김정호 KAIST교수+연구원 26명 "HBM서 HBF까지…AI 메모리 분석 6시간 생중계"
'HBM의 아버지'로 불리는 김정호 KAIST 교수가 차세대 AI 메모리로 주목받는 HBF(고대역폭 낸드플래시메모리) 기술 추세, 산업화 방향 등을 속속들이 밝히는 '특별한' 자리를 마련했다. KAIST 테라랩은 오는 10일 오전 9시부터 오후 4시 20분까지 장장 6시간 넘게 국내·외 산·학·연구기관 관계자를 대상으로 'HBF 기술: 워크로드 분석과 로드맵 설명회'를 온라인(줌)으로 전세계에 생중계한다고 9일 밝혔다. 김정호 교수는 지난 3일 서울 프레스센터에서 열린 HBF 기술개발 성과 발표회를 기자단을 상대로 공개했다. 또 지난해 6월에는 HBM(고대역폭메모리) 4부터 HBM 8까지 향후 15년의 HBM 아키텍처와 구조, 성능, 세대별 특성을 미리 전망하는 '차세대 HBM 로드맵 기술 발표회'를 개최, 국내 · 외 기업으로부터 큰 반향을 일으켰다. 이번 설명회는 ▲멀티모달(이미지·동영상·음성·문자) 생성 ▲실시간 검색과 학습(RAG) ▲논리 추론 능력(CoT) ▲토론형 추론 기능(CoD) ▲인공지능 개인화와 개인 데이터 평생 추적 ▲지속 학습과 디지털 트윈 구축 등 여러 요인으로 인해 갈수록 폭증하는 데이터 처리 수요에 대응하기 위해 HBM 한계를 보완할 차세대 메모리 HBF의 기술 방향과 개발 전략을 공유하기 위해 마련됐다. HBF는 휘발성 메모리인 D램을 수직으로 쌓아 대역폭을 극대화하는 HBM과 달리, 비휘발성 메모리인 낸드플래시를 수직 적층해 SSD(솔리드스테이트 스토리지)급 대용량을 유지하면서도 HBM 수준으로 대역폭을 확장하려는 새로운 솔루션이다. 인공지능(AI) 학습과 추론 성능 향상을 위해 대역폭과 용량의 획기적인 향상이 가능, AI 시대를 이끌 차세대 메모리로 주목받고 있다. 기존 HBM이 초고속 · 저용량 연산 메모리라면 HBF는 대용량 데이터 저장과 고대역폭 전송을 동시에 겨냥한 구조로, 초거대 에이전틱 AI 확산으로 늘어나는 추론 · 학습 데이터 처리에 최적화된 메모리로 평가받고 있다. 이번 설명회에서는 테라랩이 그동안 축적해 온 HBF 관련 연구를 토대로 차세대 에이전틱 AI를 위한 아키텍처, 구조, 성능과 워크로드 특성, 개발 로드맵 등이 공개된다. AI 반도체 연산 특성을 분석하고 HBF를 실제 시스템에 어떻게 활용할지, 한발 더 나아가 AI를 활용해 HBM을 포함해 HBF와 SSD 등 모든 메모리 시스템을 아우르는 설계와 함께 이를 최적화하는 방법론도 소개한다. 이와 함께 메모리 중심 컴퓨팅(MCC)을 위한 AI용 메모리 계층 구조도 발표할 예정이다. TSV(실리콘관통전극)와 실리콘 인터포저, 냉각용 TSV 등 대역폭 확장과 발열 문제 해결을 위한 핵심 패키징 기술 발전 방향과 난제 극복을 위한 전략도 함께 제시할 예정이어서, 반도체 업계의 관심을 끌 것으로 보인다. 김정호 교수가 이끄는 KAIST 테라랩은 20년 넘게 HBM 설계 기술을 세계적으로 선도해 온 연구실이다. 2010년부터는 HBM 상용화 설계에도 직접 참여해 2013년 SK하이닉스의 세계 최초 HBM 상용화에 결정적 역할을 했다. HBM 구조·설계, 실리콘관통전극(TSV), 인터포저, 신호 무결성(SI), 전력 무결성(PI), 인공지능을 활용한 HBM 설계 방법론 등에서도 그동안 독창적인 연구 성과를 인정받으며 글로벌 학계와 산업계에서 독보적 입지를 구축해 왔다. 현재 테라랩에는 박사과정 9명, 석사과정 17명 등 총 26명의 학생·연구원이 소속돼 있다. 이들은 6세대 HBM 4부터 HBM 8까지 차세대 HBM 아키텍처 및 구조, 성능과 더불어 HBF 구조 · 성능까지 폭넓게 연구하며, HBM–HBF 하이브리드 메모리 시대를 대비한 기술 로드맵을 구체화하고 있다. 김정호 교수는 "폭발적으로 늘어나는 AI 데이터를 감당하려면 D램 기반 HBM과 낸드플래시 기반 HBF가 모두 동시에 필요하다"면서 "HBF는 HBM과 함께 향후 수년 내 수백~수천조 원 규모로 성장할 AI 메모리 반도체 시장을 견인하고, 'K-메모리 중심의 AI 컴퓨팅 시대'를 여는 핵심 국가 전략 자산"이라고 강조했다. 김 교수는 또 "이번 설명회를 계기로 국내 반도체 산업 비전 공유와 함께 기술 주도권 확보 등 우리나라가 AI 생태계를 선도하는 데 힘을 보탤 것“이라며 ”HBM은 개념 설정부터 설계, 실제 상용화까지 약 10년이 걸렸지만, HBF는 그간 HBM에서 축적한 설계 · 공정 노하우 덕분에 2~3년 후면 상용화가 가능할 것"이라고 내다봤다. 김 교수는 이외에 "삼성전자, SK하이닉스, 샌디스크 등이 엔비디아, 구글, AMD, 브로드컴 등과 협력해 빠르면 2027년 말에서 2028년 초 HBF를 탑재한 제품을 선보일 것"으로 예측하며 “구글, 오픈AI, 마이크로소프트, 아마존, 메타 등 글로벌 빅테크와 함께 'K-메모리 중심의 AI 컴퓨팅 시대'를 여는 생태계 조성에도 KAIST가 적극 참여할 것"이라고 덧붙였다. 한편, 설명회는 화상회의 플랫폼 줌(ZOOM)을 통해 무료 생중계된다. 참석 희망자는 줌링크(https://us02web.zoom.us/j/2885283810?pwd=OUtNOGl0anRscURoQjRuUHkzUUFWUT09)에 접속한뒤 미팅 ID 및 PW(288 528 3810/kaist1234)로 접속하면 된다. 영상 녹화본은 향후 KAIST 테라랩 홈페이지(http://tera.kaist.ac.kr)를 통해 유튜브에 공개할 예정이다.