• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
국감2025
배터리
양자컴퓨팅
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'LMM'통합검색 결과 입니다. (1건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

문서 작성부터 협력사 평가까지…엠로, AI 에이전트로 구매 업무 부담 최소화

기업의 구매 부서는 제품 생산과 운영의 기반이자 경쟁력의 핵심 축이다. 하지만 수많은 문서 작성, 데이터 검색, 협력사 관리 등 반복적이고 복잡한 업무가 이어지면서 담당자의 업무 피로도가 높고, 신규 인력이 진입하기에도 쉽지 않다. 이로 인해 많은 기업들이 인력 운용에 어려움을 겪는다. 이러한 어려움을 극복하기 위해 인공지능(AI) 에이전트가 대안으로 주목받고 있다. AI가 스스로 문제를 인식한 뒤 목표 달성을 위해 필요한 정보를 스스로 찾아내고 계획을 세우며 실행까지 수행할 수 있어 업무 부담을 최소화하고 고부가가치 분석과 전략 수립에 집중하며 생산성을 향상시킬 수 있기 때문이다. 21일 엠로는 서비스 중인 구매시스템에 대규모 언어모델(LLM)을 기반으로 한 5종의 AI 에이전트를 탑재했다고 밝혔다. 엠로의 구매시스템에 탑재된 AI 에이전트는 ▲구매 가이드 에이전트(Procurement Guide Agent), ▲DB 검색 에이전트(DB Search Agent) ▲SRM 코파일럿(SRM Copilot), ▲시장 분석 에이전트(Market Intelligence Agent) ▲문서 생성 에이전트(Automation Agent) 등이다. 이 기능들은 구매 문서 작성부터 협력사 평가, 시장 동향 분석까지 한 번의 대화로 처리할 수 있도록 지원한다. 초보자도 복잡한 구매 절차 손쉽게 엠로의 '구매 가이드 에이전트'는 이름 그대로 구매 업무 전반의 '길잡이' 역할을 한다. 신규 담당자가 복잡한 절차나 용어에 익숙하지 않더라도 챗봇에 질문만 하면 필요한 답변을 즉시 받을 수 있다. 예를 들어 '해외 협력사 등록 절차가 어떻게 되나요?' 같은 질문을 입력하면 AI가 사내 매뉴얼과 외부 문서를 동시에 검색해 단계별 절차를 안내한다. 이 에이전트는 검색증강생성(RAG) 기술을 이용해 정형 데이터뿐 아니라 PDF나 보고서 같은 비정형 데이터에서도 정보를 찾아낸다. 이를 통해 AI는 보다 구체적이고 신뢰할 수 있는 답변을 제공한다. 결과적으로 구매 가이드 에이전트는 기업 내 지식 격차를 줄이고 담당자의 역량을 균등하게 끌어올리는 역할을 한다. 이를 통해 신규 인력은 빠르게 업무를 익힐 수 있고 숙련 인력은 반복적인 질문 응답이나 문서 확인에 드는 시간을 절약해 전략적 업무에 집중할 수 있다. 필요한 정보를 자연어로, DB 검색도 한번에 DB 검색 에이전트는 구매 담당자가 시스템 속 방대한 데이터를 일일이 찾지 않아도 되도록 돕는다. 그동안 협력사 정보를 찾기 위해 여러 메뉴를 오가며 검색해야 했지만 이제는 자연어로 질문만 하면 된다. "지난해 수도권 지역 협력사 중 납기 우수 업체를 알려줘"라고 입력하면 내부 데이터베이스(DB)에 어떤 항목들이 있는지 납기율이 어떤 테이블에 저장되어 있는지를 스스로 파악한 한다. 이후 그 조건에 맞는 SQL 쿼리(SQL Query)를 자동으로 생성해 사용자에게 필요한 정보를 제공한다. 또한 AI는 단순히 데이터를 보여주는 데서 그치지 않고 필요한 경우 요약이나 분석 결과까지 함께 제시한다. "최근 6개월간 납기 지연이 늘어난 품목은?"이라고 물으면 AI는 해당 데이터를 시각화해 '어떤 품목에서 지연이 발생했고 그 원인이 무엇인지'까지 요약 보고 형식으로 알려준다. 이렇게 사용자가 복잡한 데이터를 직접 다루지 않아도 자연스러운 대화만으로 원하는 인사이트를 얻을 수 있도록 지원한다. 문서 작성도 AI가 초안부터 제안까지 구매 부서의 주요 업무 중 하나는 다양한 문서 작성이다. 입찰 공고문, 품의서, 계약서 등 문서의 형식은 정해져 있지만 매번 다른 품목과 조건을 반영해야 하기 때문에 단순 반복 업무임에도 상당한 시간이 소요된다. 한 문서를 완성하기 위해 과거 사례를 찾아보고 협력사 정보를 대조하며 예산과 납기 일정을 맞추는 과정을 거쳐야 하기 때문이다. 엠로의 '문서 생성 에이전트'는 이런 반복적인 문서 작성 부담을 줄여준다. 구매 담당자가 품목명, 예산, 일정, 자격 요건 등 기본적인 정보를 입력하면 AI가 사내 시스템에 저장된 방대한 문서 데이터를 바탕으로 유사한 사례를 찾아낸다. 이후 관련 내용을 분석해 입찰 공고문, 입찰 제안 요청서(RFx), 품의서, 계약서 등 다양한 문서의 초안을 자동으로 생성한다. 담당자가 "다음 달까지 납품 가능한 사무용 의자 입찰 공고문 초안을 만들어줘"라고 입력하면 AI는 과거 유사 품목의 입찰 데이터를 검색해 조건이 비슷한 문서를 찾아낸다. 이후 예산 규모, 납기 일정, 자격 요건 등을 자동으로 반영해 새로운 초안을 완성한다. 이후 이 초안을 바탕으로 세부 항목만 수정하면 곧바로 결재 절차를 진행할 수 있다. 과거처럼 처음부터 문서를 새로 쓰거나 비슷한 문서를 일일이 찾아 복사·편집하는 과정이 사라지는 셈이다. 또한 사람이 자주 실수하기 쉬운 오타, 금액 입력 오류, 항목 누락 같은 문제도 예방해준다. 시스템이 자동으로 항목별 데이터를 불러와 검증하기 때문에 작성 과정에서 정보가 누락되거나 중복되는 경우를 줄일 수 있다. 예를 들어 예산 금액이 내부 결재 시스템의 승인 한도와 일치하지 않거나 협력사 등록번호가 최신 정보와 다를 경우 AI가 즉시 경고 메시지를 띄운다. 결과적으로 문서 작성 시간을 단축하고 업무 품질을 높일 수 있는 환경을 조성해 구매 담당자는 전략 수립이나 공급망 리스크 관리 등 보다 중요한 업무에 집중할 수 있다. 시장 동향까지 분석해 리스크 선제 대응 구매 업무는 시장의 흐름을 읽고 가격 변동과 공급 안정성, 협력사의 재무 상태를 종합적으로 판단해야 하는 전략적 의사결정 과정이다. 특히 글로벌 공급망이 불안정하고 원자재 가격이 급변하는 시대에는 시장 상황을 빠르고 정확하게 파악하는 역량이 기업 경쟁력의 핵심이 된다. 그러나 담당자가 모든 정보를 직접 확인하기에는 한계가 있다. 매일 쏟아지는 뉴스, 공시, 환율, 거래 데이터 등 방대한 자료를 일일이 검토하기에는 시간과 인력이 턱없이 부족하기 때문이다. 시장 분석 에이전트는 실시간으로 뉴스, 공시, 주가, 재무정보 등 외부 데이터를 자동 수집하고 분석해 시장의 흐름과 주요 기업의 동향을 한눈에 보여준다. 담당자가 "리튬 가격이 최근 어떻게 변했는지 알려줘"라고 입력하면 AI는 전 세계 주요 산업 뉴스와 거래소 데이터를 통합 분석해 최근 가격 추세와 변동 원인까지 요약한다. 또한 수집한 정보를 기반으로 잠재적인 리스크를 감지하고, 향후 영향을 미칠 수 있는 요인을 예측한다. 예를 들어 특정 원자재 가격이 급등 조짐을 보이면 관련 품목의 구매 계획을 조정하도록 경고를 띄우거나 대체 공급업체를 검토할 수 있도록 제안한다. 이처럼 AI가 시장의 움직임을 사전에 포착해 알려주면 기업은 공급망 혼란이나 원가 상승 같은 위험에 훨씬 빠르게 대응할 수 있다. AI끼리 소통하는 'A2A'로 자율형 공급망 완성 목표 엠로는 이번 AI 에이전트 기능을 단순한 보조 도구가 아닌 서로 연동되는 자율형 시스템으로 발전시키고 있다. 각 에이전트가 독립적으로 작동하는 것을 넘어 서로 협업해 복잡한 문제를 해결하는 에이전트 간 협업(A2A) 구조를 구축 중이다. 시장 분석 에이전트가 특정 품목의 가격 상승을 감지하면 문서 생성 에이전트가 자동으로 관련 품목의 재입찰 공고문을 작성하고 DB 검색 에이전트가 납기 우수 협력사를 추천하는 식이다. 각 AI 에이전트가 독립된 기능을 넘어 '팀'처럼 움직이면 공급망 관리(SCM)는 완전히 새로운 단계로 진화한다. 담당자가 모든 데이터를 직접 확인하거나 문서를 작성하지 않아도 시스템이 먼저 문제를 감지하고 해결 방향을 제시한다.이를 통해 AI가 공급망 을 스스로 운영하는 자율형 시스템을 구축한다는 방안이다. 엠로는 올해 안에 이 A2A 체계의 기술적 기반을 완성할 계획이다. 이를 위해 에이전트 간 실시간 데이터 교환 프로토콜, 상황 인식 기반 의사결정 모델, AI 협업 시나리오 설계 등을 병행하고 있다. 특히 복수의 에이전트가 동시에 작동할 때 충돌이나 오류가 발생하지 않도록 우선순위 판단 알고리즘과 피드백 제어 로직을 강화하는 것이 핵심이다. 한 엠로 관계자는 "에이전틱 ai가 미래 공급망의 핵심 기술 트렌드로 자리잡으면서 이를 도입해 공급망의 운영 효율성을 높이고자 하는 기업들의 수요도 증가하고 있다"며 "이 같은 흐름과 더불어 엠로의 에이전틱 ai 솔루션에 대한 기업 고객들의 관심과 문의도 빠르게 늘어나고 있으며 엠로의 또 하나의 핵심 성장 동력이 될 것으로 기대된다"고 말했다.

2025.10.21 10:58남혁우

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

국가AI컴퓨팅센터 3차 공모, 삼성SDS 컨소시엄 단독 응찰

車에서 업무보고, 잠자고…자율주행 시대, 언제쯤 올까

지마켓, 알리바바 AI 탑재...장승환 "다시 1등 되겠다"

사법리스크 벗은 카카오…AI·스테이블코인 ‘골든타임’ 잡는다

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.