AI 혁신의 두 얼굴…알파고는 환경 살리고 제미나이는 편향 키운다?
데이터로 보는 AI 혁신의 양면성: SDGs 79% 달성 지원과 35% 악화 효과 인공지능(AI)은 인간의 인지 과정을 모방하여 학습, 추론, 문제 해결, 의사 결정을 가능하게 하는 범용 기술이다. 고급 알고리즘, 방대한 데이터셋, 컴퓨팅 파워를 활용해 AI는 전례 없는 속도와 정확성으로 패턴을 식별하고, 통찰력을 생성하며, 복잡한 작업을 자동화할 수 있다. 이러한 능력은 AI를 강력한 혁신 동력으로 만들어 프로세스 최적화, 의사결정 강화, 완전히 새로운 비즈니스 모델을 가능하게 함으로써 산업을 변화시키고 있다. 이탈리아 바리 공과대학교 연구팀이 발표한 논문에 따르면 AI 혁신은 지속가능발전목표(SDGs)의 약 79%를 달성하는 데 도움을 줄 수 있다. 예를 들어, AI 혁신은 기후 변화 해결, 글로벌과 로컬 디자인 요구 사항 간의 긴장 관계, 사회적 격차 해소에 기여할 수 있다. 방대한 데이터셋을 분석하고, 작업을 자동화하며, 예측을 수행하는 AI의 능력은 지속가능한 가치를 창출한다. 그러나 AI의 광범위한 적용 가능성은 지속가능한 발전에 복잡성과 위험도 초래한다. 실제로 AI는 SDGs의 약 35%에 부정적인 영향을 미친다. 일자리 대체, 의사 결정의 윤리적 딜레마, 프라이버시 침해, 사회적 불평등 심화 등의 우려 때문이다. 지속가능한 가치 창출과 함께 AI는 지속가능한 가치 파괴의 원인이 될 수도 있다. 이처럼 지속가능한 발전에 대한 AI 혁신의 이중적 영향은 역설적 긴장 관계를 부각시킨다. 역설적 긴장은 겉보기에 모순되지만 상호 의존적인 두 가지 힘이 공존하고 시간이 지남에 따라 지속될 때 발생한다. AI 혁신의 맥락에서 이는 AI가 지속가능한 발전을 위한 긍정적 변화를 주도할 잠재력을 가지고 있지만, 동시에 지속가능한 발전을 향한 진전을 저해할 수 있는 위험도 내포한다는 의미이다. 상충하는 목표와 이해관계: 구글 알파고의 에너지 소비 40% 감소와 온실가스 48% 증가의 역설 지속가능한 발전은 고정된 목표나 이를 달성하기 위한 특정 수단으로 정의되지 않는 개념이다. 이러한 복잡성은 조직이 지속가능한 발전을 추구할 때 역설적 긴장을 유발한다. 지속가능한 가치 창출과 파괴 사이의 역설적 긴장에는 두 가지 주요 선행 요인이 있다. 첫째, 지속가능한 발전이라는 거시적 목표는 경제, 환경, 사회 영역에서 동시에 추구할 수 없는 여러 가지 바람직하지만 상충하는 하위 목표들을 포함한다. 예를 들어, AI를 활용한 산업 확장은 경제적 가치를 창출할 수 있지만 환경 가치를 파괴할 수 있다. 그 결과, 경제 성장과 환경 보존과 같은 상충하는 목표 간의 균형을 맞출 때 지속가능한 가치 창출과 파괴 사이에 역설적 긴장이 발생한다. 이를 보여주는 사례로 구글(Google)의 알파고(AlphaGo)가 있다. 2030년까지 탄소 배출 제로를 달성하기 위한 환경 목표를 추구하면서, 구글은 AI 알고리즘 알파고를 개발했다. 이 알고리즘은 가장 효율적인 냉각 인프라 구성에 대한 추천을 통해 데이터 센터의 에너지 소비를 40% 감소시켰다. 그러나 구글의 환경 목표는 새로운 제품을 생산하기 위한 AI 연구 개발을 선도하려는 회사의 경제적 목표와 긴장 관계에 있다. 실제로 데이터 센터에 필요한 상당한 전력과 AI 운영에 필수적인 서버 및 칩의 제조 및 운송과 관련된 탄소 발자국으로 인해 지난 5년 동안 구글의 온실가스 배출량이 48% 증가했다. 둘째, 지속가능한 발전 달성은 높은 수준의 모호성과 불확실성이 특징이다. 이러한 모호성과 불확실성은 지속가능한 발전이 다양한 관점과 이해관계를 가진 광범위한 이해관계자들(정부, 조직, 비정부기구, 지역사회 등)이 관여하는 복잡한 목표이기 때문에 발생한다. 결과적으로, 이러한 이해관계자들의 비전과 노력을 관리하고 통합해야 할 필요성은 지속가능한 가치 창출과 파괴 사이에 긴장을 유발한다. 한 이해관계자가 필요하거나 우선시하는 행동이 다른 이해관계자의 이익을 해칠 수 있기 때문이다. 이를 보여주는 사례로는 스타트업 클리어뷰 AI(Clearview AI)가 있다. 클리어뷰 AI는 인터넷에서 스크래핑한 이미지, 특히 페이스북, 인스타그램, 링크드인, 벤모와 같은 소셜 미디어 사이트에서 가져온 방대한 데이터베이스를 사용하는 고도로 정교한 안면 인식 및 검색 소프트웨어를 개발했다. 폭력과 범죄를 줄이는 SDG를 목표로, 전 세계 여러 경찰서는 범죄 활동에 관여한 개인을 식별하기 위해 클리어뷰 AI의 알고리즘을 사용했으며, 일부 사례에서는 긍정적인 결과를 얻었다. 그러나 클리어뷰 AI의 경제적 이익과 경찰의 사회적 목표는 알고리즘 데이터베이스에 비자발적으로 포함된 개인의 프라이버시 우려와 충돌했다. 예를 들어, 미국 시민자유연합(ACLU)은 동의 없이 이미지를 사용하여 프라이버시 권리를 침해한 것에 대해 클리어뷰 AI를 고소했고, 대규모 감시에 대한 우려를 제기했으며, 일부 정부는 이러한 프라이버시 문제로 소프트웨어를 조사하고 금지했다. 거대 도전과제 해결을 위한 AI의 두 가지 접근법: 나녹스닷에이아이의 질병 조기 감지와 노트코의 혁신적 식물성 식품 개발 AI 혁신 관리를 통한 지속가능한 가치 창출은 지속가능한 발전 달성을 제한하는 거대한 도전과제를 해결하는 것으로 구성된다. 구체적으로, AI 혁신 관리는 두 가지 주요 방식, 즉 거대 도전과제 감소와 거대 도전과제 완화를 통해 지속가능한 가치 창출을 가능하게 한다. 거대 도전과제 감소는 사회적, 환경적 또는 경제적 문제의 빈도를 줄이는 것을 목표로 하지만, 반드시 문제를 덜 해롭거나 위험하게 만드는 것은 아니다. 거대 도전과제 감소를 달성하기 위해 조직은 문제 공간에 작용하고 AI 혁신을 관리하여 비즈니스 자동화를 추진한다. 구체적으로, AI는 우수한 데이터 분석 기능을 통해 문제 정의를 개선하는 데 사용된다. 정보의 수집 및 처리를 통해 AI는 거대 도전과제 뒤에 있는 근본 원인을 더 효과적이고 효율적으로 인식할 수 있다. 문제 정의 자동화를 통해 거대 도전과제를 줄이는 관리의 주요 사례는 나녹스닷에이아이(Nanox.AI)이다. 나녹스닷에이아이는 다양한 질병의 감지 및 진단을 위한 고급 AI 알고리즘을 개발했다. 조기 및 정확한 진단을 더 접근 가능하게 함으로써 지속가능한 가치가 창출되어 고품질 진단 도구에 대한 전 세계적 접근이 가능해진다. 이를 위해 AI 혁신은 감지 및 진단 프로세스를 자동화하는 데 관리된다. 구체적으로, 나녹스닷에이아이의 알고리즘은 X-레이 및 컴퓨터 단층 촬영과 같은 의료 영상 데이터를 신속하게 분석하고, 영상 데이터의 미묘한 패턴을 식별하며, 폐암 및 심혈관 질환과 같은 중요한 질병의 조기 징후를 감지한다. 결국 AI 알고리즘은 의료 치료 결정을 안내할 수 있는 자동화된 진단 통찰력을 제공한다. 거대 도전과제 완화는 사회적, 환경적 또는 경제적 문제의 심각성이나 강도를 줄이는 데 초점을 맞추며, 구체적으로 문제를 덜 위험하거나 해롭게 만드는 것을 목표로 한다. 거대 도전과제 완화를 달성하기 위해 조직은 솔루션 공간에 작용하고 AI 혁신을 관리하여 기존 역량을 강화한다. 구체적으로, AI는 새로운 아이디어를 생성하거나 프로세스 개선을 위한 새로운 관점을 도입하여 문제에 대응하는 데 사용된다. 거대 도전과제 완화의 예로는 노트코(NotCo)의 사례가 있다. 노트코는 동물 제품 대체를 위한 식물 기반 대안을 개발하기 위해 'Giuseppe'라는 AI 기반 플랫폼을 활용하는 칠레의 식품 기술 회사이다. Giuseppe는 기계 학습 알고리즘을 사용하여 수천 가지 식물 기반 성분의 분자 구조를 분석하고, 동물 유래 식품의 맛, 질감 및 영양 프로필을 모방하는 조합을 식별한다. AI 혁신 덕분에 향상된 노트코의 역량을 통해 식물 기반 레시피의 반복 및 최적화가 가능해져 NotMilk, NotBurger 및 NotMayo와 같은 제품이 생산되었으며, 이는 전통적인 대응물과 매우 유사하다. 노트코는 문제 해결을 위해 기업의 역량을 증강하는 AI 혁신을 관리함으로써 지속가능한 가치를 창출한다. 실제로 이 회사는 가축 농업의 환경적 영향을 줄이는 동시에, 새로운 식품 대안을 통해 기존의 지속 불가능한 식품 생산 관행에 도전하고 있다. AI 혁신의 역설적 실패 사례: 크루즈의 자율주행 문제와 휴먼 AI 핀의 사용자 경험 장벽 AI 혁신 관리를 통한 지속가능한 가치 파괴는 기업이 거대 도전과제를 해결하기 위해 AI를 채택하지만, 사회적, 환경적 또는 경제적 문제를 해결하려는 노력이 새로운 문제를 만들 때 발생한다. 실제로 조직은 기존 문제를 해결하려는 시도에서 새로운 문제를 도입할 수 있어, 지속가능한 가치 창출이 지속가능한 가치 파괴로 바뀔 수 있다. 구체적으로, AI 혁신 관리는 두 가지 주요 방식으로 지속가능한 가치 파괴를 유발할 수 있다. 첫째, AI 혁신의 개발이나 배포 과정에서 예측할 수 없는 문제로 인해 거대 도전과제 해결에 실패할 수 있다. 둘째, AI 혁신 설계 단계에서 예측 가능한 문제로 인해 새로운 거대 도전과제가 도입될 수 있다. 거대 도전과제 해결 실패는 원래 문제를 해결하기 위해 구현된 AI 솔루션이 부주의하게 추가적이고 복잡한 문제를 만들 때 발생할 수 있다. 이는 지속가능한 발전 달성에 관여하는 이해관계자들이 거대 도전과제 해결과 관련된 결과를 예측할 수 없기 때문이다. 특히, 예상치 못한 결과는 AI 혁신의 개발과 배포에서 나타날 수 있다. AI 혁신 개발에서 예측할 수 없는 도전과제는 설계된 AI 솔루션 구축과 관련된 문제를 의미한다. 이 상황을 보여주는 사례는 제너럴 모터스가 소유한 자율주행차 회사인 크루즈(Cruise)이다. 크루즈는 인간 운전자에 의존하지 않는 안전하고, 효율적이며, 환경 친화적인 도시 교통 시스템이라는 거대 도전과제를 해결하기 위해 자율 로보택시를 배포하는 것을 목표로 했다. 그러나 이러한 중요한 도전과제를 해결하려는 시도에서, 크루즈는 의도치 않게 제품 개발에서 기술적 결함으로 인한 새로운 문제를 도입했다. 특히, 크루즈가 인간 운전자를 제거하여 도로 안전을 향상시키고자 했지만, 자율 차량은 복잡한 도시 환경에서 어려움을 겪어 교통에서 예상치 못한 정지, 공공 서비스(소방관, 경찰관 및 기타 응급 의료 인력)와의 간섭, 다른 차량 및 보행자와의 충돌로 이어졌다. 결과적으로 회사는 운영을 중단했다. AI 혁신 배포에서 예측할 수 없는 도전과제는 AI 솔루션 사용과 관련된 문제를 의미한다. 이 상황을 보여주는 특이한 사례는 휴먼(Humane)의 AI 핀(AI Pin)이다. 휴먼은 혁신적인 인간 중심 기술 창출에 초점을 맞춘 조직이다. 이 회사는 더 직관적이고 화면이 없는 인터페이스를 제공함으로써 전통적인 스마트폰과 웨어러블 기기를 대체하는 것을 목표로 한 AI 핀이라는 제품을 개발했다. 구체적으로, AI 핀은, 음성 명령과 제스처를 통해 통신, 내비게이션, 정보 접근과 같은 다양한 작업에서 사용자를 돕기 위해 AI를 사용했다. 휴먼의 AI 핀이 해결하고자 했던 거대 도전과제는 화면에 대한 의존도를 줄임으로써 기술과의 더 자연스러운 상호 작용을 촉진하는 것이었다. 그러나 AI 핀의 배포는 의도치 않게 인공 기술과 인간 지능 사이의 상호 작용에 관한 새로운 도전과제를 도입했다. 실제로 사용자들은 친숙한 스마트폰이나 웨어러블 기기 경험과 크게 다른 새로운 인터페이스에 적응하기 어려워했다. 그 결과, 학습 곡선의 어려움과 기존 기기에 비해 제한된 기능성이 주요 장애물이 되어 더 인간 중심적인 기술 경험을 만들겠다는 원래 목표를 복잡하게 만들었다. 기존 도전과제를 해결하는 동안 새로운 거대 도전과제의 도입은 거대 도전과제 해결에 관여하는 이해관계자들이 의도적으로 새로운 문제를 수용할 때 발생한다. 이러한 새로운 문제는 AI 혁신의 설계 단계에서 발생하며 예측 가능하지만, 원래 거대 도전과제를 해결하기 위한 더 넓은 전략의 일부로 간주되기 때문에 수용된다. 일반적으로, 이러한 예측 가능한 문제는 윤리적으로 의심스러운 방식으로 원자재를 채굴하거나 처리하는 것과 관련이 있으며, 이는 편향된 입력 데이터로 인해 손상된 최종 결과로 이어질 수 있다. 이는 대규모 언어 모델을 기반으로 한 구글의 생성형 AI 챗봇인 제미나이(Gemini)의 사례에서 명백하다. 다양성과 포용성을 촉진하기 위해 제미나이의 이미지 생성 도구는 글로벌 사용자 기반을 반영하도록 설계되었다. 실제로 AI 혁신 관리에서 가장 예측 가능한 문제 중 하나는 부분적인 시간적 커버리지나 지리적 분포를 가진 데이터로 AI 시스템을 훈련시키는 것이다. 이러한 유형의 훈련은 결과에 영향을 미치고 편향시킬 수 있으며, 예를 들어 더 불리한 이해관계자의 데이터를 AI 시스템에서 제외할 수 있다. 그러나 다양성 격차를 해결하기 위해 제미나이는 역사적으로 부정확한 맥락(예: 바이킹, 나치 군인, 건국의 아버지들)에서 유색인종과 여성의 이미지를 생성했고, 백인의 이미지를 생성하라는 프롬프트를 거부했다. 따라서 글로벌 다양성을 더 정확하게 반영하는 이미지를 만들려는 시도에서, 제미나이는 역사적으로 부정확한 출력으로 표현에 있어 편향에 빠졌다. 이러한 문제는 현재 AI 솔루션의 훈련 데이터와 알고리즘에 깊이 내재되어 있기 때문에 예측 가능했다. AI 관리의 미래 전략: 역설적 프레이밍을 통한 지속가능한 가치 창출 극대화 이 연구는 지속가능한 발전을 위해 AI 혁신을 관리하려는 광범위한 이해관계자들에게 귀중한 지침을 제공한다. AI 혁신이 거대 도전과제를 해결하기 위한 강력한 솔루션을 제공하지만, 동시에 부족하거나 새로운 문제를 도입할 수도 있음을 인식하는 것이 중요하다. 이러한 통찰은 관리자가 AI 혁신 관리에 내재된 모순적 긴장을 인식하고 수용하는 "역설적 프레이밍" 마인드셋을 육성하는 것의 중요성을 강조한다. AI의 유연성과 생성성은 이를 다양한 하위 목표와 이해관계자의 이익에 맞게 조정할 수 있게 하지만, 이러한 동일한 특성은 가치 파괴의 위험도 초래한다. 따라서 지속가능한 발전(예: 조직, 정부)에 관여하는 모든 이해관계자는 어떤 하위 목표에 우선순위를 둘 것인지, 그리고 지속가능성 목표를 추구하는 과정에서 다양한 이해관계를 어떻게 조정할 것인지를 사전에 신중하게 평가해야 한다. 또한 이 연구는 지속가능한 발전을 달성하기 위한 AI 혁신의 운영 관리에 대한 귀중한 통찰력을 제공한다. 특히, AI 혁신의 설계, 개발 및 배포 중에 발생할 수 있는 잠재적 도전과제를 예상하는 것의 중요성을 강조한다. 이러한 단계에서 예측 가능하고 예측 불가능한 문제 모두 지속가능한 가치 파괴로 이어질 수 있기 때문이다. AI가 지속가능한 가치를 창출하는 방법에 대한 지침도 제공한다. 한편으로, AI는 문제 정의를 자동화하여 잠재적으로 거대 도전과제 감소로 이어질 수 있다. 이를 달성하기 위해 조직은 기존 지식과 역량을 활용하여 문제 식별의 정확성을 개선할 수 있다. 다른 한편으로, AI는 복잡한 도전과제에 대한 솔루션을 찾는 조직의 능력을 향상시킬 수 있다. 이 경우, 조직은 문제 해결에서 AI의 잠재력을 충분히 활용하기 위해 지식 기반과 기술을 확장할 필요가 있다. FAQ Q: AI가 지속가능한 발전에 어떻게 긍정적인 영향을 미칠 수 있나요? A: AI는 의료 영상 분석을 통한 질병 조기 발견(나녹스닷에이아이 사례), 환경 친화적인 식물성 식품 개발(노트코 사례), 에너지 효율 최적화(구글 알파고 사례) 등 다양한 방식으로 지속가능한 발전에 기여할 수 있습니다. AI는 문제의 근본 원인을 자동으로 식별하거나 기업의 역량을 강화하여 사회적, 환경적, 경제적 도전과제를 감소시키거나 완화하는 데 도움을 줍니다. Q: AI 혁신이 지속가능한 발전에 부정적인 영향을 미치는 경우는 언제인가요? A: AI 혁신은 개발 과정에서 기술적 결함(크루즈의 자율주행차 사례), 배포 과정에서 사용자 적응 문제(휴먼 AI 핀 사례), 또는 설계 단계에서 편향된 데이터셋 사용(구글 제미나이 사례)과 같은 예측 가능하거나 불가능한 문제가 발생할 때 지속가능한 가치를 파괴할 수 있습니다. 이러한 경우 AI는 기존 문제 해결에 실패하거나 새로운 도전과제를 만들어낼 수 있습니다. Q: 기업이나 조직이 지속가능한 발전을 위해 AI를 효과적으로 관리하려면 어떻게 해야 하나요? A: 지속가능한 발전을 위한 효과적인 AI 관리는 먼저 해결하고자 하는 문제를 명확히 정의하고, AI 솔루션 도입 전에 잠재적 위험과 편익을 철저히 평가해야 합니다. '역설적 프레이밍' 접근법을 통해 AI의 생성성과 유연성이 가져올 수 있는 긍정적 결과와 부정적 영향을 모두 고려해야 합니다. 특히 다양한 이해관계자들의 관점을 통합하고, AI 기술이 정말 최선의 해결책인지, 또는 비디지털 접근법이 더 효과적일 수 있는지 신중하게 판단해야 합니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)