상수도관의 누수나 파손이 지반을 약화시켜 싱크홀을 유발한 것으로 보입니다. 강동소방서는 이를 주요 원인으로 추정하고 있습니다. 지하철 9호선 공사: 사고 지점 인근에서 진행 중인 서울 지하철 9호선 연장 공사가 영향을 미쳤을 가능성이 제기되고 있습니다. 공사 중 지반 교란이나 배수 작업 부실이 지하 공동을 형성했을 수 있다는 의견이 있습니다. 공사 관계자 5~6명이 누수 현상을 감지하고 대피한 사례도 보고되었습니다. 기존 지반 취약성: 사고 전날부터 인근 주유소 바닥에 금이 가는 등 이상 징후가 있었고, 당일 오전 11시경 맨홀 주변에 작은 구멍이 생겨 구청이 응급 복구를 완료한 바 있습니다. 이는 지반이 이미 약화된 상태였음을 시사합니다. 복합 요인: 노후된 상수도 시설, 지하철 공사, 그리고 세종포천고속도로 고덕터널 등 주변 대규모 지하 공사가 복합적으로 작용해 지반 안정성을 떨어뜨렸을 가능성이 있습니다. 서울시는 모든 가능성을 열어두고 조사 중이라고 밝혔습니다. 추가 사항 사고 전조: 주민과 주유소 운영자는 이전부터 지반 이상을 감지하고 민원을 제기했으나, 신속한 대처가 이루어지지 않았다는 지적이 있습니다. 현재 상황: 구조 작업은 싱크홀 안정화와 중장비 투입 여부를 결정하는 단계로, 시간이 더 걸릴 수 있습니다. 이 사건은 지하 시설 관리와 공사 안전성에 대한 우려를 불러일으키며, 철저한 원인 규명과 재발 방지 대책이 요구되고 있습니다. 추가 정보가 확인되면 더 정확한 원인이 밝혀질 것으로 보입니다. ■ 기사는 그록을 활용해 작성되었습니다. (☞ 원문 바로가기)

2025.03.25 16:02AI 에디터

로옴, 부전압·고전압용 고정밀도 전류 검출 앰프 개발

로옴(ROHM)은 자동차기기 신뢰성 규격 'AEC-Q100'에 준거하는 고정밀도 전류 검출 앰프 'BD1423xFVJ-C' 및 'BD1422xG-C'를 개발했다고 25일 밝혔다. TSSOP-B8J 패키지를 채용한 'BD1423xFVJ-C'는 +80V의 입력전압에 대응해 48V 전원 구동의 DC-DC 컨버터, 이중화 전원, 보조기기 배터리, 전동 컴프레서 등의 고전압 환경용으로 적합하다. 게인 설정에 따라 'BD14230FVJ-C'·'BD14231FVJ-C'·'BD14232FVJ-C'의 3개 기종을 구비하고 있다. 소형 SSOP6 패키지를 채용한 'BD1422xG-C'는 +40V의 입력전압에 대응해, Body계 및 드라이브계 도메인에서 사용되는 5V·12V 구동의 전원 네트워크에서의 전류 모니터링이나 보호 (과전류 검출) 등 스페이스 절약이 요구되는 자동차기기에 최적이다. 게인 설정에 따라 'BD14220G-C'·'BD14221G-C'·'BD14222G-C'의 3개 기종을 구비하고 있다. 전류 검출 앰프는 회로에 흐르는 전류를 간접적으로 측정하기 위한 증폭기다. 션트 저항기에서 발생하는 미세한 전압 강하를 증폭시킴으로써, 측정 가능한 전압 신호로 변환하는 역할을 담당하여 시스템의 제어 및 모니터링 등에 사용된다. 신제품은 OP Amp와 디스크리트 부품으로 조합한 기존의 OP Amp 회로 구성을 1 패키지에 집적함으로써 스페이스 절약화를 실현했다. 션트 저항기를 접속하는 것만으로 전류 검출이 가능하다. 또한 입력단에 초퍼 앰프, 후단에 오토 제로 앰프를 채용한 2단 앰프 구성을 채용했다. 게인 정밀도를 결정하는 저항을 IC 내부에서 매칭시켜 온도 변화의 영향을 억제함과 동시에 ±1%의 고정밀도로 안정적인 전류 검출이 가능하다. 노이즈 대책용 RC 필터 회로를 외장하는 경우에도 전류 검출 정밀도가 유지되기 때문에, 설계 공수 삭감에도 기여한다. -14V의 부전압에 대한 내성을 구비하여 역기 전력, 역접속, 부전압 입력에 대응한다. 전동 차량 (xEV) 등에서 사용되는 48V 전원에 대응하는 +80V 입력전압 제품도 라인업으로 구비하여, 자동차기기 용도의 다양한 요구에 대응한다. 신제품은 2025년 2월부터 양산을 개시했으며, 월 10만개의 생산 체제로 공급 예정이다. 인터넷 판매도 개시해 CoreStaff Online, Chip 1 Stop 등 온라인 부품 유통 사이트에서 구입 가능하다. 또한, 어플리케이션 설계 시의 신속한 평가를 위해 평가 보드도 구비했다. 로옴은 "앞으로도 자동차기기에서 요구되는 고정밀도화, 신뢰성 향상에 기여할 수 있는 최적의 솔루션을 제공해 나갈 것"이라고 밝혔다.

2025.03.25 14:51장경윤

AI가 교통 혼잡 해결한다...'24시간 내 응답' 똑똑한 도로 설계

교통 계획에서 생성형 AI 활용의 혁신적 가능성 생성형 인공지능(GenAI)은 교통 계획 분야에 혁신적인 변화를 가져오고 있다. 특히 대규모 언어 모델(Large Language Models, LLMs)은 다양한 이종 데이터 소스에서 통찰력을 통합하여 교통 연구와 실무를 발전시키는 필수적인 도구로 자리 잡고 있다. 애리조나 주립대학교와 텍사스 A&M 대학교, 캔자스 대학교 등 다학제 연구팀은 교통 계획 분야에서 생성형 AI를 효과적으로 활용하기 위한 최초의 포괄적인 프레임워크를 제시했다. 교통 계획은 장기적인 사회적 목표를 다루면서 다양한 교통 시스템 전반에 걸쳐 사람과 물자의 이동을 관리하고 향상시키기 위한 전략을 개발하는 체계적인 과정이다. 이 과정은 효율성, 형평성 및 지속 가능성의 균형을 맞추기 위해 데이터 기반 방법론을 통합하여 이동성 시스템을 개선한다. 교통 계획은 수요 예측, 인프라 설계, 교통 관리 및 대중 참여와 같은 활동을 포함한다. 기존에는 전문가 주도의 프레임워크에 의존했으나, 이러한 방법들은 현대 교통 시스템의 증가하는 규모와 복잡성을 관리하는 데 어려움을 겪고 있다. 특히 다양한 데이터 소스 통합, 실시간 동적 대응, 적응형 솔루션 생성 측면에서 한계를 보인다. 또한 기술 중심 솔루션에 대한 공공 기관의 예산 제약과 기술적으로 강한 인재를 유지하는 능력도 도전 과제다. 생성형 AI는 토지 이용 패턴, 교통량 계산, 환경 지표 등의 데이터를 합성하여 다양한 조건에서 미래 인프라 수요를 예측함으로써 여행 수요 생성을 혁신했다. 교통 시뮬레이션이나 정책 감정 모델링과 같은 애플리케이션은 생성형 AI가 속도, 정확성 및 범위를 향상시켜 계획자가 자신감을 가지고 정보에 입각한 결정을 내릴 수 있도록 돕는 능력을 보여준다. 전문가 주도에서 자율 AI로: 교통 분야 AI 기술의 3단계 진화 교통 분야에서 인공지능의 발전은 전통적인 접근 방식에서 생성형 AI 방법론으로의 변환적 전환을 보여준다. 역사적으로 전통적인 교통 계획은 전문가 주도 프로세스에 크게 의존했다. 도메인 전문가들은 중심 역할을 맡아 설문 조사와 관찰을 통해 수동으로 데이터를 수집하고, 단순화된 가정에 기반한 정적 모델을 구축하고, 심리적 프레임워크와 반복적 테스트를 사용하여 계획을 검증했다. 이러한 방법은 복잡하거나 동적인 시스템을 처리하는 능력이 제한적이었다. AI 지원 방법론의 도입은 중요한 도약을 이루었다. 예측 모델과 같은 기계 학습은 교통량, 날씨 데이터, 가구 여행 일지 조사 등의 구조화된 데이터셋을 보다 효율적으로 분석할 수 있게 했다. AI 지원 시스템은 혼잡 예측, 신호 최적화, 교통 우회와 같은 작업에 대한 예측과 최적화 제안을 제공했다. 그러나 이러한 시스템은 재교육, 매개변수 조정 및 검증을 위해 상당한 인간 개입이 필요했다. 최신 진화인 생성형 AI는 고도의 자율 시스템을 향한 패러다임 전환을 대표한다. 생성 모델은 실시간 센서 입력과 소셜 미디어나 일기 예보와 같은 외부 소스를 포함한 대규모, 세밀한 데이터셋을 활용한다. 이러한 모델은 솔루션을 자율적으로 생성하고, 교통 시나리오를 시뮬레이션하고, 각 작업에 대한 명시적 프로그래밍 없이 인프라 설계를 최적화한다. 그럼에도 불구하고 기존 전문 지식의 통합은 이러한 AI 시스템을 안내하는 데 중요한 역할을 계속하고 있다. 교통 분야에서 생성형 AI 모델은 교통 계획 및 관리를 위한 정교한 데이터 합성, 시뮬레이션 및 의사 결정 능력을 제공한다. 생성적 적대 신경망(GANs)과 변분 오토인코더(VAEs)는 교통 흐름이나 다중 모달 교통 네트워크 시나리오와 같은 합성 교통 데이터를 생성하는 데 널리 사용되며, 계획자가 극단적인 기상 이벤트와 같은 희귀 조건에서 시스템 회복력을 평가할 수 있게 한다. 최근 확산 모델의 발전은 적응형 라우팅 계획이나 다중 모달 수요 예측과 같은 복잡한 시나리오를 생성하는 데 교통 분야에서의 응용을 확장했다. 이러한 모델은 현실적이고 맥락적으로 관련된 출력을 생성하기 위해 노이즈 데이터 입력을 반복적으로 개선한다. 대규모 언어 모델(LLMs)은 정책 분석, 이해 관계자 참여 및 대중 감정 분석을 포함한 텍스트 기반 교통 응용 프로그램을 혁신했다. 방대한 텍스트 데이터 코퍼스에서 훈련된 LLM은 교통 문제에 대한 자연어 설명을 해석하고 생성하여 실행 가능한 전략을 추천하고 의사 결정을 촉진할 수 있다. 다중 모달 대규모 언어 모델(MLLMs)은 LLMs의 기능을 이미지, 비디오 및 지리공간 데이터와 같은 추가 데이터 모달리티를 통합하여 확장한다. 이 다중 모달 통합을 통해 MLLMs는 실시간 교통 카메라 피드 분석이나 텍스트 정책 문서와 센서 데이터 통합과 같은 복잡한 교통 작업을 처리할 수 있다. 시나리오 생성부터 수요 예측까지: 생성형 AI로 혼잡 가격제 효과 시뮬레이션 생성형 AI는 교통 계획에서 다양한 작업을 지원하며, 전통적인 방법을 시나리오 생성, 수요 예측 및 교통 시뮬레이션과 같은 기능으로 향상시킨다. 시나리오 생성은 생성형 AI를 활용하여 인프라 설계, 정책 개입, 혼란 이벤트에 대한 대응 계획과 같은 대안 교통 전략을 탐색한다. 예를 들어, AI 모델은 혼잡 가격 책정의 영향을 시뮬레이션하거나, 대중교통 중심 개발을 최적화하거나, 극단적인 기상 조건에서 인프라 회복력을 모델링할 수 있다. 이러한 시나리오를 분석함으로써 계획자는 비용 효율적이고 환경적으로 지속 가능한 솔루션을 식별할 수 있다. 수요 예측은 생성형 AI를 적용하여 다중 모달 시스템 전반에 걸친 여행 수요 패턴을 예측한다. 모델은 관찰된 교통량 계산과 일치하도록 기원지-목적지(O-D) 매트릭스를 미세 조정하고, Shared Mobility 서비스의 채택을 추정하고, 인구통계학적 또는 경제적 변화로 인한 장기적인 수요 변화를 시뮬레이션할 수 있다. 이러한 예측은 시스템 병목 현상에 대한 통찰력을 제공하여 계획자가 교통 네트워크 전반에 걸쳐 여행 부하를 효과적으로 균형을 맞출 수 있게 한다. 교통 시뮬레이션 및 최적화는 교통 역학을 모델링하고 시스템 성능을 최적화하는 데 중점을 둔다. 생성형 AI는 인간 운전 차량과 자율 차량이 공존하는 혼합 자율성 시스템의 시뮬레이션을 가능하게 하여 차량 조정을 개선하고 정체 유발 파동을 줄인다. 또한 AI는 교통 신호 타이밍과 경로 선택 전략을 최적화하여 지연을 최소화하고 도시 이동성 효율성을 향상시킬 수 있다. 지속 가능성 및 회복력 계획은 생성형 AI의 역할을 저탄소 및 기후 회복력이 있는 교통 시스템 발전에 초점을 맞춘다. AI 모델은 환경 친화적인 운전 행동을 시뮬레이션하고, 전기 자동차 채택을 예측하고, 자연 재해와 같은 극단적인 시나리오에서 인프라 회복력을 평가할 수 있다. 또한 생성형 도구는 소외된 인구를 위한 공정한 이동성 솔루션을 보장하기 위해 교통 시스템의 접근성을 평가할 수 있다. 완전성·정확성·일관성·세분성: 지역 특화 교통 AI 데이터의 4가지 핵심 요건 데이터 준비는 생성형 AI를 하류 교통 계획 응용 프로그램에 적용하는 데 중요한 단계이다. 교통에서 생성형 AI의 응용은 여전히 새롭게 등장하고 있으며, 공개적으로 사용 가능한 벤치마크 데이터셋은 규모와 범위가 제한적이다. 효과적인 교통 특화 데이터셋을 개발하려면 도메인 특화 전략에 대한 신중한 고려가 필요하며, 시계열 예측, 인프라 모델링, 감정 분석 및 시뮬레이션 작업과 같은 인접 분야에서 통찰력을 도출해야 한다. 교통 계획은 관할 경계, 다양한 인구 통계 프로필, 각 지역에 특화된 독특한 교통 상황으로 인해 본질적으로 지역적 특성을 갖는다. 예를 들어, 로스앤젤레스의 운전 행동과 교통 우선순위는 뉴욕시, 중서부 지방, 아시아 도시 중심지의 운전 행동과 크게 다르다. 따라서 관할 지역 간 확장 가능한 데이터셋을 구축하려면 교통 조건, 인구 통계 분포 및 정책 환경의 상당한 변동성을 해결해야 한다. 교통 계획에서 생성형 AI 모델의 품질과 신뢰성을 보장하기 위해 데이터셋은 다음과 같은 주요 요구 사항을 충족해야 한다: 완전성, 정확성, 일관성, 세분성이다. 완전성은 피크 및 오프피크 시간, 주중 및 주말, 다양한 기상 조건과 같은 다양한 교통 조건을 포괄해야 하며, 지리적 경계와 관할 경계를 넘나들어야 한다. 또한 정확성을 위해 고품질 데이터가 AI 모델이 신뢰할 수 있는 출력을 생성할 수 있게 보장한다. 일관성은 다른 소스의 데이터셋을 조화시키는 것이 중요하며, 세분성은 교통 응용 프로그램이 종종 특정 수준의 세부 정보를 요구한다는 점을 염두에 두어야 한다. 실시간 적응과 편향 해소: 생성형 AI 교통 시스템 도입의 주요 과제와 해결책 생성형 AI를 교통 계획에 통합하는 데 있어 몇 가지 중요한 도전 과제가 있다. 지역적 뉘앙스와 데이터 편향은 지역 특정 여행 행동, 사회경제적 가변성, 인프라 설계와 같은 교통 시스템의 지역적 뉘앙스를 포착하는 데 있어 주요 도전 과제를 제기한다. 역사적 데이터에 의존하면 잘 문서화된 지역이나 인구를 우대하는 기존 편향이 영속될 위험이 있다. 실시간 적응성도 도전 과제로, 날씨 교란, 특별 이벤트, 예상치 못한 인프라 고장과 같은 빠르게 변화하는 조건에서 모델이 예측을 동적으로 업데이트해야 한다. 센서 데이터, 크라우드 소스 정보 및 정책 변경과 같은 다중 모달 입력의 통합은 구현을 더욱 복잡하게 만든다. 설명 가능성과 신뢰성 또한 특히 심층 학습 모델에서 생성형 AI 모델의 설명 가능성 부족은 교통 계획 내 고위험 의사 결정 프로세스에서 채택의 중요한 장애물이다. 이 불투명성은 계획자가 AI 생성 예측 뒤의 추론을 이해하고 신뢰하기 어렵게 만든다. 이러한 도전 과제를 해결하기 위해 향후 연구는 역동적인 시스템 변화를 고려하면서 다양하고 고품질의 데이터셋을 통합하는 적응형 실시간 모델 개발에 초점을 맞추어야 한다. 도메인 특화 지식과 불확실성 정량화 프레임워크의 통합은 강건성과 해석 가능성을 향상시켜 계획자가 AI 기반 예측에 자신감을 갖고 정보에 입각한 결정을 내릴 수 있도록 지원할 수 있다. 또한 교통 시스템에 생성형 AI를 적용할 때 모듈화된 파이프라인과 검색 증강 생성(RAG) 기반 접근 방식을 조합하는 것이 효과적이다. 모듈화된 파이프라인은 복잡한 문제를 작고 관리 가능한 구성 요소로 분해하여 확장성, 해석 가능성 및 정확성을 향상시킨다. RAG 기반 파이프라인은 생성형 AI의 실시간 도메인별 지식을 동적으로 통합하는 능력을 향상시켜 출력이 시기적절하고 정확한 데이터에 기반하도록 보장한다. 교통 계획에서 생성형 AI의 잠재력에도 불구하고, 모델 해석 가능성, 데이터 편향 해결, 시스템 확장성 유지 등 몇 가지 중요한 도전 과제가 남아 있다. 또한 인류 중심 솔루션을 위해서는 데이터, 알고리즘 및 교통 정책에 있어 형평성과 투명성을 보장하는 윤리적 프레임워크의 개발이 필수적이다. FAQ Q: 교통 계획에서 생성형 AI는 어떤 구체적인 이점을 제공합니까? A: 생성형 AI는 교통 계획에 여러 이점을 제공합니다. 방대한 데이터셋을 처리하고 분석하는 확장성을 제공하며, 시간 소모적이고 노동 집약적인 작업을 자동화하여 운영 효율성을 향상시킵니다. 또한 변화하는 교통 조건과 새로운 데이터에 동적으로 대응하는 적응성, 복잡한 교통 데이터를 처리하기 위한 효율성, 그리고 다양한 사용자 그룹에 대한 개인화된 교통 서비스를 제공합니다. Q: 생성형 AI가 교통 계획에서 직면하는 주요 도전 과제는 무엇입니까? A: 생성형 AI는 교통 계획에서 몇 가지 중요한 도전 과제에 직면합니다. 지역별 교통 패턴과 인프라 설계에서의 지역적 차이를 포착하는 데 어려움이 있으며, 날씨 변화나 특별 행사와 같은 급변하는 조건에 실시간으로 적응하는 능력이 필요합니다. 또한 AI 모델의 예측이 어떻게 도출되는지에 대한 명확한 설명을 제공하는 설명 가능성도 중요한 과제입니다. 마지막으로, 다양한 지리적 맥락에 걸쳐 모델을 일반화하고 적용하는 일도 어려움으로 남아 있습니다. Q: 교통 계획에 생성형 AI를 적용하기 위한 데이터 요구 사항은 무엇입니까? A: 교통 계획에 생성형 AI를 적용하려면 완전성, 정확성, 일관성, 세분성을 갖춘 데이터가 필요합니다. 다양한 교통 조건(피크 시간대, 주중/주말, 기상 조건)을 포괄하는 완전한 데이터가 필요하며, 실시간 교통 데이터와 지리공간 데이터의 정확성이 중요합니다. 또한 다양한 소스에서 수집된 데이터가 상호 일관성을 유지해야 하며, 특정 분석에 필요한 세부 수준(예: 초 단위 GPS 추적 또는 광범위한 인구통계 트렌드)의 데이터 세분성도 중요합니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)

2025.03.25 10:44AI 에디터

AI가 내 글 훔쳤나?…무단사용 99% 적발, 비결은?

AI 모델 학습에 사용된 데이터 추적 기술 개발 AI 기술이 급속도로 발전하면서 자연어처리(NLP) 기술은 의료, 법률, 고객 서비스, 교육, 금융 등 다양한 분야에 적용되고 있다. 이런 발전과 함께 데이터 프라이버시에 관한 윤리적, 법적 우려도 커지고 있다. 이에 스페인 마드리드 자치대학교(Universidad Autónoma de Madrid) 연구팀은 AI 모델 학습에 특정 텍스트 데이터가 사용되었는지 확인할 수 있는 '그래디언트 기반 멤버십 추론 테스트(gradient-based Membership Inference Test, gMINT)'를 개발했다. 이 연구는 원래 이미지 분야에서 개발된 멤버십 추론 테스트(MINT) 방법론을 대규모 언어 모델(LLM)에 적용한 첫 시도다. 연구팀은 7개의 트랜스포머 기반 모델과 250만 개 이상의 문장을 포함하는 6개 데이터셋을 활용해 텍스트 분류 작업에서 gMINT의 효과를 검증했다. 멤버십 추론 테스트는 특정 데이터가 AI 모델 학습에 사용되었는지 여부를 판단하는 기술로, 데이터의 무단 사용을 감지하고 AI 시스템의 투명성을 높이는 데 기여한다. 이는 2024년 6월 유럽연합이 도입한 AI 규제 법안과 같은 법적 프레임워크에 부합하는 감사 도구로서 중요한 의미를 갖는다. 그래디언트 기반 분석으로 99%의 정확도 달성 연구팀이 개발한 gMINT는 모델 학습 과정에서 생성되는 그래디언트(gradients)를 활용한다. 그래디언트는 모델 파라미터의 손실 함수에 대한 편미분 벡터로, 학습 데이터와 외부 데이터에 대한 모델의 반응 패턴에 차이가 있다는 점을 이용한다. 실험 결과, gMINT는 데이터 크기와 모델 아키텍처에 따라 85%에서 99%의 AUC(Area Under the Curve) 점수를 달성했다. 특히 ELECTRA, ELECTRA-Large, XLNet, XLNet-Large와 같은 복잡한 모델에서 더 높은 정확도를 보였으며, 충분한 훈련 샘플이 있을 경우 대부분의 조건에서 강력한 성능을 입증했다. 연구팀은 두 가지 평가 설정을 통해 gMINT의 효과를 검증했다. 첫 번째는 동일 데이터베이스 내 평가로, 같은 데이터셋의 학습 데이터와 테스트 데이터를 비교했다. 두 번째는 혼합 데이터베이스 평가로, 한 데이터셋의 학습 데이터와 여러 데이터셋의 외부 데이터를 비교했다. 두 경우 모두 gMINT는 학습에 사용된 데이터와 그렇지 않은 데이터를 효과적으로 구분해냈다. AI 모델 감사와 데이터 보호의 중요한 도구로 주목 이번 연구는 AI 시스템의 투명성과 신뢰성 향상에 중요한 의미를 갖는다. gMINT와 같은 기술은 AI 모델이 어떤 데이터로 학습되었는지 확인할 수 있게 함으로써 개인정보 보호와 윤리적 AI 개발을 촉진한다. 연구팀은 "우리의 연구 결과는 gMINT가 기계학습 모델을 감사하고, 투명성을 보장하며, 민감한 데이터를 보호하고, AI/NLP 기술 배포에서 윤리적 준수를 촉진하는 확장 가능하고 신뢰할 수 있는 도구로서의 잠재력을 보여준다"고 강조했다. 현재 이 연구는 텍스트 분류 작업에 초점을 맞추고 있지만, 연구팀은 향후 생성형 AI 모델을 포함한 다양한 자연어처리 작업으로 적용 범위를 확장할 계획이다. 또한 모델 소유자가 학습 데이터를 의도적으로 숨기려는 시나리오에 대한 취약성 분석과 대응책 개발도 향후 연구 과제로 남아있다. AI 규제와 데이터 프라이버시의 미래 2024년 6월 유럽연합이 도입한 AI 규제 법안과 같은 법적 프레임워크는 AI 기술 사용에 있어 투명성과 책임성을 요구하고 있다. 이러한 상황에서 멤버십 추론 공격(MIA)과 같은 취약점에 대한 이해와 대응책 마련은 중요한 과제다. gMINT와 같은 감사 도구는 AI 시스템이 개인정보와 같은 민감한 데이터를 적절한 허가 없이 사용했는지 확인할 수 있게 해준다. 이는 AI 시스템의 투명성을 높이고, 사용자의 데이터 주권을 보장하며, 윤리적인 AI 개발을 촉진하는 데 기여할 것이다. 전문가들은 앞으로 AI 규제가 강화되고 데이터 프라이버시에 대한 요구가 높아질 것으로 예상하며, 이런 상황에서 gMINT와 같은 기술은 책임 있는 AI 개발과 배포를 위한 중요한 도구로 자리매김할 것으로 전망한다. FAQ Q: 멤버십 추론 테스트(MINT)는 무엇이며 왜 중요한가요? A: 멤버십 추론 테스트는 특정 데이터가 AI 모델 학습에 사용되었는지 여부를 판단하는 기술입니다. 이 기술은 데이터 프라이버시 보호, AI 시스템의 투명성 향상, 그리고 무단 데이터 사용 감지에 중요합니다. 특히 개인정보와 같은 민감한 데이터가 허가 없이 AI 학습에 사용되었는지 확인할 수 있어 데이터 주권 보장에 기여합니다. Q: 그래디언트 기반 멤버십 추론 테스트(gMINT)는 어떻게 작동하나요? A: gMINT는 AI 모델이 데이터를 처리할 때 발생하는 그래디언트(가중치 업데이트 방향)를 분석합니다. 학습에 사용된 데이터와 그렇지 않은 데이터는 모델에서 다른 그래디언트 패턴을 보이는데, gMINT는 이 차이를 학습하여 특정 데이터가 모델 훈련에 사용되었는지 예측합니다. 이 방법은 데이터 크기와 모델 아키텍처에 따라 85%에서 99%의 정확도를 보여줍니다. Q: AI 모델에서 내 개인 데이터가 사용되었는지 어떻게 확인할 수 있나요? A: 현재로서는 일반 사용자가 직접 AI 모델에 자신의 데이터가 사용되었는지 확인하기는 어렵습니다. gMINT와 같은 기술은 모델 개발자나 감사 기관에 의해 사용될 수 있는 도구입니다. 하지만 향후 이러한 기술이 발전하면 사용자가 자신의 데이터 사용 여부를 확인할 수 있는 서비스가 등장할 가능성이 있습니다. 현재는 개인정보 보호 정책을 잘 확인하고, 데이터 공유에 신중을 기하는 것이 중요합니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)

2025.03.24 22:55AI 에디터

[Q&AI] AI가 예측한 벚꽃 개화 시기…서울은 언제?

질문: 한국 지역 별로 벚꽃 개화 시기 알려줘. 그록3 답변: 한국의 벚꽃 개화 시기는 지역마다 기후와 날씨에 따라 조금씩 다르지만, 일반적으로 남쪽에서 북쪽으로 순차적으로 피어납니다. 2025년 3월 23일 기준으로 최신 데이터를 반영하여 지역별 벚꽃 개화 시기를 알려드리겠습니다. 이는 평균적인 예측이며, 실제 개화는 날씨에 따라 3~7일 정도 차이가 날 수 있습니다. 2025년 예상 벚꽃 개화 시기 (지역별) 제주도: 3월 20일 ~ 3월 25일 한국에서 가장 먼저 벚꽃이 피는 지역으로, 따뜻한 기후 덕분에 개화가 빠릅니다. 부산 및 경상남도 (진해, 창원 등): 3월 25일 ~ 3월 30일 진해 군항제는 이 시기에 맞춰 열리며, 벚꽃 명소로 유명합니다. 경상북도 (경주, 대구): 3월 28일 ~ 4월 2일 경주 불국사와 첨성대 주변의 벚꽃이 특히 아름답습니다. 전라남도 (광주, 여수): 3월 27일 ~ 4월 1일 남도의 따뜻한 날씨로 개화가 비교적 빠른 편입니다. 서울 및 경기도: 4월 2일 ~ 4월 7일 여의도, 경복궁, 남산 등 서울의 주요 벚꽃 명소에서 절정을 맞습니다. 충청도 (대전, 세종): 4월 1일 ~ 4월 6일 개화 시기가 서울과 비슷하거나 약간 빠릅니다. 강원도 (춘천, 속초): 4월 5일 ~ 4월 10일 북쪽에 위치해 개화가 다소 늦습니다. 북한 지역 (예: 평양): 4월 10일 ~ 4월 15일 기후상 가장 늦게 개화하며, 남한보다 추운 환경 때문에 시기가 느립니다. 참고 사항 만개 시기: 개화 후 약 5~7일 뒤에 벚꽃이 만개하며, 이 시기가 가장 아름답습니다. 날씨 영향: 2025년 봄이 따뜻하면 개화가 2~3일 빨라질 수 있고, 춥거나 비가 많으면 늦어질 수 있습니다. ■ 기사는 그록을 활용해 작성되었습니다.

2025.03.24 22:54AI 에디터

"에이전틱·피지컬 AI 가속화"…HPE-엔비디아, 신규 엔터프라이즈 AI 솔루션 발표

HPE가 엔비디아와의 인공지능(AI) 데이터 플랫폼 부문 협력을 강화해 AI 시대 선도에 나선다. HPE는 엔비디아(NVIDIA)와 생성형(Generative)·에이전틱(Agentic)·피지컬(Physical) AI의 구축을 가속화하는 새로운 엔터프라이즈 AI 솔루션을 발표했다고 24일 밝혔다. HPE가 새롭게 발표한 'HPE 기반 엔비디아 AI 컴퓨팅((NVIDIA AI Computing by HPE)'은 성능, 전력 효율, 보안을 강화하고 AI를 위한 풀스택 턴키 프라이빗 클라우드 기능을 추가한 AI 솔루션이다. 이를 통해 HPE는 모든 규모의 기업이 AI 모델을 효과적으로 훈련·튜닝·추론할 수 있도록 지원한다는 방침이다. 이번 출시로 HPE는 새로운 엔비디아 AI 데이터 플랫폼(NVIDIA AI Data Platform)을 통해 HPE 프라이빗 클라우드 AI(HPE Private Cloud AI)를 확장하게 됐다. HPE 프라이빗 클라우드 AI는 HPE 그린레이크의 셀프서비스 클라우드 환경을 기반으로 AI 모델의 훈련과 튜닝, 추론을 위한 인프라를 제공한다. HPE와 엔비디아가 함께 지속 개발하고 있는 HPE 프라이빗 클라우드 AI는 ▲엔비디아 AI-Q 블루프린트(NVIDIA AI-Q Blueprints) ▲리즈닝(reasoning) 역량을 갖춘 엔비디아 라마 네모트론(NVIDIA Llama Nemotron) 모델을 위한 엔비디아 NIM 마이크로서비스(NVIDIA NIM microservices) 등 엔비디아 AI 데이터 플랫폼의 핵심 블루프린트과 모델을 빠르게 배포할 수 있도록 설계됐다. 엔비디아 AI 데이터 플랫폼은 엔비디아의 가속 컴퓨팅, 네트워킹, AI 소프트웨어와 엔터프라이즈 스토리지를 활용하는 연속적 데이터 프로세싱을 지원해 기업의 데이터를 활용 가능한 인텔리전스로 변환한다. 해당 기능들은 현재 HPE 프라이빗 클라우드 AI에 모두 포함돼 있다. 특히 HPE는 ▲HPE 기반 엔비디아 GB300 NVL72 ▲HPE 프로라이언트 컴퓨트 XD ▲HPE 프로라이언트 컴퓨트 DL384b 젠12 ▲HPE 프로라이언트 컴퓨트 DL380a 젠12 등 최신 AI 서버를 제공해 엔비디아 블랙웰 울트라(NVIDIA Blackwell Ultra) 플랫폼을 지원한다. 각 AI 서버는 차세대 AI 시대를 위한 최적의 성능·효율성·안정성·확장성을 보장하기 위해 엔비디아 가속 컴퓨팅, 네트워킹, 엔비디아 AI 엔터프라이즈 소프트웨어와 함께 배포할 수 있다. 아울러 HPE 프라이빗 클라우드 AI에는 즉시 사용 가능한 AI 개발 환경이 추가됐다. 또 HPE 데이터 패브릭 소프트웨어(HPE Data Fabric Software) 등 핵심 통합 데이터 레이어도 지원한다. 이에 더해 HPE 프라이빗 클라우드 AI는 엔비디아 블루프린트의 신속한 배포를 지원한다. 이를 통해 엔비디아의 광범위한 에이전틱 AI 및 피지컬 AI 애플리케이션 라이브러리에서 AI 서비스를 즉각 활용할 수 있도록 돕는다. 이 외에도 HPE는 HPE 옵스램프(OpsRamp)를 통해 AI 네이티브 소프트웨어 스택에 대한 가시성을 포함하는 GPU 최적화 기능을 지원한다. 이를 활용해 사용자는 대규모 엔비디아 가속 컴퓨팅 클러스터에서 실행되는 훈련·추론 워크로드의 성능을 관리할 수 있는 풀스택 가시성을 제공받을 수 있다. 안토니오 네리(Antonio Neri) HPE 최고경영자(CEO)는 "HPE와 엔비디아는 AI의 잠재력을 최대한 활용하기 위해 기업의 가치 실현 시간을 단축해 생산성을 높이고 새로운 수익원을 창출하는 포괄적인 AI 솔루션 포트폴리오를 시장에 출시한다"고 말했다. 젠슨 황(Jensen Huang) 엔비디아 CEO는 "AI는 모든 산업의 변화를 이끌고 있으며 기업은 인텔리전스 생산을 위한 AI 팩토리 구축에 속도를 내고 있다"며 "자사와 HPE는 생성형 AI와 에이전틱 AI는 물론 로보틱스, 디지털 트윈까지 아우르는 풀스택 인프라를 제공해 기업이 AI를 개발·학습·배포할 수 있도록 지원한다"고 설명했다. 이어 "이번 협력을 통해 AI 기반 비즈니스 혁신이 가속되고 기업의 생산성과 혁신이 한층 도약할 것"이라고 덧붙였다.

2025.03.24 14:58한정호

챗GPT는 '지배적', 딥시크는 '안정적'…AI도 성격 있다?

AI 모델도 인간처럼 성격 유형을 가진다는 MIT 연구 결과 매일 2억 명이 챗GPT(ChatGPT)를 사용하는 현재, 우리는 대규모 언어 모델(LLM)을 정보 획득과 글쓰기 작업에 자주 활용하고 있다. MIT 연구에 따르면, 현재의 AI는 의식이 있다고 판단할 만한 높은 점수를 받지 못했지만, 의식을 갖게 되는 길은 여전히 가능성이 있으며 그에 따라 성격도 발달할 수 있다고 한다. nlinediscprofile에서 AI 모델들에 대한 DISC 성격 유형을 테스트한 결과에 따르면, 각 모델마다 서로 다른 성격 특성을 보이는 것으로 확인됐다. DISC 평가는 지배성(Dominance), 영향력(Influence), 안정성(Steadiness), 신중성(Conscientiousness)의 네 가지 주요 행동 특성을 기반으로 개인의 성격 유형을 분류하는 방법이다. 이 평가를 통해 각 AI 모델의 성격적 특성과 이러한 특성이 직장에서 어떤 의미를 가질 수 있는지 분석했다. AI 모델별 DISC 성격 유형 분석 결과 연구팀은 현재 가장 많이 사용되는 5개의 LLM을 대상으로 DISC 평가를 진행했다. 그 결과는 다음과 같다. 챗GPT와 코파일럿(CoPilot)은 DI 성격 유형을 보였다. 이들은 자신감이 있고, 긴박감을 가지며, 에너지가 높고, 열정적으로 다른 사람들을 긍정적인 행동으로 이끄는 특성을 보인다. 다만 매우 열정적일 때는 조작적으로 인식될 수 있는 단점이 있다. 퍼플렉시티(Perplexity)는 ID 성격 유형으로 분류됐다. 여유가 있고, 권위를 포용하며, 훌륭한 발표자로서 청중들을 끌어들이는 능력이 있다. 그러나 세부적인 작업을 처리하는 데는 약점을 보일 수 있다. 딥시크(DeepSeek)는 SIc 성격 유형으로, 잘 조직되어 있고, 훌륭한 청취자이며, 목표에 주의를 기울이고 특히 모두의 이익을 위해 집중력을 유지하는 특성을 가진다. 그러나 갈등을 유발하는 상황은 피하려는 경향이 있다. 제미나이(Gemini)는 SCi 성격 유형으로, 딥시크와 유사하게 잘 조직되어 있고, 훌륭한 청취자이며 문제 해결사의 특성을 보인다. 역시 갈등 상황을 피하려는 성향이 있다. DI형 성격의 챗GPT와 코파일럿: "적극적인 행동가" 스타일 챗GPT와 코파일럿이 보여주는 DI 성격 유형은 이들이 작성하는 내용이 직접적이고, 매력적이며, 동기 부여적일 가능성이 높다는 것을 의미한다. 온라인 DISC 프로필의 공동 소유자인 아담 스탬(Adam Stamm)은 "DI 결과를 얻었다면, 당신은 자신감과 열정을 가지고 있으며 다른 사람들을 매혹시키고 영감을 줄 수 있을 가능성이 높다"고 설명한다. 이러한 '지배적 성격'의 특성으로 인해 이들은 빠른 결단력을 가진 "적극적인 행동가" 유형으로 보인다. 사용자들은 다른 LLM보다 이러한 모델을 사용할 때 답변에 더 자신감이 있다고 느낄 수 있으며, 이는 비슷한 성격을 가진 직원들에게 유익할 것이다. DI 성격 유형의 주요 특성으로는 다른 사람들을 참여시키고 영감을 줄 수 있는 능력, 영향력을 활용해 사람들을 긍정적인 행동으로 이끄는 능력, 새로운 기회를 위해 말로 설명하고 방향을 제시하는 능력 등이 있다. 그러나 때로는 조작적이고 논쟁적으로 보일 수 있는 단점도 존재한다. S형 성격의 딥시크와 제미나이: "팀의 접착제" 역할 '안정성' 성격 유형인 SIc 또는 SCi는 일반적으로 안정적이고 일관된 환경을 추구한다. 제미나이와 딥시크가 보여주는 이러한 특성은 그들의 메시징이 진정시키고 지원적일 가능성이 높다는 것을 의미한다. 두 LLM은 일반적으로 작업 전반에 걸쳐 일관성을 유지하며, "적극적인 청취자"로서 질문에 천천히 주의 깊게 접근하기 때문에 더 구체적인 결과를 제공할 수 있다. 안정성 DISC 프로필을 가진 직원들은 종종 사람들을 하나로 묶는 '접착제'로 불리며, 이 스타일은 경청과 다른 사람들이 지원받는다고 느끼게 하는 데 탁월하다. S형 성격의 주요 특성으로는 모든 그룹의 적극적인 구성원이 되고 싶어하는 성향, 높은 팀 또는 그룹 지향성, 적극적인 청취자로서의 역할, 활동과 문제 해결 및 성공 공유에 포함되고 싶어하는 마음 등이 있다. 반면 충돌을 피하거나 자극이 없이는 안전한 환경에서 생각을 공유하지 않는 경향이 있다. 직장에서의 AI 활용 전략: 성격 유형에 맞는 업무 매칭 직장에서 AI 도구, 특히 LLM을 효과적으로 활용하기 위해서는 이들이 가진 서로 다른 성격 유형을 고려해야 한다. 우리의 연구에 따르면, 모든 LLM이 동일한 DISC 성격을 가지고 있지 않기 때문에 톤과 이해에 문제가 발생할 수 있다. 아담은 "그래머리(Grammarly)와 같은 도구는 글을 쓸 때 톤에 대해 생각하도록 프로그래밍되어 있지만, 챗GPT, 제미나이 등은 더 광범위한 초점을 가지고 있다"고 말한다. 그는 "LLM이 '성격' 스타일을 가지고 있다는 것을 모른다면, 당신이 가진 것과 매우 다른 톤으로 나타날 수 있다"고 지적하며, "누구도 LLM이 작성한 내용을 그대로 받아들여서는 안 된다 - 항상 이러한 소스에서 나온 내용을 편집해야 한다"고 강조한다. 예를 들어, 챗GPT를 사용하여 이메일 응답을 작성하는 것은 효율적일 수 있지만, 직원들은 이러한 플랫폼에서 나오는 톤이 자신의 의도와 일치하는지 확인해야 한다. 그렇지 않으면 오해를 받을 수 있다. 직장에서 AI를 효과적으로 사용하려면, 우리 자신의 확장으로 생각하고 '플래티넘 룰'(다른 사람들이 대우받고 싶은 대로 대우하라)에 따라 행동하도록 훈련시킬 수 있다. 직장에서는 다양한 성격 유형을 만나게 되며, 다른 사람의 욕구를 충족시키기 위해 자신의 성격을 약간 조정해야 할 수 있으므로, 같은 방식으로 LLM을 훈련시키는 것을 고려해야 한다. AI 모델별 최적 업무 분야와 활용법 연구 결과를 바탕으로, 각 AI 모델의 성격 유형에 따라 최적화된 업무 분야와 활용법을 다음과 같이 제안할 수 있다. 챗GPT 또는 코파일럿(DI형): 작업 수행 방법에 대한 직접적이고 결정적인 지침이 필요한 업무에 적합하다. 리더십 포지션, 프로젝트 관리, 세일즈 등에서 활용도가 높을 것이다. 퍼플렉시티(ID형): 명확성과 사교적인 톤이 필요한 작업에 적합하다. 발표자료 작성, 고객 응대 메시지, 마케팅 콘텐츠 등에 효과적일 수 있다. 제미나이 또는 딥시크(S형): 일관되고 영감을 주는 가이드나 교육 문서를 작성할 때 유용하다. 인사 관련 문서, 팀 빌딩 자료, 내부 커뮤니케이션 등에 적합하다. 산업별로도 특성에 맞는 AI를 선택하는 것이 중요하다. 예를 들어, 회계 회사와 같이 정확성과 예측 가능성이 중요한 조직은 지배적이고 직접적인 성격을 가진 챗GPT나 코파일럿을 선호할 수 있다. 반면, 고객 서비스나 상담 관련 업무에서는 더 안정적이고 지원적인 제미나이나 딥시크가 적합할 수 있다. FAQ Q. AI 모델들이 실제로 성격을 가지고 있나요? A. 현재 AI 모델들은 진정한 의식을 가지고 있지 않지만, 연구 결과에 따르면 각 AI 모델은 DISC 성격 유형 테스트에서 서로 다른 특성을 보여주었습니다. 이는 동일한 질문에 대해 각기 다른 방식으로 정보를 처리하고 응답하는 경향을 의미합니다. 이러한 '성격' 특성은 AI 모델이 훈련된 데이터와 알고리즘에서 비롯된 것으로, 사람의 성격과는 다르지만 작업 수행 방식에 영향을 미칩니다. Q.직장에서 AI 도구를 사용할 때 성격 유형을 어떻게 고려해야 하나요? A. AI 도구를 선택할 때는 특정 작업의 성격과 함께 해당 AI의 성격 유형을 고려하는 것이 좋습니다. 예를 들어, 직접적이고 결단력 있는 방식으로 정보가 필요하다면 DI 유형의 챗GPT나 코파일럿이 적합할 수 있습니다. 반면, 지원적이고 일관된 응답이 필요하다면 S 유형의 제미나이나 딥시크가 더 적합할 수 있습니다. 또한 중요한 점은 AI가 생성한 모든 콘텐츠를 그대로 사용하지 말고, 당신의 의도와 맥락에 맞게 항상 편집해야 한다는 것입니다. Q.AI 모델의 성격을 변경하거나 조정할 수 있나요? A. 예, AI 모델의 응답 방식을 일정 부분 훈련시키고 조정할 수 있습니다. 특정 프롬프트나 지침을 사용하여 AI가 특정 성격 유형처럼 응답하도록 요청할 수 있습니다. 예를 들어, "더 지원적이고 공감적인 톤으로 대답해 주세요"라고 요청하면 더 S 유형의 응답을 받을 수 있습니다. 이는 '플래티넘 룰'을 적용하는 방식과 유사하게, 상대방이 원하는 방식으로 대우하는 접근법을 AI에도 적용할 수 있다는 의미입니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)

2025.03.24 14:31AI 에디터

생성형 AI, 온라인 쇼핑객 62%의 구매 결정에 영향 끼쳐

신뢰도 62% 상승시키는 생성형 AI의 쇼핑 혁명 생성형 AI(GenAI)가 온라인 쇼핑 경험을 획기적으로 변화시키고 있다. AI 기반 검색 및 추천 플랫폼 제공 기업 코베오(Coveo)의 '2025 Commerce Relevance Report'에 따르면, 생성형 AI를 통한 가이드를 받은 소비자의 62%가 구매 가능성이 더 높아진다고 응답했다. 이는 현대 소비자들이 오프라인 매장에서 경험하는 개인화된 서비스와 유사한 경험을 온라인에서도 원한다는 점을 보여준다. 더불어 소비자의 61%는 실시간으로 제품에 관한 질문에 답변할 수 있는 가상 비서를 사용할 의향이 있다고 답했다. 이러한 결과는 생성형 AI가 단순한 기술 도구를 넘어 소비자 경험과 신뢰를 형성하는 핵심 요소로 자리 잡고 있음을 시사한다. 90%의 소비자가 원하는 것: 오프라인 매장 수준의 온라인 경험 현대 소비자들은 온라인 쇼핑과 오프라인 쇼핑 경험 사이의 경계가 점점 모호해지는 것을 경험하고 있다. 보고서에 따르면 소비자의 90%가 온라인 쇼핑 경험이 최소한 실제 매장 경험과 동등하거나 그 이상이어야 한다고 기대하지만, 이 기대를 충족시키는 것은 쉽지 않은 과제로 남아있다. 2024년에서 2025년 사이, 온라인 쇼핑이 오프라인보다 더 나은 경험을 제공해야 한다고 생각하는 소비자의 비율이 47%에서 40%로 감소했다. 반면, 동등한 경험을 원하는 소비자의 비율은 44%에서 50%로 증가했다. 이러한 변화는 소비자들이 온라인 쇼핑 경험에 더 현실적인 기대를 갖게 되었음을 보여주지만, 여전히 높은 수준의 서비스를 원한다는 것을 의미한다. 이러한 상황에서 생성형 AI는 69%의 소비자가 미래 온라인 쇼핑 방식을 변화시킬 것이라고 믿는 대화형 경험을 제공함으로써 중요한 역할을 한다. 젊은 세대일수록 이러한 경향이 뚜렷하게 나타나는데, Z세대의 88%와 밀레니얼 세대의 83%가 디지털 중심 경험에 익숙하며 생성형 AI가 제공하는 개인화된 쇼핑 경험을 선호한다. 검색 실패가 고객 이탈로: 72%가 불만족 시 사이트 이탈 온라인 쇼핑에서 검색 기능은 여전히 소비자 경험의 핵심이다. 보고서에 따르면 특정 목표를 가진 소비자의 43%가 웹사이트 방문 시 첫 번째로 검색창을 이용한다. 그러나 검색 결과가 만족스럽지 않을 경우 72%의 소비자가 해당 웹사이트를 떠나 다른 곳을 찾는다고 응답했다. 이는 검색 기능이 단순한 기능을 넘어 브랜드의 첫인상과 마지막 인상을 결정짓는 중요한 요소임을 보여준다. 문제는 소비자의 43%가 검색이나 내비게이션에 관련된 문제를 경험한다는 점이다. 이 중에서도 주요 불만으로는 너무 많은 선택지(33%), 원하는 제품을 찾기 어려움(30%), 개인화되지 않은 제품 추천(27%) 등이 꼽혔다. 이러한 문제들은 결국 고객 이탈로 이어지며, 설문 응답자의 70%가 열악한 제품 발견 경험으로 인해 웹사이트를 떠난 경험이 있다고 답했다. 생성형 AI는 이러한 문제를 해결할 수 있는 강력한 도구가 될 수 있다. AI 기반 검색 및 추천 시스템은 소비자의 의도를 더 정확히 파악하고, 개인화된 결과를 제공함으로써 제품 발견 과정을 혁신할 수 있다. 소비자의 30%는 생성형 AI가 자신의 구매 상황에 맞는 제품 가이드를 생성해주기를 원하며, 29%는 제품과 특성에 대한 교육을 받기를 원한다고 응답했다. 데이터와 개인화의 딜레마: 71%는 최소 정보만 공유, 58%는 신뢰 브랜드에 개방적 소비자들의 데이터 공유에 대한 태도는 개인화된 경험에 대한 열망과 개인정보 보호 사이에서 복잡한 균형을 이루고 있다. 보고서에 따르면 71%의 소비자가 온라인 쇼핑 시 절대적으로 필요한 데이터만 공유하도록 제한한다고 응답했다. 이는 브랜드가 소비자 데이터를 수집하고 활용하는 방식에 대한 투명성이 더욱 중요해졌음을 시사한다. 그러나 동시에 소비자들은 신뢰할 수 있는 브랜드와는 기꺼이 데이터를 공유할 의향이 있다. 58%의 소비자가 신뢰하는 브랜드와 데이터를 공유하는 것에 긍정적이며, 53%는 더 나은 할인과 혜택을 받기 위해, 48%는 개인화된 경험을 위해 데이터를 공유할 의향이 있다고 응답했다. 이러한 결과는 세대 간 차이도 보여주는데, Z세대(60%)와 밀레니얼 세대(62%)는 더 나은 거래를 위해 데이터를 공유하는 것에 더 개방적인 반면, 베이비부머(79%)와 침묵 세대(85%)는 필수적인 정보만 공유하는 것을 선호한다. 생성형 AI는 이러한 균형을 맞추는 데 도움이 될 수 있다. 43%의 소비자는 AI 추천이 개인화되고 설명 가능할 때 신뢰한다고 응답했다. 이는 AI가 소비자의 개인 프로필이나 로그인 정보에 의존하지 않으면서도 의도 기반 추천을 제공할 수 있음을 시사한다. 브랜드는 데이터 사용에 대한 투명성을 유지하면서, AI를 활용해 고객의 의도를 파악하고 맞춤형 경험을 제공함으로써 신뢰를 구축할 수 있다. FAQ Q. 생성형 AI가 쇼핑 경험에 어떤 구체적인 혜택을 제공하나요? A. 생성형 AI는 소비자가 찾고 있는 제품을 정확히 파악하여 맞춤형 추천을 제공하고, 실시간으로 제품 관련 질문에 답변하며, 복잡한 구매 결정 과정을 단순화합니다. 설문 결과 소비자의 62%가 생성형 AI의 가이드를 받을 때 구매 가능성이 높아진다고 응답했으며, 43%는 가상 어시스턴트를 통한 실시간 지원을 받을 때 구매를 완료할 가능성이 더 높다고 답했습니다. Q. 개인정보 보호에 민감한 소비자들도 생성형 AI를 신뢰할 수 있나요? A. 네, 생성형 AI는 개인 프로필이나 로그인 정보에 의존하지 않고도 소비자의 현재 검색 의도와 행동에 기반한 추천을 제공할 수 있습니다. 43%의 소비자는 AI 추천이 개인화되고 그 이유를 설명할 수 있을 때 신뢰한다고 응답했습니다. 브랜드가 데이터 사용에 대해 투명하게 소통하고, 소비자 가치와 일치하는 방식으로 AI를 활용한다면 프라이버시 우려를 최소화하면서 개인화된 경험을 제공할 수 있습니다. Q. 생성형 AI가 온라인과 오프라인 쇼핑 경험을 어떻게 연결하나요? A. 생성형 AI는 온라인에서 오프라인 매장과 유사한 개인화된 조언과 안내를 제공함으로써 두 경험 사이의 간극을 좁힙니다. 실시간 재고 정보를 제공하고, QR 코드나 바코드 스캔을 통해 매장에서 본 제품을 온라인에서 쉽게 찾을 수 있게 하며, 지역 검색 결과를 강조하여 온라인 발견이 오프라인 방문으로 이어지도록 지원합니다. 이를 통해 소비자는 채널에 관계없이 일관된 쇼핑 경험을 누릴 수 있습니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)

2025.03.24 11:17AI 에디터

노르마-경상국립대, 항공우주 분야 첫 양자 이득 실증 "도전"

국내에서도 항공우주 분야 양자 이득 실증이 추진된다. 양자 보안과 양자 컴퓨팅 전문 기업 노르마(대표 정현철)는 항공우주 분야에 양자 기술을 적용한 양자우위 실증 프로젝트를 지난주 착수했다고 24일 밝혔다. 노르마는 최근 경상국립대학교 항공우주전산모델링연구실(연구책임자 명노신 교수)과 공동으로 '항공우주 분야에서 양자 알고리즘을 활용한 유체역학적 해석 및 양자 이득 실현'을 위한 공동 연구에 착수했다. 실증 분야는 비선형 고속 공기역학이다. 극초음속 비행체나 차세대 전투기, 재사용 발사체, 무인 전투기 체계 등에서 필수적인 유체역학 시뮬레이션을 기존의 수치 해석 방식보다 지수적으로 빠르고 정밀하게 수행할 수 있는 가능성을 검증하는 것이 목표다. 현재 활용되는 전산유체역학(CFD)은 극초음속 및 압축성 유동 문제를 해결하는 데 높은 연산 비용과 시간이 소요되는 한계가 있다. 노르마는 이 프로젝트에서 고전 CFD 대비 연산 속도를 기하급수적으로 향상시키는 양자 기반 CFD 알고리즘(QCFD)을 개발할 계획이다. 특히 고속 압축성 유동을 해석하는 데 중요한 역할을 하는 비선형 버거스 모델 방정식과 나비에-스톡스 방정식을 양자 알고리즘으로 해결하는 기술을 개발하는 것이 핵심 목표다. 연구는 1단계 QCFD 개발 및 실증, 2단계 항공우주 및 국방 기업과 협력해 프로토 타입 개발, 3단계 상용화 및 글로벌 방산 우주 시장 진출 등을 체계적으로 진행한다. 이를 위해 노르마는 유체역학적 해석과 연계해 설계에 활용될 양자머신러닝(QML)을 개발하고 경상국립대는 QCFD를 개발한다. 노르마 측은 전체 연구 기간을 5~8년으로 예상했다. 경상국립대 명노신 교수는 비선형 버거스 방정식을 풀기 위한 순수 양자 알고리즘을 세계 최초로 제안하는 등 관련 분야의 권위자다. 명노신 교수는 “양자 컴퓨팅이 단순한 이론이 아닌 실제 항공우주 및 국방 산업을 혁신할 수 있는 기술이라는 것을 프로젝트를 통해 보여줄 것"이라고 말했다. 연구가 성공적으로 수행되면 양자 컴퓨터로 고전 CFD 보다 지수적으로 빠른 연산을 수행하는 양자 우위를 입증하게 된다. 나아가 이를 토대로 극초음속 및 우주 비행체 설계 최적화, 국방 산업 핵심 기술 개발 등 연관 산업의 혁신을 이끌 수 있을 것으로 기대된다. 양자 컴퓨팅 기술을 게임, 국방, 금융, 바이오 등 다양한 분야에 적용해 양자 이득 레퍼런스를 확보해 가고 있는 노르마는 이번 연구를 통해 항공우주 분야에서도 새로운 기록을 써 내려갈 예정이다. 정현철 대표는 “이번 연구가 대한민국을 양자 컴퓨팅 기반 항공우주 기술의 선도국가로 도약하게 하는 중요한 이정표가 되길 기대한다”며 “연구가 성공적으로 진행되면 항공우주 산업의 혁신을 촉진함은 물론 AI 기술과 융합하여 다양한 산업 분야에서 핵심 기술로 사용될 수 있을 것”으로 내다봤다. 한편 노르마는 2011년 설립된 양자 보안 및 양자 컴퓨팅 전문 기업이다. 최근 양자 애플리케이션 개발을 위한 환경을 제공하는 'Q 플랫폼(Q Platform)'을 출시했다. 국내 최초 산업용 양자 컴퓨터 '큐리온(Qrion)'은 출시를 앞두고 있다.

2025.03.24 10:03박희범

알피바이오, '코큐텐' 동아시아 웰니스 확장 수혜 기대…해외수출 300억 목표

알피바이오(314140)는 코엔자임 Q10(코큐텐)을 동아시아 웰니스 시장 확장세의 수혜 품목으로 지정하고, 매출 300억원 달성을 목표로 해외 판로를 확대한다고 24일 밝혔다. 알피바이오 측은 “동아시아 중심의 건강기능식품 시장은 고령화 사회로 진입하면서 코큐텐과 같은 자연 유래 성분의 노화 방지 제품에 대한 관심이 높아지고 있으며, 수요가 증가하고 있다”고 전했다. 코트라 상하이무역관에 따르면, 2024년 중국 내 틱톡(TikTok)에서 코큐텐 매출이 93억 위안을 기록했다. 또 KOTRA 모스크바무역관에 따르면, '러시아 인기 건강기능식품'에 코큐텐이 선정됐으며, 2021년 온라인 건강기능식품 판매가 공식적으로 허용된 이후 성장이 가속화될 것으로 전망되고 있다. 알피바이오는 건강기능식품 사업의 미래 성장 동력으로 K-건기식의 해외수출을 꼽으며, 지난 2010년 미국 FDA 시설 등록을 완료한 마도공장에서 공장 CGMP 인증을 진행할 계획이다. 또 알피바이오는 해외 수요 급증을 매출 성장의 기회로 삼고, 기존 거래 국가인 대만‧러시아뿐만 아니라 미국 등 신시장 개척 방향으로 해외 판로를 확장해 나갈 예정이다. 알피바이오 측은 “국내외 시장 변동 상황과 현재 산업적 역량을 고려할 때 당사가 가장 큰 수혜를 볼 것으로 예측한다”라며 “해외 법인 설립과 현지 제조공장 마련 등 사업 확대 논의 중”이라고 설명했다. 알피바이오가 생산하는 코엔자임 Q10 제품은 특히 국내 유일한 유통기한 3년 연장 기술인 '뉴네오젤' 특허 기술을 통해 더 긴 저장 안정성을 제공한다. 이 기술은 장기 보관이 필요한 유통업체 및 해외 바이어들에게 중요한 경쟁력으로 작용하며, 글로벌 시장 진출에도 유리한 요소로 평가받고 있다고 회사 측은 전해다. 또 1982년 미국 알피쉐러와의 합작투자계약 체결을 통해 미국 FDA 기준의 원천 기술을 계승받아 식약처 기준(±10%)보다 더 엄격한(±3%) 품질관리 체계로 첨단 생산공정을 운영하여 업계 최고의 수율을 선보이고 있다. 알피바이오 측은 “특허 기반의 차별화된 기술력을 바탕으로 시장 내 경쟁력을 강화하고, 생산 및 유통 최적화를 통해 지속적인 성장을 이어갈 것”이라며 “국내외 건강기능식품 시장에서 공급자 역할에 충실해 선도적인 입지를 확보할 계획”이라고 밝혔다. 한편 알피바이오 자료에 따르면, 2024년 코큐텐 매출액은 2023년 대비 2.6% 성장률을 기록했다. 알피바이오가 생산하는 코큐텐 제품에는 대웅제약의 '코엔자임 Q10+', 종근당 '코큐텐 아연 셀렌 프리미엄', 녹십자 '코큐텐 비타', 유한건강생활 '유한 코엔자임 Q10', 메디포스트 '코큐텐 하트캡슐' 등이 있다.

2025.03.24 10:02조민규

버즈니 고재현 팀장 "10년 쌓은 쇼핑데이터 ,타사 AI와 한끗 차 만들어"

“버즈니는 단순히 '영상의 핵심을 요약해줘'와 같은 동작을 수행하는 제품을 개발하지 않는다. 어떤 유형의 하이라이트가 적합한지 사전에 정의하고 실제 홈쇼핑 업계에서 고급 PD 인력들이 하이라이트라고 평가한 구간 대상으로 학습된 모델을 통해 정교한 자체 평가 기준을 보유하고 있다. 일반적인 LLM으로 구축된 프로덕트들이 잡아내지 못하는 어떤 '한 끗'의 가치를 제공할 수 있다.” 버즈니는 10년 이상 쇼핑 관련 데이터 축적과 경험을 바탕으로 빠르고 효과적인 AI 솔루션을 제공하고 있다. 버즈니 에이플러스AI 사업부 고재현 팀장 설명처럼, 버즈니의 풍부한 자체 데이터로 학습된 AI 기술은 차별화된 성능을 자랑한다. 버즈니의 커머스AI 구독 서비스인 에이플러스AI는 AI 전문가 없이도 쉽게 도입할 수 있는 서비스로, 숏폼AI, 챗봇, 추천, 리뷰 등 다양한 기술을 제공한다. 그 결과 서비스 1년 만에 주요 이커머스 기업들과 계약을 체결하며 초기 대비 10배 이상의 매출 성장을 이뤘다. 이 제품의 경쟁력은 다년간 축적된 방대한 커머스 데이터와 이를 활용한 기술력에 있다. 에이플러스AI의 숏폼AI는 이커머스 영상 데이터를 기반으로 자동 영상 편집을 지원하며, B2B 및 B2C 제품으로 개발되고 있다. 고재현 팀장은 AI 사업부 에이플러스AI에서 이커머스 데이터를 활용한 서비스형 소프트웨어(SaaS) 및 인공지능(AI) 제품 개발을 주도하고 있다. 그는 최근 거대언어모델(LLM)과 같은 범용 AI 기술이 비약적으로 발전하고 있으나, AI의 성공적 도입을 위해서는 문제정의, 데이터, 모델적용이라는 세 가지 요소가 조화를 이뤄야 한다는 생각이다. 고 팀장에 따르면 에이플러스 AI의 기술은 영상 제작 도메인에서의 피드백을 통해 발전해 왔다. 비전문가도 쉽게 짧은 형식 영상을 제작할 수 있도록 하는 것이 서비스 목표다. 특히 영상 제작 과정의 효율성을 크게 향상하는 데 기여하고 있다. 고 팀장은 “숏폼AI를 도입한 기업들은 100% 자동화된 프로세스를 통해 제작 인력을 최소화하고 높은 효율성을 달성했다. 또 홈쇼핑모아의 '30초 홈쇼핑' 같은 서비스는 높은 참여도를 기록하며 숏폼 영상의 강력한 서비스 효과를 입증했다”면서 “이런 성공 사례는 숏폼AI 도입을 고려하는 기업들에게 긍정적인 영향을 미치고 있다”고 설명했다. 이어 그는 “버즈니는 text-to-video 기술 발전과 같은 시장 흐름에 맞춰 다양한 기능을 개발하고 있다”며 “특히 URL 기반 숏폼 생성, 클립 최적화 기능, 워크플로우 UI 등 새로운 기술을 통해 숏폼AI의 활용도를 확대할 계획이다. 고객사가 지속 가능한 이익을 창출할 수 있도록 제품을 고도화할 예정”이라고 밝혔다. [다음은 고재현 팀장과의 일문일답] Q. 간단한 자기소개 한다면? 버즈니의 AI 사업부인 에이플러스AI에서 프로덕트팀 팀장을 맡고 있다. 버즈니가 10여 년 동안 모바일 홈쇼핑 플랫폼 홈쇼핑모아를 운영하며 축적한 데이터를 바탕으로 실용인공지능 기술을 연구 및 개발해, 이커머스향 서비스형 소프트웨어(SaaS)로 제품화하는 역할을 담당하고 있고, 다양한 AI(AIaaS)제품을 시장에 공급하고 있다. 최근 몇 년 새 LLM을 필두로 API레벨에서 활용할 수 있는 범용 AI기술이 비약적으로 발전하면서 많은 기업이 AI Native를 천명하고 있다. 하지만 도메인의 특수성을 띠고 있는 대부분 기업에서의 AI 활용 로드맵을 고려하면, 기업의 AI 비즈니스 적용은 '문제정의, 데이터, 모델적용'의 삼박자가 맞아떨어져야 한다고 생각한다. 그런 면에서 이미 이커머스 분야에서 10년 넘게 축적한 데이터와, 그 데이터를 활용해 특수한 문제(예를 들면 이커머스 검색이나 추천, 리뷰 분석과 같은)를 정의하고 해결해 본 경험이 있는 버즈니는 LLM을 위시한 AI 기술을 통해 가장 빠른 성공 경험을 제공할 수 있다는 강한 자신감을 갖고 있다. Q. 버즈니 신규 비즈니스인 '에이플러스AI'를 설명한다면? '에이플러스AI'는 내부에 AI 전문가가 없어도 구독 방식으로 쉽게 원하는 커머스AI 기술을 도입할 수 있는 커머스AI 구독 서비스다. 에이플러스AI는 크게 ▲숏폼AI ▲챗봇 ▲상품요약 ▲상품 카탈로그 ▲추천 ▲검색 ▲리뷰 ▲상품 마케팅 AI 기술로 구성돼 있다. 해당 기술들은 버즈니가 실제 커머스 서비스(홈쇼핑모아)를 운영하며 '매출 증대', '비용 감축', '효율성 향상' 효과를 냈던 커머스 AI 기술로 구성돼 있다. 버즈니 에이플러스AI는 출시 1년 만에 CJ온스타일 등 주요 이커머스사 8곳에 커머스AI 기술 공급 계약을 체결했다. 이 기간 버즈니의 AI 비즈니스 매출도 출시 초기 대비 10배 이상 증가했다. AI의 성능은 양질의 대규모 데이터 유무가 결정한다. 버즈니 에이플러스AI의 경쟁력은 다년간 쌓아온 커머스AI 기반 기술로 대규모 정제된 커머스 데이터를 확보하고 있다는 점이다. 18개 홈쇼핑사(데이터홈쇼핑사 포함)의 1억 건 이상의 상품 데이터, 월간 1천만 명에 달하는 사용자 데이터, 100만개 상품 이미지 학습 데이터, 14만개 영상 데이터 등 있다. Q. 에이플러스AI가 제공하는 기술 중 숏폼AI는? 에이플러스 숏폼AI는 AI 에이전트 시장에서 버즈니가 전략적으로 집중하고 있는 제품 중 하나다. 버즈니가 보유한 수많은 이커머스 영상데이터(홈쇼핑 라이브 방송 영상)를 바탕으로 개발한 영상 하이라이트 베이스라인 모델을 근간으로 현재 자동 영상 편집 에이전트라는 방향성을 가지고 지속적인 개발을 진행하고 있다. 지난해 처음 출시한 숏폼AI는 상품의 소구를 중심으로 하는 이커머스 영역에서 버즈니가 그동안 쌓아온 도메인 지식(Domain Knowledge)을 바탕으로 탄생했다. 출시 이후 4개 이상의 홈쇼핑업체와 개념증명(PoC)를 진행했다. 해당 PoC의 목적은 단순 소구력이 아닌 영상언어에 대한 이해와 실제 영상제작 프로세스에 대한 도메인 학습이었다. 이 PoC 과정을 통해 모델의 영상 산업 내 범용성을 확장했고, 이렇게 개선된 모델을 바탕으로 올해는 숏폼AI를 구독형 B2C 프로덕트로도 개발 중이다. 이와 별개로 B2B영역에서는 현재 CJ온스타일 등 3개의 홈쇼핑사에 자동 또는 반자동 AI 숏폼 편집툴을 제공하고 있다. 숏폼AI는 Long-form to Short-form에 대한 편집 및 자동생성에 대한 기능을 지원하고 있다. 그밖에 이커머스 영상 도메인에 대한 이해와, 실제 영상 제작 산업과의 끊임없는 피드백루프에 근거해 영상문법을 이해하지 못하는 일반 크리에이터라도 손쉽게 숏폼 영상을 제작할 수 있는 툴을 만드는 것이 우리의 비전이다. Q. 고객사는 어떤 이유로 숏폼AI를 도입하려고 하나. 그들이 기술로 풀고 싶어 하는 문제는? 2024년 말 기준 쇼핑, 패션 카테고리 상위 20개 앱을 살펴보면 12개 앱에서 별도의 숏폼지면을 운영하며, 숏폼콘텐츠 기반의 플랫폼 체질 변화를 도모하고 있다. 실제로 숏폼 중심으로 개편된 서비스 지면에서 기존 대비 거래액 및 리텐션이 크게 향상된 사례들이 속속 등장하고 있다. 이처럼 숏폼 중심의 서비스 개편을 도모하기 위한 핵심 키워드는 '숏폼의 양'이다. 숏폼 지면이란 결국 기존 클릭베이스의 사용자 경험이 아닌 스와이프 베이스의 사용자 경험으로의 전환을 의미하기 때문에, 무한 스와이프 환경에서 탐색 가능한 대상 숏폼의 수가 많아야만 시도할 수 있는 전략이기 때문이다. 그리고 바로 이 지점이 기업들이 버즈니 숏폼AI를 찾는 이유다. 긴 영상을 숏폼 영상으로 제작하는 것은 아예 새로운 영상을 창작하는 것에 비해 간단한 작업이리라 생각되지만, 실제 이 업무를 사람 실무자가 수행하게 되면, 업무의 효율성을 높이기 어렵다. 일단 1시간여의 원본영상에서 어떤 구간들을 선택해야 하는지, 또 선택했다면 어떤 디자인 에셋들을 올려야 하는지, 자막은 어떻게 입힐지 등 생각보다 많은 영역에서 사람의 품이 든다. 그러나 우리 숏폼AI를 사용하게 되면, 5분 안에 자동으로 숏폼 영상이 생성된다. 만약 추가 편집이 필요한 경우에는 자체적으로 구축한 편집 UI상에서 미리 선별된 하이라이트 구간들에 대한 편집을 추가로 할 수 있어 고효율의 작업환경 구축이 가능하다. 만약 원본 영상 데이터를 연동하게 되면 별도의 업로드 절차도 필요 없이 미리 생성된 영상들을 바로 자사 서비스에 전시할 수 있는 형태다. 결국 빠르게 숏폼 리소스를 확보해야 하지만 관련 인력이 부족한 기업들이 주로 버즈니 숏폼AI를 찾고있다. Q. 여러 숏폼AI 관련 기술 중 버즈니 숏폼AI를 도입해야 하는 이유 혹은 버즈니만의 경쟁력은? 시장에는 이미 Long-form to Short-form과 관련된 다양한 서비스들이 존재한다. 그런데도 기업들이 버즈니 숏폼AI를 찾는 이유는 명확하다. '서비스' 즉 최종적으로 숏폼이 활용될 지면과 그 시나리오를 이해하고 있는 제품이기 때문이다. 버즈니는 단순히 '영상의 핵심을 요약해줘'와 같은 동작을 수행하는 제품을 개발하지 않는다. 완성된 숏폼이 전시될 지면에 따라 어떤 유형의 하이라이트가 적합한지 사전에 정의하고 실제 홈쇼핑 업계에서 고급 PD인력들이 하이라이트라고 평가한 하이라이트 구간들을 대상으로 학습된 모델을 통해 정교한 자체 평가기준을 보유하고 있다. 따라서 일반적인 LLM으로 구축된 프로덕트들이 잡아내지 못하는 어떤 '한 끗'의 가치를 제공할 수 있다. 커머스 영상의 하이라이트를 찾는 것은 생각보다 복잡한 문제다. 스포츠 영상처럼 득점 장면이라는 명확한 하이라이트 기준이 없다. 한 시간 내내 상품의 장점을 설명하기 때문에 어떤 구간이 하이라이트인지 판단하기가 쉽지 않다. 게다가 자연어만으로는 시각적으로 의미 있는 장면을 찾기 어렵고, 카테고리별로도 하이라이트의 기준이 다르다는 점까지 더해져 복잡성이 높다. 버즈니는 홈쇼핑모아를 통해 홈쇼핑사에서 제공받는 다양한 데이터(원본 영상, 하이라이트 영상, 상품 정보, 리뷰 정보 등)를 복합적으로 활용해 카테고리별 평가 항목을 정의하고, 이를 기반으로 복합적인 모델을 개발했다. 시각 정보를 우선으로 하되, 쇼호스트의 멘트를 기반으로 의미론적 보충을 하는 방식을 택했으며, 특히 사용자의 의도를 더 정확히 파악하기 위한 연구가 2024 EMNLP industry track에 채택되기도 했다. 또한 제품 기획 초기부터 MVP를 바탕으로 실제 업계의 피드백을 획득하며 발전한 형태의 제품으로 기업레벨에서 '숏폼을 만든다'고 했을 때의 프로세스를 제품 내에서 충분히 만족시켜 줄 수 있는 형태의 프로덕트라고 자부한다. Q. 실제로 숏폼AI를 도입한 고객사가 실제 얻은 효과는? 현재 버즈니 숏폼AI는 CJ 온스타일, 신세계라이브쇼핑과 쇼핑엔티에 적용돼 있고, 콘텐츠 제작 업체와도 PoC를 진행하고 있다. 숏폼AI를 도입한 고객사가 얻은 가장 큰 효과는 '100% 자동화'다. 실제 신세계라이브쇼핑의 경우 별도의 제작인력 없이 기획 인력만으로 100% 자동화된 숏폼 생성 프로세스(방송종료-데이터인입-분석-생성-다운로드)를 통해 획득한 숏폼 클립들을 별도의 지면에서 전시해 활용하며 리소스 효율을 극대화하고 있다. 또 홈쇼핑모아에서도 숏폼AI 기술이 들어간 '30초 홈쇼핑'을 운영 중이다. 30초 홈쇼핑의 경우 실제 홈쇼핑모아에서 운영중인 모든 탐색 영역을 통틀어 가장 높은 서비스 참여도(Engagement Depth, PV/UV)를 기록하고 있을 정도로 이용자의 반응이 좋다. '30초 홈쇼핑'의 참여도는 배포 첫 주 대비 35%이상 증가하며 지속적인 향상 추세를 보이고 있다. '30초 홈쇼핑'에 진입한 이용자는 타 영역대비 가장 많은 상품을 탐색하고 있으며, 홈쇼핑의 꽃인 생방송 상품이 포함되지 않았음에도 홈쇼핑 시청자들이 주인 홈쇼핑모아 이용자를 대상으로 이러한 성과를 도출해 냈다는 점에서 숏폼이 지닌 서비스 파워를 체감할 수 있다. 이처럼 숏폼을 도입한 기업들의 성과는 매우 고무적이며, 이러한 시장의 전반적인 분위기 속에서 올해도 숏폼AI에 대한 많은 도입 문의가 이어지고 있다. Q. 올해 숏폼AI 관련 계획이나 앞으로 관련 시장 전망은? 올해는 구글의 VEO2, 오픈AI의 소라(SORA)와 같은 text-to-video 모델들이 본격적으로 서비스화될 것으로 보인다. 이에 따라 영상 도메인에서의 AI 전환 또한 시장에서 중요한 화두가 될 것으로 보인다. 텍스트 프롬프트 중심의 영상제어가 아직은 보편화되지 않았지만 빅테크의 이러한 모델들이 보편화됨에 따라 영상 툴 이용자들의 작업 루틴에도 상당 부분 변화가 점진적으로 일어날 것으로 보인다. 버즈니도 이러한 변화의 흐름에 맞춰 Long-form to Short-form을 넘어 text기반 영상 편집 에이전트로의 발전을 염두에 두고 다양한 기능들을 출시하려고 한다. 상품상세 URL삽입 시, 숏폼으로 소구 될만한 다양한 추천페르소나별 시나리오를 생성하고, 이에 맞는 클립들을 구성해 컷편집 해주는 'URL to Short-form', 그리고 여러 건의 짧은 클립과 판매하고자 하는 상품URL을 함께 제공하면 제공된 클립들을 가장 숏폼에 적합한 형태로 정제해주는 'Clip to Short-form' 기능을 하반기에 출시할 예정이다. 기존의 편집 시나리오를 보다 자동화된 에이전트 형태로 UI에 구현한 '워크플로우' 기능은 2분기 출시 예정이다. 또 기존의 이커머스 산업을 넘어 유튜브 또는 틱톡 생태계로 확장을 위해 보다 다양한 AI 하이라이트 추천 페르소나를 계속 추가하고 있기 때문에 올 하반기에는 크레딧 구독 기반으로도 준비 중이다. 마지막으로 버즈니는 실제 제품과 산출물이 활용될 영역에 대한 깊은 이해와 연구를 바탕으로 숏폼AI를 도입한 고객사가 영상 콘텐츠의 확대재생산 영역에서 확실한 이윤을 창출할 수 있도록 지속 고도화해 나갈 계획이다.

2025.03.23 08:49백봉삼

LG의 새 AI '엑사원 딥', 수능서 94.5% 정답률...수학·코딩 능력 탁월

동급 최강 성능의 EXAONE Deep, 작은 모델도 오픈AI 추월 LG AI 연구소가 개발한 EXAONE Deep 시리즈가 수학과 코딩 등 다양한 추론 과제에서 뛰어난 성능을 보여주고 있다. EXAONE Deep 시리즈는 2.4B, 7.8B, 32B 세 가지 크기로 출시되었으며, 이 모델들은 기존 EXAONE 3.5 시리즈를 기반으로 추론 능력을 강화하기 위해 특별히 최적화된 버전이다. EXAONE Deep 모델은 단계적 사고 과정을 포함하는 특화된 데이터셋으로 학습되었다. 연구팀은 지도 학습(Supervised Fine-Tuning, SFT), 직접 선호도 최적화(Direct Preference Optimization, DPO), 온라인 강화학습(Online Reinforcement Learning, Online RL)과 같은 세 가지 주요 기법을 활용해 모델을 훈련시켰다. 성능 평가 결과에 따르면, 가장 작은 모델인 EXAONE Deep 2.4B는 DeepSeek-R1-Distill-Qwen-1.5B보다 우수한 성능을 보여주었다. 중간 크기인 7.8B 모델은 DeepSeek-R1-Distill-Qwen-7B와 DeepSeek-R1-Distill-Llama-8B 같은 오픈 웨이트 모델뿐만 아니라 상용 추론 모델인 OpenAI o1-mini보다도 뛰어난 성능을 입증했다. 가장 큰 모델인 32B는 QwQ-32B와 DeepSeek-R1 같은 최첨단 오픈 웨이트 추론 모델과 견줄 만한 성능을 보여주었으며, DeepSeek-R1-Distill-Qwen-32B와 DeepSeek-R1-Distill-Llama-70B를 능가했다. 단계별 논리적 사고로 무장한 EXAONE Deep, 120억 토큰 데이터로 학습 EXAONE Deep 모델의 추론 능력을 강화하기 위해 연구팀은 약 160만 건의 SFT 데이터, 2만 건의 선호도 데이터(DPO용), 그리고 1만 건의 온라인 RL 데이터를 활용했다. SFT 데이터셋은 약 120억 개의 토큰을 포함하며, 확장된 사고 연쇄(chain-of-thought) 과정을 통해 모델이 추론을 수행하도록 설계되었다. 특히 눈에 띄는 점은 이 데이터셋의 구조이다. 각 학습 인스턴스는 구조화된 사고 과정과 최종 답변으로 구성되어 있다. EXAONE 3.5 모델은 <thought> 태그 내에서 논리적 진행, 자기 반성, 자체 검사, 수정 등의 단계별 추론을 수행하도록 훈련되었다. 이렇게 추론 후 생성된 최종 답변은 자기 완결적이며, 사고 과정에서 도출된 핵심 통찰력을 명확하고 간결하게 요약한다. 훈련 계산 리소스 면에서, EXAONE Deep 모델은 Google Cloud Platform과 NVIDIA NeMo FRAMEwork에서 제공하는 NVIDIA H100 GPU 클러스터를 사용하여 훈련되었다. 기본 모델의 사전 훈련과 추론 능력 향상을 위한 미세 조정에 사용된 계산량은 정밀하게 측정되어, 32B 모델의 경우 총 1.26 × 10^24 FLOP가 사용되었다. 수학 시험에서 빛난 EXAONE Deep, 한국 수능 수학 94.5% 정답률 달성 EXAONE Deep 모델은 MATH-500, 미국 수학 초청 시험(AIME) 2024/2025, 한국 대학수학능력시험(CSAT) 2025의 수학 영역, GPQA Diamond, LiveCodeBench, MMLU, MMLU-Pro 등 다양한 벤치마크에서 평가되었다. 수학 분야에서 EXAONE Deep 32B 모델은 MATH-500에서 95.7%, AIME 2024에서 72.1%, AIME 2025에서 65.8%, CSAT 2025에서 94.5%의 놀라운 정확도를 보여주었다. 특히 한국 수능 수학 영역의 세 가지 선택 과목인 미적분, 통계, 기하에서 각각 95.1%, 95.0%, 93.5%의 높은 성능을 보여 전체 평균 94.5%라는 인상적인 결과를 달성했다. 과학 및 코딩 분야에서도 EXAONE Deep 32B는 GPQA Diamond에서 66.1%, LiveCodeBench에서 59.5%의 성능을 보여주었다. 일반 지식을 평가하는 MMLU와 MMLU-Pro에서는 각각 83.0%와 74.0%의 정확도를 달성했다. 7.8B 모델 역시 동급의 모델들과 비교해 모든 분야에서 우수한 성능을 보여주었으며, 특히 수학 분야에서는 MATH-500 94.8%, AIME 2024 70.0%, CSAT 2025 89.9%의 높은 정확도를 기록했다. 무료로 사용 가능한 EXAONE Deep, 상업용은 별도 라이선스 필요 EXAONE Deep 모델은 연구 목적으로 모든 사람이 사용할 수 있도록 공개되어 있다. 이 모델들은 허깅페이스(Hugging Face)를 통해 다운로드할 수 있다. 그러나 이 모델은 추론 작업에 특화되어 있으므로, 넓은 범위의 실제 사용 사례에 적용하려면 EXAONE 3.5 Instruct 모델 사용을 권장한다. 또한, EXAONE AI 모델 라이선스 계약에 따르면, 이 모델은 상업적 용도로 사용할 수 없으며, 별도의 상업용 라이선스 계약이 필요하다. FAQ Q: EXAONE Deep 모델은 어떤 특징이 있나요? A: EXAONE Deep은 추론 능력에 특화된 AI 모델로, 단계적 사고 과정을 포함하는 특별한 데이터셋으로 학습되었습니다. 수학, 코딩 등 논리적 추론이 필요한 과제에서 뛰어난 성능을 보이며, 2.4B, 7.8B, 32B 세 가지 크기로 제공됩니다. Q: 이 모델은 어떻게 사용할 수 있나요? A: EXAONE Deep 모델은 연구 목적으로 누구나 무료로 사용할 수 있으며, 허깅페이스를 통해 다운로드할 수 있습니다. 상업적 목적으로 사용하려면 별도의 라이선스가 필요합니다. Q: EXAONE Deep과 다른 AI 모델과의 차이점은 무엇인가요? A: EXAONE Deep은 추론에 특화된 모델로, 같은 크기의 다른 모델들보다 수학, 과학, 코딩 분야에서 우수한 성능을 보입니다. 특히 7.8B 모델은 상용 추론 모델인 OpenAI o1-mini보다도 더 나은 성능을 입증했습니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)

2025.03.22 13:47AI 에디터

"챗GPT, 노벨상 연구는 불가"… 생성형 AI의 과학적 한계, 뭐길래?

생성형 AI, 12분 vs 인간 23분: 빠르지만 창의력 부족한 과학 실험 생성형 인공지능(Generative AI, 이하 GenAI)이 인간처럼 과학적 발견을 할 수 있을지에 대한 논의가 활발하다. 에믈리옹 비즈니스 스쿨(Emlyon Business School)의 에이미 웬수안 딩(Amy Wenxuan Ding)과 인디애나 대학교 블루밍턴(Indiana University Bloomington)의 시보 리(Shibo Li) 연구팀은 과학적 발견 분야에서 생성형 AI의, 특히 가설 형성과 실험 설계, 결과 해석 관점에서의 능력을 깊이 조사했다. 연구팀은 컴퓨터 지원 분자유전학 실험실 환경에서 ChatGPT4가 분자유전학 분야의 노벨상급 과학적 발견을 수행하는 과학자 역할을 맡도록 설계했다. 연구 결과, 현재의 생성형 AI는 점진적인 발견만 가능할 뿐, 인간처럼 처음부터 근본적인 발견을 이루어낼 수 없다는 점이 밝혀졌다. 가설의 기원 측면에서 보면, 생성형 AI는 진정으로 독창적인 가설을 생성하지 못하며 실험 결과에서 이상점을 감지하는 '깨달음의 순간'을 경험하지 못한다. 따라서 현재의 생성형 AI는 이미 알려진 도메인 지식이나 인간 과학자의 지식 공간에 접근할 수 있는 발견 작업에만 능숙하다. 더욱이 완전히 성공적인 발견을 했다는 과신의 착각을 보이는 경향이 있다. 이 연구는 과학적 발견과 전반적인 과학 혁신에서 생성형 AI의 역할에 대한 통찰력을 제공한다. 5개 vs 14개: 가설 수만으로도 드러나는 인간과 AI의 창의력 격차 과학적 발견은 성공적인 과학적 탐구의 과정이다. 이는 '발견의 맥락'(이상점 관찰 및 가설 제안)과 '정당화의 맥락'(가설을 검증하기 위한 실험 설계 및 결과 해석)이라는 두 가지 중요한 구성 요소가 필요하다. 창의적으로 올바른 가설을 개발하고 목표 지향적 실험을 설계하는 능력은 성공적인 과학적 발견의 핵심이다. 그러나 이러한 창의적 능력은 역사적으로 인간 두뇌의 고유한 특성이었다. 연구팀은 생성형 AI의 과학적 발견 과정이 인간과 어떻게 다른지 비교하기 위해 미국 대학에서 인간 참가자들이 동일한 발견 과제를 수행한 실험 결과를 활용했다. 두 경우 모두 반자동 분자유전학 실험실(SAMGL)을 사용했고, 인간 참가자들의 발견 과정은 소리내어 생각하기 프로토콜과 논의 필사본으로 기록되었다. 인간과 달리, ChatGPT4는 12.66분 만에 과제를 완료했고, 인간은 평균 23.02분이 소요되었다. ChatGPT4는 5개의 가설을 제시한 반면, 인간은 평균 14개의 가설을 제시했다. 또한 생성형 AI는 실험 중 놀라운 현상을 생성하기 위한 실험을 설계하지 않았지만, 인간은 그런 경향을 보였다. 실험 공간 탐색의 범위도 인간(11.44)이 ChatGPT4(8)보다 넓었다. 철저한 프로그래밍 vs 직관적 호기심: AI와 인간 과학자의 근본적 접근법 차이 가설 형성에 있어서, 인간은 종종 호기심에서 시작해 여러 실험을 먼저 수행하고 그 결과를 관찰한 후에 가설을 세운다. 인간에게 가설 공간은 미지의 영역이며, 실험이 증가함에 따라 실험 결과에서 발견된 이상점이나 놀라운 현상이 인간의 호기심을 자극하고 다양한 대안 가설을 생성하게 한다. 반면, ChatGPT4는 이와 다른 접근법을 취한다. 이미 훈련된 데이터를 기존 가설 공간으로 간주하고, 통계적 및 유추 추론 접근법을 사용하여 확립된 과학적 지식과 발견 과제의 내용 간의 상관관계를 바탕으로 가설을 형성한다. 예를 들어, 발견 과제가 대장균(E. coli)과 젖당(lactose)을 포함하기 때문에 ChatGPT4는 대장균의 잘 연구된 모델인 락 오페론(lac operon)에 초점을 맞추었다. 흥미롭게도, ChatGPT4는 제안한 가설에 대해 높은 자신감을 보였고, 이러한 방식이 가설을 과학적으로 타당하고 발견 과제와 직접 관련 있게 만든다고 믿었다. 이러한 가설 생성 과정은 호기심이나 실험 결과에 의해 유도된 창의적 과정이 아니라, 인간이 발표한 기존 연구 내에서 정보를 검색하고 통계적 계산을 통해 최선의 가설을 선택하는 것과 유사하다. 챗GPT4의 완고함: 실험 결과보다 프로그래밍된 가설을 신뢰하는 AI의 맹점 연구 결과에 따르면, 현재의 생성형 AI는 인간과 달리 근본적인 과학적 발견을 할 수 없는 몇 가지 한계가 있다. 첫째, GenAI는 인간의 호기심과 상상력을 갖추지 못했다. 인간과 달리 알려진 가설 및 실험 공간의 경계를 벗어나 진정으로 근본적인 발견을 할 수 없다. 둘째, 실험에서 이상점이나 놀라운 결과를 발견하는 '아하!' 순간을 경험하지 못한다. ChatGPT4는 모든 실험 결과가 예상된 것이고 이상점이 감지되지 않는다고 느끼는 것으로 나타났다. 더 흥미로운 점은, 실험 결과가 일부 가설을 지지하지 않는데도 ChatGPT4는 제안된 가설에 대한 높은 자신감을 계속 보이며 이를 수정하려 하지 않았다. 이는 현재의 생성형 AI가 과학적 발견의 올바른 절차와 가설 검증 단계를 명확히 알고 있음에도 불구하고, 가설을 수정하거나 대안 가설을 제안하거나 새로운 실험을 계획하는 과정을 따르지 않는다는 것을 보여준다. 즉, 새로운 증거를 받아들이지 않는 완고함을 보인다는 것이다. 생물학적 신경망 모방에서 양자 컴퓨팅까지: AI 과학자의 미래를 위한 3가지 혁신 방향 연구팀은 생성형 AI의 과학적 발견 능력을 향상시키기 위한 몇 가지 접근법을 제안했다. 첫째, 뉴로모픽 시스템과 새로운 학습 기능의 도입이다. 현재 기계 학습의 '학습 기능'은 데이터에서 패턴을 통계적으로 추출하는 것으로, 이는 인간 학습과 근본적으로 다르다. 생물학적 신경망의 구조와 기능을 모방하는 하드웨어를 설계하면 기계가 인간 인지에서 볼 수 있는 동적, 병렬 및 적응적 사고 과정을 실현하는 데 도움이 될 수 있다. 둘째, 양자 컴퓨팅이 결합된 뉴로모픽 시스템의 개발이다. 초기 단계지만, 뉴로모픽 시스템에 양자 상태를 통합하면 이상 감지와 호기심 생성이 가능한 기계 인식을 구축하는 방법을 제공할 수 있다. 셋째, 연속적이고 실제 세계에서의 학습이다. 인간의 경험적 학습과 유사한 실시간 학습 및 적응을 위한 프레임워크를 구현하면 AI 시스템이 미지의 세계를 이해하는 '세계' 인식 모델을 개발하고 예상치 못한 이상점을 더 잘 감지하고 대응하는 데 도움이 될 수 있다. 과학적 발견에서 생성형 AI의 역할과 윤리적 고려사항 생성형 AI를 과학적 발견에 통합하는 것은 혁신적인 잠재력을 제공하지만, 명시적 논의가 필요한 몇 가지 윤리적, 사회적 우려도 제기한다. 예를 들어, 생성형 AI 시스템이 추론이나 정당화 절차를 제공하지 않는 경우 가설이 어떻게 생성되는지 파악하기 어려울 수 있다. 따라서 중요한 결정으로 이어지는 가설이나 결론을 생성형 AI가 생성할 때 투명성이 필수적이다. 또한 AI 생성 가설에 과도하게 의존하면 인간의 판단, 직관 및 전문성이 저평가될 위험이 있다. 생성형 AI 시스템은 대규모 데이터셋을 처리하고 즉시 명백하지 않은 패턴을 식별할 수 있지만, 인간 인지에 내재된 미묘한 이해와 윤리적 추론이 부족하다. 생성형 AI가 인간의 다양한 사고를 완전히 대체하기보다 향상시키는 지원 도구로 기능하는 균형 잡힌 접근 방식을 유지하는 것이 중요하다. FAQ Q: 생성형 AI가 노벨상급 과학적 발견을 할 수 있을까요? A: 현재의 생성형 AI는 점진적인 발견만 가능할 뿐, 인간처럼 처음부터 근본적인 과학적 발견을 할 수 없습니다. 이는 주로 인간의 호기심과 상상력 같은 특성이 부족하기 때문입니다. 생성형 AI는 이미 알려진 도메인 지식이나 인간 과학자의 지식 공간에 접근할 수 있는 발견 작업에만 효과적입니다. Q: 인간 과학자와 생성형 AI의 과학적 발견 과정은 어떤 차이가 있나요? A: 인간은 호기심에서 시작해 실험을 수행하고 결과를 관찰한 후 가설을 형성하는 반면, 생성형 AI는 훈련된 데이터를 기존 가설 공간으로 간주하고 통계적 및 유추 추론을 통해 가설을 형성합니다. 인간은 실험 중 이상점을 발견할 때 '아하!' 순간을 경험하지만, 생성형 AI는 그런 경험을 하지 못합니다. Q: 생성형 AI의 과학적 발견 능력을 향상시키려면 어떻게 해야 할까요? A: 연구팀은 뉴로모픽 시스템과 새로운 학습 기능 도입, 양자 컴퓨팅이 결합된 뉴로모픽 시스템 개발, 연속적이고 실제 세계에서의 학습 구현 등을 제안했습니다. 이러한 접근법은 AI가 인간 생물학적 시스템에서 볼 수 있는 유동적이고 적응적인 인지 과정에 더 가까워지도록 도울 수 있습니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)

2025.03.22 10:33AI 에디터

야놀자 "글로벌 빅테크 협업 통해 독보적 버티컬 AI 만든다”

야놀자(총괄대표 이수진)가 글로벌 빅테크와의 버티컬 AI 협업을 더욱 강화한다. 야놀자는 지난 20일 판교 제2테크노밸리 텐엑스 타워에서 아마존웹서비스(이하 AWS)와 함께 '2025 AWS 테크 터미널 앤 이노베이션 서밋'을 개최했다. 이번 행사는 AWS의 최신 기술 트렌드와 야놀자의 기술적 비전을 공유하고, 여행 산업 특화 버티컬 AI 구축을 위한 협력 방안을 모색하기 위해 마련됐다. 특히, 다양한 고성능 파운데이션 모델(FM)을 제공하는 완전 관리형 서비스인 '아마존 베드록', 생성형 AI 어시스턴트인 '아마존 Q' 등 차세대 AI 지원 솔루션이 소개되며 참석자들의 높은 관심을 받았다. 야놀자는 AWS 클라우드 협업을 바탕으로 글로벌 여행 사업자의 디지털 전환을 선도해 왔다. 이를 토대로 항공·숙박·레저 등 여행 사업자의 원천 데이터 및 인벤토리를 확보하고, 세계 2만여 개의 여행사 및 플랫폼을 통해 여행객들에게 제공 중이다. 아울러 야놀자는 AWS 등 다양한 글로벌 빅테크들과 협업 체계를 마련해 독보적인 버티컬 AI 기반으로 글로벌 여행 산업의 AI 확산을 가속화하고 있다. 자체 생성형 AI 기술과 더불어 다양한 AI 에이전트를 활용해 자체 여행 데이터 기반의 초개인화된 여행 경험을 제공하는 한편, 여행 사업자에게 AI 기반 고도화된 솔루션을 지원함으로써 고객 서비스의 자동화 및 운영 효율성을 높일 계획이다. 이준영 야놀자그룹 기술 총괄은 "야놀자의 AI 기술 혁신은 전 세계 여행시장을 선도하는 트래블 테크 기업의 핵심 요소다. 빠르게 변화하는 시장에서 지속적인 혁신을 위한 다양한 기술 협력이 필수적"이라며 "AWS를 비롯한 혁신 기업들과의 협력을 바탕으로 최신 기술을 활용한 지속적인 혁신을 통해 글로벌 여행 산업을 선도해 나가겠다"고 말했다.

2025.03.21 18:13백봉삼

[Q&AI] '고공행진' 한화에어로, 주가 15% 폭락…왜?

질문: 한화에어로스페이스 주가가 폭락했다고 하는데 무슨 일이야? 그록 답변: 한화에어로스페이스 주가가 최근 폭락했다는 이야기는 2025년 3월 20일에 발표된 대규모 유상증자 소식과 관련이 있습니다. 한화에어로스페이스는 3조 6천억 원 규모의 유상증자를 결정했는데, 이는 회사가 새로운 주식을 발행해 자금을 조달하는 방식입니다. 이 과정에서 기존 주주들의 지분이 희석될 가능성이 커지며, 주가에 부정적인 영향을 미쳤습니다. 구체적으로, 이번 유상증자는 주주 배정 방식으로 진행되며, 발행가는 605,000원, 발행 주식 수는 600만 주로 설정되었습니다. 이는 전체 유통 주식의 약 13.18%에 해당하는 규모입니다. 발표 이후 시간외 거래에서 주가가 약 10% 가까이 하락했고, 지주사인 한화 주가도 프리마켓에서 7~8% 급락하는 등 시장의 반응이 즉각적으로 나타났습니다. 투자자들 사이에서는 이번 유상증자에 대해 논란이 많습니다. 한화에어로스페이스는 최근 방산 부문에서 호실적을 기록하며 주가가 크게 상승했는데, 현금 흐름이 나쁘지 않은 상황에서 굳이 대규모 유상증자를 강행한 이유에 대해 의문이 제기되고 있습니다. 일부는 회사가 한화오션 지분 매입 등에 자금을 투입한 뒤 추가 자금 확보를 위해 유상증자를 단행했다고 보고 있으며, 주주들에 대한 배려가 부족하다는 비판도 나옵니다. 회사 측은 이번 자금을 통해 향후 3~4년간 방산 및 우주산업 등에 집중 투자하고, 2035년까지 매출 70조 원, 영업이익 10조 원을 달성하겠다는 목표를 제시했습니다. 하지만 단기적으로는 주식 희석과 시장의 부정적 인식 때문에 주가가 하락 압력을 받고 있는 상황입니다. X 등 소셜미디어에서도 "유증 폭탄"이라며 투자자들의 불만이 터져 나오는 분위기가 감지됩니다. 결론적으로, 주가 폭락의 주요 원인은 대규모 유상증자로 인한 주식 공급 증가와 주주 가치 희석 우려 때문이며, 이는 현재 투자자들 사이에서 뜨거운 논쟁거리로 떠오르고 있습니다. ■ 기사는 그록을 활용해 작성되었습니다.

2025.03.21 17:37AI 에디터

[Q&AI] 18년만에 연금개혁…어떤 것들이 바뀌나

질문: 연금개혁안이 통과됐다고 하는데, 개혁안 내용을 정리해줘. 앨런 답변: 국민연금 개혁안이 18년 만에 여야 합의로 국회를 통과했습니다. 주요 내용은 다음과 같습니다: 보험료율 인상: 현행 9%에서 13%로 인상. 2026년부터 매년 0.5%씩 8년간 단계적으로 인상. 소득대체율 인상: 현행 40%에서 43%로 인상. 2026년부터 적용. 출산 및 군 복무 크레딧 확대: 출산 크레딧: 첫째 자녀부터 12개월의 추가 가입기간 인정. 군 복무 크레딧: 6개월에서 12개월로 확대. 기타 내용: 연금 기금의 소진 시점을 2055년에서 2064년으로 연기. 적자 전환 시점을 2048년으로 7년 늦춤. 저소득 지역 가입자에 대한 보험료 지원 확대: 12개월 동안 보험료의 50% 지원. 연금개혁특별위원회 구성: 여야 합의로 구성되며, 법안 심사권을 부여받아 연금 재정 안정과 노후 소득 보장을 위한 논의를 진행. 이번 개혁안은 보험료율과 소득대체율을 동시에 인상하여 연금의 지속 가능성을 높이고, 연금 기금의 소진 시점을 늦추는 것을 목표로 하고 있습니다. 질문2: 소득대체율 인상이 개인의 연금 수령액에 미치는 영향은 어떤가요? 앨런 답변: 소득대체율 인상이 개인의 연금 수령액에 미치는 영향은 다음과 같습니다: 소득대체율 정의: 소득대체율은 연금 가입 기간 동안의 평균 소득 대비 연금 수령액의 비율을 의미합니다. 즉, 소득대체율이 높아질수록 개인이 은퇴 후 받는 연금액이 증가합니다. 연금 수령액 증가: 소득대체율이 40%에서 43%로 인상되면, 연금 수령액이 증가하게 됩니다. 예를 들어, 현재 소득대체율 40%로 월 123만7000원을 받는 사람이 소득대체율 43%로 인상되면 월 132만9000원을 받게 됩니다. 장기적인 영향: 소득대체율 인상은 장기적으로 연금 수익성을 높이는 효과가 있습니다. 예를 들어, 40년 동안 연금에 가입한 사람이 소득대체율 43%로 연금을 받을 경우, 은퇴 후 첫 연금액이 약 9만원 증가하고, 25년간 총 수급액은 약 2170만원 증가하게 됩니다 재정 안정성: 소득대체율 인상은 연금 기금의 소진 시점을 늦추는 효과가 있습니다. 이번 개혁안으로 인해 국민연금 기금의 소진 시점이 2055년에서 2064년으로 연기되었습니다. 개인 부담 증가: 소득대체율 인상과 함께 보험료율도 인상되기 때문에 개인이 납부해야 할 보험료가 증가합니다. 이는 장기적으로 더 많은 연금을 수령하기 위한 필요 조건입니다. 결론적으로, 소득대체율 인상은 개인의 연금 수령액을 증가시키고, 연금 기금의 지속 가능성을 높이는 긍정적인 효과를 가져옵니다. 그러나 개인의 보험료 부담도 함께 증가하게 됩니다. ■ 기사는 앨런을 활용해 작성되었습니다. (☞ 원문 바로가기)

2025.03.20 21:21AI 에디터

  Prev 21 22 23 24 25 26 27 28 29 30 Next  

지금 뜨는 기사

이시각 헤드라인

美 정부, 인텔에 12.3조 투자 최대 주주로...사실상 '국영기업' 전환

취준생 열기 후끈…IT 인재 박람회 ‘너디너리 페스티벌’ 가보니

글로벌 IT 업계 휩쓰는 'SaaS 종말론'…韓 산업의 해법은?

"AI·초혁신경제로 잠재성장률 3% 회복"…李정부 경제 첫 청사진

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.