• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
2026전망
스테이블코인
배터리
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'UIPA'통합검색 결과 입니다. (3건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

"정부, 피지컬 AI가 내년 지역 핵심 아젠다…5극 3특 중심 국가균형성장도 모색"

울산지역이 글로벌 AI 수도를 선언하고, 비상 중이다. 핵심 축은 자동차와 조선, 화학 산업이다. 현대자동차와 HD 현대미포, SK에너지 1, 2차 밴드를 포함해 3만 개의 제조업체가 동력이다. 최근 SK그룹은 AWS와 합작해 울산 미포 산업단지 내에 7조원을 들여 대규모 AI 데이터센터 구축을 추진 중이다. 울산이 제조AX 전환을 어떻게, 무엇을 할 것인지에 대한 방향과 대응에 대한 고민을 시작했다.지디넷코리아는 이에, 산학연관 전문가를 모아 정부 정책과 지역 사업 방향 등에 대해 심도있게 논의하는 장을 마련했다.[편집자주] ◆글싣는 순서 산업현장서 제조AX 들여다보니 제조AI 한국이 1등 하려면… ◆참석자(가나다순) -김대환 울산대학교 SW성과확산센터장 -김정완 에이테크 대표 -박현철 울산정보산업진흥원(UIPA) 디지털융합본부장 -유대승 한국전자통신연구원(ETRI) 울산지능화융합연구실장 -이용진 한주라이트메탈 대표 -정수진 정보통신산업진흥원(NIPA) 지역AX본부장 (사회 : 박희범 지디넷코리아 과학기술담당 기자) ◇사회(지디넷코리아 과학기술담당기자)=AI를 도입하려 하거나 도입한 기업들의 고민이라면. ◇이용진 한주라이트메탈 대표= 현재 기업들이 AI를 도입하며 겪는 공통적 고민은 AI를 적용한 결과를 기업 스스로 책임져야 한다는 점이다. 문제는 현재 AI 모델들이 완벽하지 않다는 점이다. 제조 현장에서 AI가 사람보다 더 일관되고 성실하게 작업을 수행하는 경우가 많다. 그러나 제조업에서는 단순히 '더 성실하다'는 것 만이 아니라 오류가 발생했을 때 어떻게 이를 검증·점검하느냐가 더 중요하다. 전기자동차의 경우도 오류 검증의 책임 문제가 있다. 자동차처럼 안전이 중요한 산업에서는 AI 시스템 오류가 나선 안된다. 기업은 AI 오류에 대한 검증 책임이 있다. 그러나 아직은 그 오류를 자체적으로 점검하거나 설명하기가 어려운 경우도 있다는 것이 문제다. 제조 AI가 특히, 안전이 강조되는 자동차 등에 본격적으로 적용되려면 AI 예측·판단의 정확성과 신뢰도가 매우 높아야 한다. 오류 발생 시 책임 소재가 명확히 규명돼야 하고, 외부에서도 검증 가능한 수준의 품질이 필요하다. 또 산업계·노동계·고객 모두가 납득해야 하기 때문이다. ◇사회=지역 인력 양성이나 인력 이탈에 대해 얘기해보자. ◇김정완(에이테크 대표)=직원 40명 중 절반이 수도권 출신이다. 이들을 붙들어 놓기 위해 결혼 중매도 한다. 회사 차원에서 거주문제 해결을 위해 전세도 마련해준다. 나아가 서울, 경기 쪽에 지사를 하나 만들려 한다. 순환근무 같은 걸 고민한다. 사실 서울로 올라간 인력들은 수도권 집값도 비싸, 유턴도 한다. 최근엔 UNIST나 AI 때문에 인력 상황이 조금 나아진 듯하다. ◇정수진(NIPA 지역AX본부장)=지역엔 인력 뿐만 아니라 AI관련 사업을 할 기업도 찾기가 어려운 것이 현실이다. 그래서 생태계를 지원하는 사업도 제조AI에 뒤따라 시행되어야 할 것으로 본다. SW나 AI 중심의 인력양성 정책이 있지만, 이 사업이 산업이나 제조가 있는 현장이나 지역에서는 아직 부족감을 많이 느끼고 있다. 교육중심의 단편적인 인재양성사업 보다는 구체화되고 전문성을 높일 수 있도록 프로젝트 형태로 추진돼 인재들도 함께 연구하며 기업과 동반 성장하는 방식이 지역에 착근될 필요가 있다. 지역내에 현장의 애로사항을 가장 잘 알고있는 UIPA 등이 좋은 아이디어를 제안하는 에이전트 역할을 해주면 좋을것으로 생각된다. ◇김대환(울산대학교 SW성과확산센터장)=AI 아너스 칼리지 형태로 대학교에 파격적인 지원을 했으면 한다. 등록금과 생활비 등 모든 걸 무료로, 나아가 유학까지 보내주는 파격적인 한시적 AI 학과 지원책이 있었으면 한다. 정부가 AI 히어로우를 키운다면, 이공계 기피나 의대 쏠림도 어느 정도 해소되지 않을까 싶다. 뛰어난 인재들이 AI 분야로 들어와, 어느 정도 안정적인 수입원이 만들어질 때까지 대략 10년 또는 20년 플랜을 만들어주면, 분명 어느 대학이든 AI로 몰릴 것으로 본다. AI 인력난이 해소될 것이다. ◇사회=NIPA나 정부가 고민하는 것은 무엇인가. 제조AX에서의 투자방향은? ◇정수진=자동차 등 제조 현장에 가보면 그 안에 있는 기술들이 국산과 외산을 잘 엮어 만든 공정이 많다. 중소, 중견기업들도 국산 장비에 외산 SW를 쓰며 라이센스 비용을 지급하며 쓰는 구조가 상당하다. 정부 사업에도 면밀하게 살펴보면 외산 SW가 참 많이 들어있는데, 이를 잘못됐다고 지적하는 것이 아니라, 그걸 바꾸려는 노력이 필요한데 그걸 우리가 놓치고, 제조AX 확산에만 치중하는 것이 아닌가하는 생각을 한다. 그 안에 들어가는 솔루션이나 SW들을 국산화 시킬 전략을 수립하고, 대응 방안 등을 고민하는 것을 과기정통부와 적극적으로 고민중이다. ◇사회=지역 현안, 정부 투자 방식에 대해 어떻게 생각하나. ◇김대환=지금은 1980년대 국가 투자방식으로 가야할 것으로 본다. 왜냐면 현대중공업이나 현대 자동차 같은 큰 기업은 돈되는 데이터를 내놓지 않을 가능성이 1천%가 넘는다. 국가가 제조AI 잘하는 대기업 1개를 선택하고, 그 밑에 팔란티어 처럼 자회사 형태로 키워 나가면 된다고 본다. 중국은 이렇게 한다. 미국은 이것이 안되기 때문에 제조AI가 어려운 것 아닌가. 우리가 제조AI에서 1등이 되려면 민주적이지는 않을지라도 중국 방식이나 팔란티어처럼 제조AI 플랫폼을 대표기업 한 곳이 원톱으로 구축한뒤 이를 B2B 형태로 제공하든지 해야 한다.그렇지 않으면 기업들, 절대 데이터를 내놓지 않을 것이다. ◇유대승 ETRI 울산지능화융합본부장=좀 다른 생각이다. 기업들이 혁신을 위해 데이터를 내놔야 한다는 것을 잘 알고 있고, 데이터를 내놓는 경향이 최근 보인다. 그동안은 내놓는 데이터가 내게 어떤 수혜로 돌아올 것인지가 막연해서 그랬다고 본다. ◇김대환=안내놓는다는 것은 데이터를 공유하지 않는다는 의미다. 예를 들어 현대자동차가 인도 기업 자동차에 데이터를 쓰도록 내놓을 확률은 없다는 것이다. 그래서 이를 국가가 맡아서 관리하는 팔란티어 식의 예를 들었다. 결국 국가가 전략적 차원에서 일을 하지 않으면 거대 제조 기업 데이터는 나오기 힘들 것이다. 또 소프트웨어중심대학은 제조 AI를 하려면 학부에서 벗어나 대학원 수준으로 올라가야 한다. 학부에서는 아무리 열심히 해도 그냥 숙제하는 느낌이다. 내년 AI 중심대학 10곳이 선정된다고 한다. 울산대도 준비하고 있다. 소프트웨어중심 대학이 학부 중심으로 준비했다면, AI중심대학은 대학원 중심이 될 것이다. 연구소와 연계도 많이 해야할 것으로 본다. ◇사회=AI 사업 관련 중복성 문제 같은 건 없나. ◇정수진=공장을 새로 짓지 않으면 AI팩토리의 전환이 사실 어렵다. 현재 정부가 풀스택으로 지원하는 프로젝트를 만들어야 하지 않나 생각한다. 정리하면 데이터 문제부터 그 안에 들어가는 국산화 기술, 그리고 그것을 인프라에 얹어 테스트하는 부분, 그런 다음 품질이나 보안문제까지 가져가는 풀스택 전략으로 가야 한다는 판단에 따라 현재 다른 지역에서 대규모 프로젝트를 준비하고 있는 상황이다. 그런데 이걸 한다고 제조AI가 다되는 것이 아니기 때문에 우리 나라가 장점을 가지고 있는 몇 가지 케이스를 뽑아서 먼저 사업화 하려고 한다. 모든 문제를 한번에 해결하는 전능한 기술이 있지는 않기 때문에 특화 기술에 주목하는 이유라고 생각하며, 이런 다양성에 대한 투자는 당연히 필요하다. 다만, 예산 투입 과정을 보면, 사업 중복이니까 이건 안돼 하는 식의 지적이 나오는데, 이런 인식도 변해야 한다. 왜냐하면, 다양성을 갖고 각 분야별로 키워나가야할 부분이 있고, 또 이를 응용하거나 기업들이 해야 되는 영역들도 놓치면 안되기 때문이다. 사업이 중복이라고 지적하거나 한 번 지원하면 끝이라고 보는 지원 구조는 AI 사업에서는 곤란하다. 동일한 문제를 다양한 기술방식으로 풀어나가는 다양성에 대해 재고가 필요하다. ◇사회=내년 사업 계획이나 큰 그림이 있나. ◇정수진=과기정통부에서는 올해 대형 사업으로 수행한 제조AI에 관련된 피지컬 AI를 핵심 아젠다로 준비하고 있다. 내년 사업 분야는 아직 구체적으로 정하진 않았지만, 지역은 '5극 3특'(5개 초광역권+3개 특별자치도)이라는 국가균형성장이라는 이슈가 있다. 소외된 지역들이 없게, 지역에 맞는 아젠다를 찾아줘야 한다. 그런 숙제를 안고 있다. 특정 분야를 잘 지원하는 숙제도 있지만, 전국이 골고루 잘살게 하는데 있어 AI를 잘 활용하도록 하는 2가지 고민이 있다. 사업 수행과 관련, 어느 지역은 하고, 어디는 늦게 하고 하는 부분에 대한 지적에 대해서는, 아이템 준비가 된 지역은 먼저 사업이 진행되고, 좀더 기획과 보강이 필요한 지역은 이를 잘 세팅해 바로 따라 간다고 이해하면 될 것이다. 전국에 UIPA 같은 기관이 23개다. 이들과 소통하며, 사후 아이템을 발굴하고 있다. NIPA도 지역의 구체적인 이해에는 한계가 있기 때문에 현장 목소리를 듣고, 이들과 머리를 맞대고 기획에 대해 고민을 함께한 시기가 3년 됐다. 정부의 실증 사업과 데이터 단계에서의 괴리와 관련해 현재 R&D 사업 앞단에 데이터 영역들을 과제화하는 작업을 진행하고 있다. 데이터가 사장 되지 않도록 PM과 같이 고민 중이다. 데이터 이슈에 대해 정확히 인지하고 있다. 앞으로 나아갈 방향에 대해 심도있게 논의 중이다. ◇사회=마지막으로 한마디씩 해달라. ◇김정완=신규사업이나 POC(개념증명), 신속 상용화 등 다양한 정부 사업들이 시행 중이다. 가능하면 이런 사업들이 상호 유기적인 관계를 가졌으면 한다. 사업이 밑단과 윗단이 체계적이고, 연속적이어여 한다. 그런 점을 살펴봐달라. 한마디 더 보태면, 제조AI는 고지식 산업이다. 이에 걸맞는 인력들이 울산에 많이 왔으면 좋겠다. ◇유대승=AI제조나 피지컬 AI에서 울산이 가장 좋은 테스트베드라고 생각한다. SKT-AWS AI데이터센터가 시작됐고, 이곳에 데이터를 채워야할 것이고 데이터가 쌓이면 이를 활용할 기업들이 또 모여들 것이다. 울산이 산업수도에서 AI수도, 제조 AI수도가 되기 위해서는 인프라가 먼저 만들어져야 한다. 여기에 R&D와 인력양성이 따라 가야한다. 인력 양성도 완전히 새로운 포맷이 필요하다. AI 로봇 운영이라든지, 이의 유지보수 등 새로운 영역 인력이 필요하다. 기술개발이 시작되는 시점부터 인력양성이 같이 붙어가야 한다. 또한 정부에서 5년마다 수립하는 지방과학기술진흥종합계획 핵심은 지자체 주도로 과학기술 정책을 기획하고 중앙정부가 이를 지원하는 체계를 구축하는 것이다. 그런데 현실적으로 잘 안된다. 어느 정도는 지역에 예산을 그냥 툭 던져 줬으면 한다. 중앙정부나 지방정부나 규모만 다를 뿐 갖출 것은 다 갖추고 있다. 울산도 많은 논의를 하고, 많은 일들을 한다. 정부가 제조AI 고민하고, 소버린 AI를 고민할 때 지방정부도 같이 고민한다. 따라서 유사한 내용으로 갈 수 밖에 없다. 그런 측면에서 지역이 제조AI를 하든, 피지컬 AI를 하든 지역 안에서 알아서 하라고 그냥 툭 던져주는 그런 사업이 있었으면 한다. ◇정수진=AI사업은 한 부처가 다 할 수 있는 일이 아니다. 현재 여러부처 의견을 수렴 중인 것으로 알고 있다. 각 부처가 하는 일들을 연결하는 역할이 매우 중요한 것 같다. 특히, 과기정통부가 부총리 부처로 격상 되면서 여러 부처를 통합하며, 한 프레임 내에서 AI사업의 성과를 도출할수 있도록 심혈을 기울이고 있음을 느끼고 있다. 그런 부분에 대해 지역에서도 힘을 실어줄 필요가 있다. 지역에서 만드는 기획을 보면 지역 사업에 그냥 AI만 붙여 가져온다. AI 본질에 대해 이해하고 기획안을 작성하는 것이 아니라, 몇 일 만에 뚝딱 만들어 대충 주는 그런 느낌이다. 지역이 전문가와 심도있게 논의하고 문제점을 찾고, 해결 방법을 고민해야 할 것이다. AX 주제를 무엇으로 선정할지, 지역의 어떤 문제를 구체화 하여 AI로 바꿀 것인지 심도있게 고민했으면 한다. 한마디 더 보태면, 올해부터 지역 단위 AX 프로젝트 기획비를 편성하는 추세다. 정부와 지자체가 제대로 기획할 비용을 지원하고, AI기술 및 산업적 트랜드에 제대로 대응할 수 있도록 제도의 양성화가 이루어졌으면 한다. ◇박현철 UIPA 디지털융합본부장=하드웨어가 하는 부분을 소프트웨어로 충족하는 케이스도 봤고, 반대 경우도 봤다. AI도 마찬가지다. 중복성과 다양성을 정부가 인정했으면 한다. 출연기관들은 키워드를 빼서 기획을 잘한다. 그런데 평가자들은 늘상 중복성 얘기를 한다. 목표치에 접근하는 방법의 다양성을 인정하지 않는다. AI 최종 목표가 한 가지만 있는 것은 아니다. 다양성이 정부 차원에서 고려됐으면 한다. 또, 정부 수요조사 때 디테일한 내용은 감추기도 한다. 이 내용이 정부에 공개되면, 더 이상 지역만의 아이템이 아니기 때문이다. 지역 기획안이 디테일이 부족할 수도 있고, 디테일하게 만들어져 있음에도 그리 제안할 수 있는 것 같다. 울산은 사실 지방비 매칭 사업에서 약속을 어긴 적이 없다. 울산은 사업을 대충하지 않는다고 생각한다. 그런면에서 신뢰성 갖고 믿고 맡겨도 된다.

2025.11.20 15:36박희범

"제조AI 성공하려면…콘텐츠별 데이터 축적·공유가 관건"

울산지역이 글로벌 AI 수도를 선언하고, 비상 중이다. 핵심 축은 자동차와 조선, 화학 산업이다. 현대자동차와 HD 현대미포, SK에너지 1, 2차 밴드를 포함해 3만 개의 제조업체가 동력이다. 최근 SK그룹은 AWS와 합작해 울산 미포 산업단지 내에 7조원을 들여 대규모 AI 데이터센터 구축을 추진 중이다. 울산이 제조AX 전환을 어떻게, 무엇을 할 것인지에 대한 방향과 대응에 대한 고민을 시작했다.지디넷코리아는 이에, 산학연관 전문가를 모아 정부 정책과 지역 사업 방향 등에 대해 심도있게 논의하는 장을 마련했다.[편집자주] ◆글싣는 순서 산업현장서 제조AX 들여다보니 제조AI 한국이 1등 하려면… ◆참석자(가나다순) -김대환 울산대학교 SW성과확산센터장 -김정완 에이테크 대표 -박현철 울산정보산업진흥원(UIPA) 디지털융합본부장 -유대승 한국전자통신연구원(ETRI) 울산지능화융합연구실장 -이용진 한주라이트메탈 대표 -정수진 정보통신산업진흥원(NIPA) 지역AX본부장 (사회 : 박희범 지디넷코리아 과학전문 기자) ◇사회=정부가 제조AI, 제조AX전환을 가속화하고 있다. 울산은 지역적 특색이 뚜렸하다. 자동차, 조선, 화학을 근간으로 AX 실증에 적합한 아이템이 많을 것 같다. AX 전환을 위해 현재 가장 시급한 것은 무엇인가. ◇김대환(울산대학교 SW성과확산센터장)=데이터를 잘 모으는 것이 가장 중요하다. AI 모델을 만드는 일은 당장 이뤄질 일은 아니다. 제조라는 건 실제 뭔가 만드는 작업이다. 따라서 액션 데이터들이 모여야만, 그 다음 단계인 AI를 얘기할 수 있다. 아마존이나 메타, 구글 성공 요인은 이미 수많은 백데이터를 확보하고 있다는 것이다. 제조 데이터를 어떤 센서로, 어떤 형태로 빨리 모을 것이냐가 가장 첫 번째 할 일이다. ◇김정완(에이테크 대표)=제조업체의 습성을 먼저 잘 이해해야 할 것이다. 제조 데이터는 모두 같지 않다. 산업별·공정별로 AI 활용 전략이 달라져야 한다. 제조 데이터에는 공정 장비 데이터 뿐 아니라 비용 정보 등 민감한 요소가 포함돼 있어, 기업들이 데이터를 쉽게 제공하지 않는 구조적 이유가 존재한다. 따라서 표준화를 위해 반드시 필요한 데이터와 기업의 요구에 따라 별도로 분리 및 관리해야 하는 데이터로 나눠야 할 것이다. 산업별 특성에 따라 필요한 AI 형태도 다르다. 울산 제조업 사례를 보면, 조선·자동차·석유화학 등 업종별 데이터 구조와 생산 방식이 상이하다. 조선업은 모든 선박이 일종의 맞춤형 제품이기 때문에, 동일 공정을 반복하는 경우가 거의 없다. 따라서 고도로 커스터마이즈된 AI가 필요하다. 자동차 산업은 연간 10만~100만 대 단위의 대량 생산 구조이므로, 확산형(범용) AI 모델이 효과적이다. 이처럼 제품 생산 방식이 다르면 필요한 AI 모델의 구조와 데이터도 달라진다. AI 학습을 위해서는 산업별·기업별 데이터 목표를 명확히 설정하고, 각 제조 현장의 특성에 맞춘 맞춤형 개발 전략이 필수적이다. ◇이용진 한주라이트메탈 대표=어려운 문제다. 제조 현장에서 AI를 적용하려면 데이터 확보가 필수인 걸 잘 안다. 하지만 기업들은 실제 데이터를 쉽게 제공하거나 공유하려 하지 않는다. 이유는 암묵지(숙련자의 노하우)가 데이터화되면 리스크가 발생하기 때문이다. 암묵지가 데이터화 되면 기업의 핵심 기술·품질 관리 방식·생산 경쟁력이 노출된다. 특히, 하도급 구조에서 데이터 노출은 '약점 노출'과 같다. 데이터가 공개되면 대기업 또는 상위 발주처가 하도급 업체의 역량·한계·취약점을 파악할 수 있고 이는 가격 협상력 약화, 거래 조건 불리, 품질 책임 강화 등으로 이어질 수 있다. 내부 데이터는 곧 기업의 '생존 정보'다. 기업들은 자신들이 수행하는 업무 과정 자체를 그대로 보여주는 데이터 공개가 기술·경쟁력·노하우가 모두 드러나는 것이라 느낀다. 따라서 중소기업 입장에서는 데이터를 요구하는 것 자체를 부담·위협으로 인식한다. 그렇기 때문에 기업들은 이런 AI 기반 시뮬레이션 전략을 좋아하지 않고, 적극적으로 도입하려 하지 않는다. 또한 AI는 본질적으로 '사람 대체' 요소가 있다. 울산처럼 노동조합 영향력이 큰 지역에서는 노사 합의 없이 AI 전환을 추진하기가 사실상 어렵다. ◇사회=울산은 제조AI를 어떻게 적용해야 한다고 보나. ◇이용진=울산은 제조AI에서 최적의 조건을 갖고 있는 도시다. 조선, 석유화학, 자동차 전부 다 대기업을 중심으로 형성돼 있다. 제조AI 포커스가 대기업을 중심으로 탑다운으로 내려오는 것이 현재로는 가장 효율적이라는데 공감한다. 각종 지원이나 정책 방향이 우선 대기업을 통해 밑으로 내려가는 것이 맞지 않나 생각한다. 이유는 대기업 2차, 3차 밴드들과 중소기업이 AI를 적용하는데 첫 번째 걸림돌은 데이터 구축이다. 사람이 하는 부분이든, 장비나 기계가 하는 부분이든 이를 센서가 어떻게 할지 등에 관해 대기업은 이미 구축이 다 돼 있는 상태다. 특히, 석유화학의 경우 이미 추론모델이나 최적화 모델을 통해 결과를 얻었기 때문에 대기업을 중심으로는 밴드 아래까지 산업화 제조 AI를 구축하는 것이 가능하다. 그러나, 작은 기업이나 풀뿌리 제조 현장에서는 아직 준비가 충분히 되어 있지 않다. 제조 AI 적용은 중소 제조기업(하위단계)에서의 AI 적용 노력과 상위 대기업·선도 제조업체가 추진하는 AI 활용 모델이 상호 수렴하는 형태로 가야 한다. 기업 가운데 AI를 바로 적용해 시험해 볼 수 있는 곳은 20~30% 정도로 판단한다. 아직은 생산, 품질, 공정의 많은 부분이 사람의 경험·직관·현장 노동에 의존하는 형태가 많다. ◇정수진(정보통신산업진흥원 지역AX본부장)=대한민국은 AI개발, 정부전략, 인프라, 제도, 운영환경 등에 비춰봤을 때 세계 6위권이다. 이것을 세계 3대 강국으로 만들자는 것이 정부 목표다. 이를 위한 정부 전략 가운데 가장 중요하게 생각하는 부분 중에 하나가 바로 제조 AI다. LLM(대형언어모델) 등은 이미 오픈AI 등 해외 기업들이 선제적으로 시장을 장악했다. 그런데 제조AI는 아직 1등이 없다. 우리는 1등 할 수 있는 제조역량 및 경험을 보유하고 있기 때문에, 정부도 여기에 포커스를 맞추고 있다. 현재 지역에서 하고 있는 피지컬 AI사업들도 모두가 그의 일환으로 하는 일이다. ◇사회=데이터 문제를 어떻게 해야 하나. ◇김대환=제조AI를 위한 여러 가지 비정형 데이터를 어떻게든 최대한 많이 모아야 한다. 이를 모으기 위한 노하우를 쌓는 작업들을 해나가야 한다. 그렇지 않으면 돈만 투입하고, 허둥지둥대다 또 지나갈 것이다. 현대중공업은 현대자동차 등에서 일반적인 AI모델이 많이 나오고 있다. 일반 회사들은 품질 관리 측면에서 많이 적용하고 있다. 실제 제조 기업 입장에서는 B2B에 해당하는 사업 마케팅 모델로 나가야 한다고 본다. B2B 모델을 만들기 위해선 공공 데이터보다 민간 영역 데이터 부터 모으는 게 향후 5년, 또는 10년 내 가장 급선무라고 생각한다. 데이터가 모여진 뒤에서야 AI 모델이 개발될 것이다. 최소 5년 이상은 되어야 제조 AI에 관련한 모델이 나오기 시작할 것이다. ◇박현철 울산정보산업진흥원(UIPA) 디지털융합본부장=오랫동안 조선 해양 부분을 맡아 일을 해왔는데, 생산 부분에서 데이터를 그렇게 공개하려 하지 않는다. 특히 가장 심한 부분이 자동차와 조선이다. 그나마 괜찮은 데가 화학이다. AI는 생산과 관련해 보조수단으로 적용돼야 한다고 생각한다. 또 수요자 입장에서 보면 AI의 목적성 부분을 명확히 했으면 좋겠다. 조선 쪽 얘기를 좀 더 하면, 선박 만드는 회사들은 해운 운항에 관한 데이터는 절대 안내놓는다. 이건 기업의 영업 비밀이랑 똑같은 것이다. 운항 코스와 엔진 데이터 공개는 어렵다고 하더라. 선박 데이터 수집은 2018~2019년부터 시작했는데, 이를 안전운행 등에 적용해 에너지관리시스템(EMS) 쪽을 해보려 했는데, 데이터를 안 줘 정부차원에서 그냥 배를 만들었다. 올해부터 환경규제 대응 솔루션이라고 해서 선박 15척의 운항 데이터를 뽑고, 최종적으로 3년 뒤에는 60척 운항 데이터를 모을 계획이다. 그런데, 진흥원이 이 같이 데이터를 모으더라도 상호 공유하는 것은 어렵다. 굉장히 민감하다. 그래서 이를 데이터 제공기업과 솔루션 개발 기업 간 상호 의존적 관계로 풀어가려 한다. ◇사회=실제 AI 기업 적용 노력과 상황에 대해 설명해달라. ◇이용진=노동·고용 문제 해결 없이 제조 AI 전환을 추진하기 어렵다는 현실이 있다. 현재 서울, 부산, 울산 등지에 있는 10여 개 공급업체를 만나 AI 적용을 검토 중인데, 최근 깜짝 놀란 사실이 있다. 중국은 이미 제조 AI 모델을 개발, 적용했더라. 중국이 AI 도입을 빠르게 진행할 수 있는 이유는 해고가 자유로운 노동구조에 있었다. 기업이 대규모 인력 감축을 할 수 있어 AI 전환 속도가 매우 빠르다. 중국은 또 기업들이 생산한 데이터를 국가 차원에서 공유할 수 있다. 정부가 데이터를 수집하고, 이를 다시 산업 전반에 확산시키는 방식으로 막대한 제조 데이터 축적이 가능하다. 이미 중국은 저만치 앞서간 상태다. 미국은 파운데이션 모델(LLM) 등 범용 AI기술에서 앞서고 있다. 그러나 미국은 제조 AI 분야에서는 거의 기반이 없다. 공장 데이터가 부족하다. 한국은 어떤가. 이제 한국의 제조 시스템과 AI를 접목해서 중국을 견제할 수 있다는 얘기를 한다. 그런데 풀뿌리 R&D나 중소기업 주도의 자금 지원 방식으로는 중국 수준의 제조 AI 생태계를 만들기 어렵다. 정부의 명확한 정책 방향과 대기업 주도의 추진 체계가 현실적으로 맞는 것 같다. ◇사회=NIPA가 보는 데이터 구축과 AX 전환에 대해 설명해달라. ◇정수진=NIPA는 최근 피지컬 AI관점의 데이터 구축에 관심을 가지고 있으며, 사업 내에도 반드시, 필수로 포함돼 있다. 경남에서 추진 중인 피지컬AI 프로젝트의 경우 핵심요소 중 하나로 제조 공정에서 발생하는 물리 데이터를 수집하는 데 초점이 맞춰져 있다. 경남 프로젝트에서 올해 PoC(개념검증)를 진행 중인데, 이론적으로 필요하다고 판단한 데이터와 실제 산업 현장에서 확보 가능한 데이터 간 격차가 예상보다 훨씬 컸다. 기업들은 데이터를 외부에 제공해야 한다는 부담도 느끼고, 의사결정이 되더라도 정작 어떤 방식으로 데이터를 수집해야 하는지 조차 모르는 상황이다. 이런 고민을 해소하기 위해 연구진들이 방법을 찾는 중이다. 센서 등 다양한 방법을 활용해 추진하고 있는 데이터 축적이 내년 경남에서 시작하는 사업의 중요한 포인트가 될 것이다. 이 데이터가 표준화된 형태로 적절히 축적될 경우, 일명 '물리 AI(Physical AI)' 프로젝트 전반에 폭넓게 활용될 수 있을 것으로 기대한다. 한편 그동안 우리나라가 축적된 데이터는 품질이 매우 낮아 활용이 어렵다는 지적도 있다. 기존 데이터를 완전히 배제할 수는 없지만, 활용 가능한 부분은 선별하고 부족한 지점은 보완하는 작업이 향후 큰 숙제가 될 것으로 본다. NIPA도 그런 측면에서 데이터 관련 사업을 AI의 기술고도화의 매우 중요한 한 축으로 가져가고 있다. ◇사회=데이터 외에 제조AI를 하는 데 있어 필요한 것이나 어려운 점이 있나. ◇유대승 한국전자통신연구원(ETRI) 울산지능화융합연구실장=데이터 공유가 참 어렵다. 어디까지 보호하고, 어디까지 공유해야 하는지 경계선도 모호하다. 기업이 데이터를 제공하지 못하거나 제공을 꺼리는 이유는 크게 두 가지다. 하나는 정체성과 핵심 데이터 노출에 대한 우려다. 협력사나 발주처 등 '수요기업'에게 자사의 노하우, 공정 특성, 가치가 담긴 데이터가 그대로 노출될까 두려워 데이터를 제공하지 않는 경우가 많다. 이는 특정 기업만의 문제가 아니라 전반적으로 나타나는 공통적인 현상이다. 두 번째는 AI 서비스 사용 시 데이터 유출 우려다. 챗GPT 같은 AI 서비스를 사용할 때 입력한 데이터가 외부에 공개되거나 기업의 기밀이 그대로 노출될 것이라는 불안이 있다. 이 때문에 기업들이 챗GPT(또는 젠AI)를 적극적으로 활용하지도 못한다. ◇김정완=제조 데이터 보호 플랫폼을 만들어 본 경험이 있다. 제조 기업들은 데이터를 자산으로 인식한다. 데이터의 정확한 가치나 활용 가능성에 대한 확신이 부족한 데다, 외부로 공개될 경우 어떤 위험이 발생할지 불안감이 커 쉽게 데이터를 쉽게 공유하지 않는다. 하지만 제조 기업이 AI 솔루션 개발을 위해 데이터를 제공해야 하는 상황이 늘어나면서, 새로운 인식 전환이 일어나고 있다. 기업이 데이터를 제공하면 AI 솔루션 기업은 이를 활용해 해당 기업 맞춤형 솔루션을 개발, 다시 공급하는 방식이다. 데이터를 제공하는 기업이 동시에 AI 솔루션의 '수요기업'이 되는 구조다. 데이터 제공(수요)과 AI 솔루션 공급(공급)이 서로 맞물려 움직이는 형태다. 기업간 데이터 공개 및 공유위해 제조 데이터 보호 플랫폼 구축 제안 제조 기업이 데이터를 공개한다고 해서 그 데이터가 제3자에게 활용되기를 기대하는 것이 아니라, 오직 자신들에게 필요한 솔루션을 만들어 다시 돌려받기 위한 목적으로 데이터를 제공하는 것이다. 이를 해결하기 위한 대안으로 제조 데이터 보호 플랫폼을 검토해 볼 만하다. 이 플랫폼의 핵심 원리는 데이터 제공 기업과 데이터 기반 솔루션을 요구하는 기업 간의 계약 관계를 블록체인 기반으로 관리하는 것이다. ◇유대승=파운데이션 모델이 학습하는 데이터는 원본(raw) 형태로 저장되는 것이 아니라 벡터화된 형태로 변환되기 때문에 다시 원본으로 복원될 수 없다. 즉, 학습된 결과물은 다양한 언어·패턴을 통합한 '표현 집합'이며, 원천 데이터 유출 위험은 크지 않다는 점이 기술적으로 확인되고 있다. 그럼에도 기업들은 데이터 제공에 강한 거부감을 보이고 있다. 일각에서는 기업이 공개하는 데이터가 실제로는 가치 없는 데이터에 가깝다는 지적도 나온다. 현장 적용을 위해서는 파운데이션 모델 학습 방식 자체도 재정의가 필요하다는 의견도 있다. 지금처럼 다양한 데이터셋을 한 번에 학습시키는 구조로는 실제 제조 환경의 복잡성을 반영하기 어렵다는 것이다. 실제 공정 단계별로 데이터를 분할해 순차적으로 학습해야 하며, 경우에 따라서는 특정 센서(라스터 마이크 등) 단위로 모델을 따로 학습시키는 구조가 필요하다. 데이터센터와 컴퓨팅 자원이 현장 가까이에 위치해야 한다는 조건도 점점 중요해지고 있다. 이는 데이터가 생성된 원천 공간에서부터 수집·전처리·학습까지의 일련 과정이 지역 내에서 보장돼야 한다는 의미다. 지자체 데이터 인프라 구축은 정부 사업과 중복 아니라 필수 조건 또한 각 지자체가 요구하는 데이터 인프라 조건을 단순히 중복으로 볼 것이 아니라, 지역 내 데이터 생성–수집–처리–학습을 보장하기 위한 필수 요건으로 이해해야 한다. ◇박현철=데이터를 의외로 많이 주는 분야도 있다. 화학 쪽이다. SK에너지 같은 경우는 산업 안전 분야에서 데이터를 주고, AX랩을 UIPA에 구축해 지원해주는 부분이 있어서 사살상 데이터 확충 사업도 고려하고 있다. 데이터를 모을 때 목적성에 맞게 모델을 만들어야 하는데 초기엔 그런 부분을 생각 못한 점이 있다. 자동차의 경우는 1, 2차 협력사들에 10년 전부터 데이터를 달라고 졸랐는데, 원가 항목 등 때문에 결국 못받았다. 조선 분야는 변화가 느껴진다. 스토리지 서버 자체를 현대 중공업 같은 경우 10년 전에는 직접 관리하고 운영했는데, 지금은 클라우드를 이용해 아마존 등에 외주를 준다. 기업들의 데이터에 대한 인식이 점차 달라지고 있다고 느낀다. ◇사회=울산이 특별히 잘할 수 있는 것과 애로 사항에 대해 얘기해 달라. ◇김정완=울산은 데이터가 현장에 있다는 것이 강점이다. 제조 기업에 데이터 받은데 10년 걸린 경우도 있었다. 그런 측면서 상호간 신뢰와 릴레이션십도 중요하다. 또 하나는 사업 평가가 좋으면, 가점이나 혜택이 있었으면 한다. 산업기술평가원은 우수 트랙이라는 것이 있다. 우수 기업 풀을 만들어 과경쟁을 막는 것도 좋을 것 같다. 데이터 관련해서 한마디 하자면, 대기업 연구소에서 생성된 원천 데이터는 협력사 단계로 내려가면서 변형되거나 가공되는 경우가 많기 때문에, 정확한 AI 모델을 만들기 위해서는 가장 먼저 대기업 연구소가 보유한 정보·데이터를 확보하는 과정이 필수적이다. "울산이 제조AI에서 가장 먼저 해야할 일은 부품 품질관리" 이를 기반으로 학습된 데이터를 제대로 이해한 뒤에야, 2·3차 협력업체가 활용할 수 있는 형태로 AI 시스템을 개발할 수 있다. 이 같은 애로도 해결할 방법을 찾아야 할 것이다. ◇김대환=울산이 가장 잘할 수 있는 제조AI는 아직 없다고 생각한다. 그런데 뭘 가장 먼저 해야하느냐고 얘기한다면, 부품 품질 관리를 꼽고 싶다. 대기업 전반에 AI를 적용하는 과정은 구조적으로 매우 복잡하며, 대규모 모델이 필요해 구현 난이도가 높다. 현재 구조에서는 모든 기업이 대기업 수준의 초대형 AI를 도입하기 어렵다. 따라서 현실적으로 가장 먼저 해야 할 일은 개별 기업이 우수한 QS(Quality system)를 갖추고, 이를 기반으로 대기업에 신속하게 제품을 공급·납품할 수 있는 체계를 만들도록 지원하는 것이다. 이것이 대기업에 빨리 빨리 납품하고, 인력은 좀 적게 들이면서 중소기업이 살아 남을 수 있는 방향이라고 생각한다. ◇유대승=울산은 피지컬 AI를 잘할 수 있다. 앞으로 자동차와 조선이 위기라고 볼 수 있다. 특히, 조선은 사이클상 현재는 수주 경기가 좋지만 조만간 위기가 올 것이다. 중국에 어느 정도 다 따라잡힌 상황이라 경제적인 향후 전망은 정말 안좋다. 이를 해결하기 위한 방법이 조선이나 자동차 제조사들의 AI 자율제조 첨단 생산체계로의 전환이다. 지금까지 데이터를 내놓지 않던 조선과 자동차 쪽에서 내놓고 있다. 현재 ETRI는 글로벌 톱 전략연구단 사업으로 자동차 부문 휴머노이드 연구를 하고 있다. 수요처 손들라고 하면 자동차와 조선 관련 기업이 가장 적극적이다.

2025.11.19 15:48박희범

장병태 UIPA 원장 "울산은 '제조업 수도'서 'AI 수도'로 탈바꿈 중"

울산광역시가 제조 인공지능(AI) 허브로 주목받고 있다. 울산에는 현대미포조선과 HD현대중공업을 필두로 대기업 10곳의 생산기지가 활발히 가동 중이다. 이의 뒤에는 12만 개의 중소· 중견 제조업체가 포진해 있다. 최근 AI가 국정 중심으로 부각되고 있는 가운데, 2년 전 제조 AI 사업화에 혜안을 가졌던 장병태 울산정보산업진흥원(UIPA) 원장을 만났다. 장 원장은 지난 2023년 10월 울산정보산업진흥원 제3대 원장에 취임하며, 조직 체계에 'AI 신산업 혁신본부'와 '제조AI산업진흥단'을 꾸릴 정도로 AI에 관한 관심이 각별했다. "울산이 세계의 제조 AI 선도 도시가 될 수 있도록, 세계 최고 제조 AI 및 디지털 산업 진흥 기관을 만들어갈 것입니다." 장 원장이 내세운 기관 비전이다. 장 원장은 "AI와 디지털 산업 진흥 및 육성 기관이라는 정체성을 바탕으로 울산 주력 산업인 자동차와 석유화학, 조선·해양 및 에너지 관련 산업군에 전력할 계획"이라고 밝혔다. 장 원장의 관심사는 크게 ▲지속 가능한 AI 공급 기업 육성 ▲미래 자동차인 UAM 및 스마트 선박 분야 지원 ▲AI 로봇 기반 제조 환경 전환 및 구축 등이다. 울산 12만 개 기업 가운데 ICT 관련 기업은 479개, 소프트웨어 기업은 145개다. 이는 전체 사업장의 0.5%에 해당한다. 특이하게도 비중이 적은 편이다. "이들이 수치상으로는 적어 보일지 몰라도 AI와 디지털 전환, 스마트 제조 등 첨단산업 기반이 되는 핵심기술을 보유하고 있습니다. 지역 산업 구조 고도화에서 매우 중요한 역할을 수행 중입니다." (사)지역SW산업발전협의회가 조사한 결과에 따르면 울산 지역 소프트웨어 기업은 ICT 관련 기업 평균 매출액 25.4억 원보다 더 많은 27.6억 원이다. 이는 다른 지역 매출 평균 대비 9배 정도 많다. 또 ICT 및 소프트웨어 기업 성장률은 24.8%나 된다. 이는 스마트 제조 및 AI 수요 증가에 따른 기업 진입이 활발하기 때문이다. UIPA 측은 지역 ICT 및 AI 선두 기업으로 (주)에이테크와 (주) 인사이트온, (주)노바테크를 추천했다. 에이테크는 지난 2018년 설립된 AI와 빅데이터 솔루션 전문 기업이다. AI와 빅데이터, 순환 경제, 스마트팩토리에 주력 중이다. 공공서비스 분야에서는 AI 빅데이터 기반 플랫폼 솔루션으로 두각을 드러냈다. 스마트시티 통합 플랫폼과 탄소배출 전과정평가(LCA) 이력 관리 플랫폼, 스마트 팩토리 DX 플랫폼, 도시 재난 대응 시스템(UDS) 등으로 지난해 42억 원의 매출을 올리는 등 고도성장 중이다. 인사이트온은 산업에 특화된 AI를 바탕으로 화학이나 에너지, 조선 등 제조 분야 기업용 시스템 컨설팅과 구축을 전문으로 한다. 지난 2015년 설립 이후 생산, 설비, 품질관리 스마트 공정 시스템을 SK와 롯데, 한화그룹에 제공했다. 올해 매출 목표는 180억 원이다. 또 노바테크는 로봇 기반 물류 자동화와 가상현실, 디지털 트윈 핵심기술로 지난해 매출 58억 원을 찍었다. 올해 매출 목표는 80억 원이다. 현대차 싱가포르 혁신공장의 로봇 기반 제조물류 통합 관제 시스템 'HACS' 구축을 시작으로, 중국 광저우와 미국 조지아주 메타 플랜트까지 현대차 글로벌 공장에 물류 혁신 프로젝트를 확장 중이다. 지난 2023년 210만 달러의 수출을 달성했다. 장 원장은 울산 지역 디지털 산업 생태계 구축을 위한 일단의 전략도 공개했다. 울산에 분원을 둔 ETRI와 생기연, 화학연, 에너지연 등과 긴밀한 협력을 모색할 계획이다. "울산 주력 산업 품목은 석유화학과 자동차, 조선·해양 및 에너지입니다. 중앙 정부 부처 및 울산시와 협력, 정책 발굴 및 예산 확보를 통해 울산소재 AI 및 디지털 전환 기업을 육성해 나갈 것입니다." 장 원장은 울산 지역 기업에 가장 필요한 것으로 기술 개발 예산 지원과 기업 간 협의체를 만들어, 공동 기술 개발 체계를 구축하는 일을 꼽았다. UIPA는 지역 청년 IT 교육으로 'ICT 이노베이션스퀘어 사업'과 '하이테크형 공동훈련센터 사업'을 내세웠다. 이노베이션스퀘어 사업은 AI나 블록체인, 데이터, IoT(사물인터넷), 네트워크 등 신기술 SW 분야 전문 인력 370명 육성이 목표다. 하이테크형 공동훈련센터 운영 사업은 신기술 분야 인력 200명 양성을 목표로 진행 중이다. 장 원장은 전통 제조업과 디지털 기술 융합을 위한 지원도 강조했다. 조선·해양과 자동차 분야에서는 산업부의 AI 기반 자율 제조 사업 수행, 울산 태화호를 활용한 레이다, 통합항통장비 등의 실증 및 소프트웨어 기반 선박 플랫폼 개발 지원, 석유화학단지 지하 배관 및 지상 화재 등의 AI 기반 사고 모니터링 및 예방 통합 관제 플랫폼 구축 등에서 관련 중소, 중견 기업을 지원 중이다. "울산 주력 산업은 주로 대기업이 이끌고 있어 기업 자체 투자 및 개발이 가능합니다. 그러나 협력 업체나 공급 기업 경쟁력은 다른 지역 대비 미흡합니다. 국비 확보를 통한 지원체계 고도화 등으로 제조 산업 수도의 디지털 AI 기반 산업 수도로의 전환에 드라이브를 걸고 나아갈 계획입니다." 장 원장은 "ETRI 등 출연연구기관이 확보한 원천기술을 울산 기업에 적극 전수할 방안이 필요하다"고 덧붙였다.

2025.08.10 11:00박희범

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

원화 스테이블코인 활용 논의...2026년 제도권 진입 주목

쿠팡, 고객정보 유출 용의자 특정…저장장치도 회수

첫 여성 사장·자율주행 재점검…위기를 기회로 만드는 '정의선號'

미디어·콘텐츠 누적된 위기...방송산업 구조개편 기로

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.