[유미's 픽] 李 'AI 고속도로'가 바꾼 판…정부 GPU 지원, 스타트업 실험에 불 붙였다
'인공지능(AI) 고속도로' 구축을 위해 이재명 정부가 추진해온 고성능 그래픽처리장치(GPU) 지원 사업이 국내 AI 스타트업 생태계 조성에 실질적인 역할을 했다는 평가가 나오고 있다. 대규모 연산 자원이 필수적인 파운데이션 모델 개발과 차세대 AI 구조 연구에서 초기 자본이 부족한 스타트업들도 정부 덕에 기술 실험을 지속할 수 있는 토대가 마련됐다는 분석이다. 10일 업계에 따르면 트릴리온랩스는 지난해 9월부터 4개월여간 정부로부터 엔비디아 H200 GPU 80장 규모의 고성능 연산 자원을 지원받아 차세대 AI 구조 연구를 진행했다. 이를 통해 초거대 모델 학습뿐 아니라 기존 트랜스포머 구조의 연산 효율을 개선하기 위한 신규 아키텍처 실험과 대규모 검증을 병행할 수 있는 환경을 구축했다. 이 연산 인프라는 구체적인 기술 성과로도 이어졌다. 트릴리온랩스는 지원받은 GPU 자원을 활용해 지난 달 디퓨전 기반 대규모 언어 모델 '트리다(Trida)-7B'를 개발했다. '트리다-7B'는 단어를 하나씩 순차적으로 생성하는 기존 방식에서 벗어나 문장 전체를 병렬로 생성하는 확산(diffusion) 기법을 언어 모델에 적용한 것이 특징이다. 또 이미지 생성에 주로 활용되던 디퓨전 기술을 언어 모델 구조에 이식함으로써 추론 속도와 연산 효율을 동시에 끌어올렸다. 이와 함께 지난해 10월에는 소규모 프록시 모델을 활용해 대형 언어모델의 성능을 사전에 예측하는 '알브릿지(rBridge)' 기법도 개발했다. 실제 대형 모델을 반복 실행하지 않고도 성능을 가늠할 수 있는 구조로, 연산 효율을 최대 700배 이상 개선하고 거대언어모델(LLM) 개발 비용을 대폭 절감할 수 있는 가능성을 제시했다. 대규모 모델 학습에 앞서 시행착오를 줄일 수 있다는 점에서 파운데이션 모델 개발 방식 자체를 바꿀 수 있는 접근으로 평가된다. 업계에선 이러한 성과가 단순한 개별 기술 개발을 넘어 AI 연구·개발의 비용과 시간, 자원 구조를 근본적으로 재설계했다는 점에 주목하고 있다. 대형 모델을 '더 많이 돌리는 방식'이 아니라 '덜 돌리고도 더 많이 검증하는 방식'으로 전환할 수 있는 가능성을 보여줬다는 점에서다. 이는 스타트업이 제한된 자원 환경에서도 고난도 연구를 지속할 수 있는 실질적인 해법으로 꼽힌다. 이 같은 결과 뒤에는 과학기술정보통신부와 정보통신산업진흥원(NIPA)의 지원 방식도 한 몫 했다는 평가다. 앞서 정부는 삼성SDS·KT클라우드·엘리스클라우드를 '고성능컴퓨팅 지원사업' 공급사로 선정한 후 지난해 9월부터 12월까지 국내 민간 중소·중견·스타트업 기업과 대학·병원·연구기관 등에 총 1천 장의 GPU를 지원했다. 당시 삼성SDS와 엘리스그룹은 각각 H100 GPU 200장과 400장을, KT클라우드는 H200 GPU 400장 수준을 공급했다. 당시 정부에선 그간 단순히 GPU를 일괄 배분하는 데 그치지 않고 연구 단계와 실험 난이도에 맞춰 자원 활용 계획을 조정하며 과제 수행 전반을 관리했다. 또 개발 과정에서 발생하는 변수에 따라 지원 방식을 유연하게 조정하고 현장의 피드백을 즉각 반영하는 방식으로 연구 완성도를 높였다. 이 과정에서 정부는 단순한 예산 집행 기관을 넘어 프로젝트의 '내비게이터' 역할을 수행하며 실질적인 성과를 견인했다는 평가를 받았다. 또 단순히 규모가 큰 기업이 아닌, 독보적인 기술력과 성장 잠재력을 보유한 스타트업을 정밀하게 선별해 과제 수행 기업으로 낙점하려는 노력이 참여 기업으로부터 큰 호응을 얻었다. 업계 관계자는 "정부가 행정적 관리에 그치지 않고 모델 출시 과정에서 발생하는 변수에 맞춰 지원 체계를 업데이트했다"며 "현장의 목소리를 즉각 반영해 모델의 완성도를 높이는 실질적인 가이드도 제공해줬다"고 말했다.이어 "무한정한 지원 대신, 한정된 예산 내에서 최선의 결과물을 낼 수 있도록 목표 난이도를 정교하게 조정해준 점도 인상 깊었다"며 "이를 통해 자원의 낭비를 막고 효율적인 사용 위에 최대의 성과를 이끌어냈다"고 덧붙였다. 트릴리온랩스 역시 정부 인프라 지원을 발판 삼아 국내에서 시도된 적 없는 기술 실험을 진행할 수 있었다고 평가했다. 독자적인 모델 구조와 학습 기법을 실제 대규모 환경에서 반복 검증하며 스타트업이 겪는 컴퓨팅 파워 한계를 일정 부분 극복할 수 있었다는 것이다. 신재민 트릴리온랩스 대표는 "정부의 GPU 지원 사업이 단순한 인프라 제공을 넘어 기술 기업의 도전 방식을 바꿨다"며 "자본력보다 기술적 실험과 구조 혁신에 집중할 수 있는 조건을 마련했다는 점에서 국내 AI 생태계에 미친 영향이 적지 않다"고 강조했다. 이 같은 분위기 속에 정부가 추가경정예산으로 확보한 고성능 GPU 자원으로 어떤 AI 연구 기관, 기업들이 수혜를 받을지 관심이 쏠린다. 정부는 총 1만3천136장 규모의 GPU를 최대 12개월까지 이용할 수 있도록 한 사업을 공고한 후 지난 달 28일 마감했다. 이번에는 학계·연구기관은 무상으로, 산업계는 자부담 방식으로 지원받는 구조다. 구축·운영은 민간 클라우드 3사가 맡는다. 네이버클라우드는 세종 데이터센터에 H200 2296장을 안착시켰고, 카카오는 안산 데이터센터에 B200 2040장을 클러스터 형태로 구축했다. NHN클라우드는 3월께 B200 6120장을 갖출 계획이다. 정부는 이 사업에 예산 1조4590억원을 투입했다. 이번 프로젝트는 과제별로 H200, B200 중 하나만 신청할 수 있다. 신청은 서버 묶음 기준으로 이뤄진다. H200은 최소 서버 2대(16장)에서 최대 서버 32대(256장)까지, B200은 최소 서버 2대(16장)에서 최대 서버 16대(128장)까지다. 조만간 선정될 수요 기업은 원격 접속 방식인 GPUaaS(GPU as a Service)로 고성능 컴퓨팅 자원을 손쉽게 이용할 수 있다. 정부가 고수한 '1사 1지원' 원칙을 사실상 폐기해 중복 신청 문턱이 낮아진 점도 눈에 띈다. 이 일로 동일 기업 내 복수 부서도 각각 GPU 자원을 확보할 수 있게 됐다. 다만 연구 인력의 독립성과 과제 주제는 차별돼야 한다. 여기에 정부는 지난해 확보한 1만3000장에 이어 올해는 B200 기준 1만5000장을 투입해 지원 범위를 넓힐 계획이다. 이를 구축하기 위해 총 2조831억원(출연금)이 투입될 이번 사업 공고는 이달 중 나올 예정으로, 과기정통부 단일 사업 기준 최대 규모 프로젝트로 평가된다. 또 단일 사업자가 전체 물량을 감당하기 어려운 만큼, 사업 구조 자체를 어떻게 설계할지가 관건이 될 전망이다. 과기정통부 관계자는 "주요 클라우드 서비스 제공업체(CSP)들과 면담한 결과 데이터센터 상면(물리적 수용 공간) 확보는 어느 정도 가능한 수준으로 파악됐다"며 "최신 GPU를 확보하는 것이 유리한 만큼 엔비디아 차세대 AI 칩 '베라루빈'을 업체들이 제안할 경우 가점을 줄 지에 대한 방안에 대해선 고민 중"이라고 밝혔다. 업계에선 정부의 고성능 연산 인프라 지원이 일회성 사업에 그치지 않고 파운데이션 모델·신규 아키텍처·산업 특화 AI로 이어지는 연속적인 연구 생태계로 정착할 수 있을지가 향후 사업 성공 여부의 관건이 될 것이라고 전망했다. 업계 관계자는 "특히 연산 자원 접근성이 기술 경쟁력으로 직결되는 AI 산업 특성을 감안할 때 정부의 GPU 지원 정책이 국내 스타트업들의 글로벌 도전 여력을 좌우하는 핵심 변수로 작용할 것으로 예상된다"며 "단기 성과보다 중장기 연구 축적이 가능한 구조로 설계될 경우 정부 지원이 국내 AI 산업의 체질을 바꾸는 계기가 될 수 있다"고 말했다.