• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 인터뷰
  • 인사•부음
  • 글로벌뉴스
창간특집
인공지능
배터리
컨퍼런스
칼럼•연재
포토•영상

ZDNet 검색 페이지

'AI 언어 모델'통합검색 결과 입니다. (92건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

MIT 박사·삼성 최연소 임원이 AI 기업 '투플랫폼' 세운 이유는

"인간과 인공지능(AI) 간의 상호작용을 혁신하고자 하는 마음이 저를 이끌었습니다. 둘 사이의 관계를 새롭게 정의해 인류 모두를 위한 AI를 실현하는 것이 우리의 최종 목표입니다. 이를 위해 우리는 비용 효율적이면서도 다문화 지향적인 '듀얼 트랜스포머 아키텍처' 기술을 적극 활용하고 있습니다." 프라나브 미스트리 투플랫폼 대표는 최근 기자와 만나 회사의 AI 기술 성과와 향후 계획을 이같이 밝혔다. 미스트리 대표는 지난 2012년 MIT에서 박사 과정을 밟던 중 삼성전자에 입사해 최연소 임원이 된 것으로 국내에 널리 알려진 바 있다. 그 이전에는 구글, 마이크로소프트, 나사(NASA) 등에서 근무하며 폭넓은 경험을 쌓았으며 삼성전자 입사 후에는 최연소 상무·전무로 초고속 승진해 최첨단 기술 프로젝트를 이끌었다. 그가 지난 2021년 삼성전자를 나온 후 세운 기업이 바로 투플랫폼이다. 인간과 AI의 관계를 재정의하고자 하는 목표를 가진 테크 스타트업으로서, 투플랫폼은 자체 거대언어모델(LLM)인 '수트라(Sutra)'를 개발해 다국어 지원·현지화에 특화된 솔루션을 제공한다. 미스트리 대표는 "'수트라'의 설계 철학은 전 세계 모든 다른 언어를 영어만큼이나 효율적으로 처리하는 것"이라며 "기존 모델들과 달리 진정한 의미에서 현지화된 경험을 대규모 사용자들에게 제공하는 것이 목표"라고 강조했다. 미스트리 대표에 따르면 오픈AI의 '챗GPT'와 같은 타사 LLM 역시 다양한 언어를 지원하고 있지만 '수트라'는 보다 비용 효율적이며 현지화에 특화돼 있다. 그는 "'수트라'는 기존 모델들보다 영어 이외의 언어에 최대 8배까지 비용 효율적"이라며 "이는 에너지 자원이 제한된 비영어권 시장에서 AI 도입이 확대되는 데 가장 중요한 요소"라고 주장했다. 이러한 비용 효율성을 가능하게 하는 것은 투플랫폼에서 개발한 '듀얼 트랜스포머 아키텍처' 기술 덕분이다. 인간의 뇌 작동 방식을 모방한 기술로서, '듀얼 트랜스포머'는 LLM이 한 언어에서 배운 지식과 개념을 다른 언어에도 그대로 적용할 수 있게 한다. 미스트리 대표는 "우리가 새로운 언어를 배울 때 굳이 이미 알고 있는 개념을 다시 배우지 않는다"며 "수트라 LLM 역시 이와 같이 이미 알고 있는 개념을 다른 언어에서 추가로 학습할 필요가 없게 설계됐다"고 설명했다. 이러한 기술 개발은 단순히 비용 효율성뿐만 아니라 문화적 다양성에도 도움을 준다. 실제로 '수트라'는 인도의 여러 방언과 혼합 언어까지 동시적으로 지원하고 있다. 미스트리 대표는 "우리의 주요 시장 중 하나인 인도는 각 지역들끼리 서로 포르투갈과 아르메니아 사이만큼이나 거대한 문화·언어적 차이가 있다"며 "'수트라'는 이와 같은 다양한 언어·문화차이를 극복하고 서비스를 제공할 수 있다"고 강조했다. 이러한 '수트라'의 장점은 최근 대두되는 '소버린 AI' 개념과도 연결된다. 실제로 지난 2022년부터 각국의 AI 주권을 위해 소버린 AI 개념을 강조해 왔던 네이버도 자회사 스노우를 통해 투플랫폼에 5백만 달러(약 60억원)를 투자한 바 있다. 상용화 역시 활발하다. 투플랫폼은 인도의 대표 통신기업인 릴라이언스 지오(Reliance Jio)와 협력해 '수트라'를 공급 중이다. 최근에는 국내 유수의 대기업들과도 사업 계약을 추진하고 있는 것으로 알려졌다. 투플랫폼의 철학은 실제 사업 행보에서도 드러난다. 본사가 위치한 실리콘밸리 외에는 인도 뭄바이와 서울에 사무실을 두고 있기 때문이다. 이는 대부분의 다국적 기업들이 세금 혜택을 목적으로 주로 싱가포르·두바이에 해외 사무소를 두는 것과는 차별화됐다. 미스트리 대표는 "지사를 세울 때 최우선 기준은 우리 기술 모델에 걸맞는 현지 인재를 확보하고 시장을 이해하는 것"이라며 "고객들과 가까이서 소통하며 현지 시장에 맞는 제품을 개발하고 언어 문제를 해결하는 '글로컬(Glocal)' 기업이 되기 위한 전략"이라고 밝혔다. 미스트리 대표에 따르면 투플랫폼의 장기 목표는 인간과 AI의 관계에 대한 재정의다. 실제로 투플랫폼의 슬로건은 '나(I)와 AI'로, 인간과 기계의 상호작용을 새로운 단계로 발전시키는 것이다. 이를 위해 텍스트나 음성을 넘어 몰입형 경험을 선도하는 것이 주요 전략이다. 실제로 회사 제품들도 이를 반영하고 있다. 올해 1월에는 AI 소셜앱 '재피(ZAPPY)'를 국내에 정식 출시했으며 출시 2개월 만에 25만 명이 넘는 유저를 확보했다. 인간 친구뿐만 아니라 AI 캐릭터들과도 함께 대화하는 기능을 통해 새로운 형태의 커뮤니케이션을 가능케 했다. 기술 혁신의 중요성을 강조하는 동시에 미스트리 대표는 책임 있는 AI 개발의 중요성에 대해서도 역설했다. 실제로 투플랫폼은 군사 분야에서의 책임 있는 AI 활용을 위해 대한민국 외교부가 전 세계 국가들을 대상으로 지난 9~10일 개최한 'REAIM' 정상회의에 AI 스타트업으로서는 유일하게 초청된 바 있다. 10일 개최된 주요 세션 패널로서 미스트리 대표는 스웜(Swarm)과 같은 최신 AI 기술들의 발전이 국제 안보에 미칠 수 있는 잠재적 악영향에 대해 발표했다. 스웜 AI는 작은 AI 에이전트들이 협력해 더 큰 지능을 발휘하는 기술로, 통제하기 어려운 집단 지능을 형성해 예측 불가능한 행동을 초래할 수 있다. 미스트리 대표는 패널에서 "새로운 AI들의 기술적 특성과 잠재적 악영향을 고려해야 한다"며 "비단 스웜 만이 아니라 앞으로 기하급수적으로 발전할 기술들의 잠재적 악용을 지속적으로 방지하고 책임감 있게 활용하는 것이 매우 중요하다"고 역설했다. 투플랫폼이 유일하게 행사에 초청된 AI 기업인 이유를 묻는 기자의 질문에 그는 "책임·효율성의 균형을 맞추는 동시에 인간과 기술 모두에 집중해 온 경영 철학이 주효했던 것 같다"며 "끊임없이 발전하는 AI가 의도치 않게 발생시킬 수 있는 악영향에 끊임없이 대비하고 인간을 위한 기술을 개발하겠다"고 밝혔다. 그러면서 "우리는 디즈니처럼 상상력과 기술로 세상을 변화시키는 회사가 되고자 한다"며 "기술이 일상에 스며들어 경계가 사라지는 세상을 만들고 싶다"고 강조했다.

2024.09.18 10:36조이환

[써보고서] "정말 미쳤다"…오픈AI 新모델 'o1' 추론 능력에 '감탄'

"다른 인공지능(AI)에게 물어봐도 한 번도 맞힌 적 없는 문제들을 한글로 한 번에 해결하네. 이 모델은 정말 미쳤다." 13일 공개된 오픈AI의 인공지능(AI) 모델 'o1'에 대해 국내 관련 커뮤니티에서는 찬사가 이어졌다. 사용자들이 모델 성능을 비교하기 위해 넣었던 난해한 논리학 문제와 수학 문제들을 직접 생각하고 모두 해결했기 때문이다. 론칭 당일 새벽부터 모니터링하던 기자도 직접 다양한 테스트를 진행해 봤다. 추론과 수학 논리에 특화된 AI…뛰어난 문제 해결 능력 '눈길' 우선 간단한 실험으로 단어 내 특정 알파벳 개수를 세는 테스트를 진행했다. 기존의 거대언어모델(LLM) 대다수는 숫자 세기에 약점을 보였지만 'o1'은 'strawberry'에 포함된 'r'의 개수를 묻자 2초 만에 정확히 3개라고 대답했다. 논리학 문제에서도 뛰어난 성능을 보였다. 멘사 등에서 사용하는 '아이의 나이 맞추기' 문제를 제시하자 'o1'은 정확한 답을 도출했다. 문제는 러시아 수학자 이반과 이고르의 대화로, 아들들의 나이의 곱이 36이고 합이 오늘 날짜라는 힌트를 기반으로 아들들의 나이를 추론하는 것이었다. 기존 GPT-4 모델은 오답을 제시했지만 'o1'은 아들들의 나이가 1, 6, 6이며 오늘 날짜가 13일임을 정확히 맞혔다. 또 복잡한 추리 문제가 포함된 도난 사건에서도 'o1'은 정확한 범인을 지목했다. 여러 용의자의 진술과 거짓말이 섞인 상황에서 '찰리'와 '존무드'가 범인임을 밝혀내며 논리적 추론 능력을 입증했다. 일상에서 사용하지 않는 논리학 문제 대신 복잡한 문장의 해석 능력도 확인해 봤다. 한때 국내에서 밈이 됐던 "나 아는 사람 강다니엘 닮은 이모가 다시 보게 되는 게 다시 그때처럼 안 닮게 엄마 보면 느껴지는 걸 수도 있는 거임? 엄마도?"라는 난해한 비문을 제시하자 'o1'은 그럴듯한 해석을 내놓았다. 'o1'은 화자의 말을 "강다니엘을 닮은 이모를 다시 보았을 때 예전만큼 닮았다고 느끼지 못했다"며 "이런 느낌이 어머니를 본 후에 생긴 것일 수 있는데, 어머니도 같은 생각을 하시는지 궁금하다"는 뜻으로 해석했다. 이처럼 'o1'은 복잡한 문장의 의미를 자연스럽게 이해하고 해석하는 능력을 보여줬다. 막대한 토큰 사용 추정…응답 시간과 사용 횟수 제한은 아쉬워 일부 아쉬운 부분도 있었다. 간단한 질문에도 응답 시간이 10초 이상 소요되는 경우가 있어 실시간 활용에 제약이 있었다. 국내 커뮤니티 유저 한 유저는 '고맙다'는 답을 듣기 위해 10초가 소요됐다는 비판을 제기한 바 있다. 또 일주일에 30회로 제한된 사용 횟수는 실제 업무나 연구에 활용하기에는 부족한 면이 있었다. 실제로 기자가 15번 이상 'o1'을 사용하자마자 경고창이 떴다. "미리 보기의 응답이 15개 남았습니다. 한도에 도달하면 2024년 9월 20일로 재설정될 때까지 응답이 다른 모델로 전환됩니다." 마지막으로 일반 사용자들이 수학이나 복잡한 논리 문제를 자주 접하지 않는다는 점에서 이러한 고급 기능이 얼마나 대중적으로 활용될지는 지켜봐야 할 부분이다. 단 프로그래머나 수학 연구자 등 전문 분야에서는 큰 도움이 될 것으로 예상된다. 'o1' 출시로 AI의 추론 능력이 한 단계 도약한 것은 분명하다. 향후 응답 속도 개선과 사용 제한 완화가 이루어진다면 다양한 분야에서 혁신적인 활용이 기대된다. 특히 수학적 계산과 논리적 추론이 필요한 분야에서 큰 변화를 가져올 것으로 보인다. 샘 알트만 오픈AI 대표는 'o1'의 출시에 대해 "새로운 패러다임의 시작"이라며 "AI는 이제 다양한 목적으로 복잡한 사고를 할 수 있게 됐다"고 평가했다.

2024.09.13 11:01조이환

[기고] 기업 데이터 분석의 새로운 패러다임, 생성형 BI

그야말로 AI열풍이다. 기업에서는 업무 전반에 인공지능(AI) 특히, 대규모 언어모델(LLM)을 적용하거나 새로운 비즈니스 기회를 창출하는 시도가 활발하게 이루어지고 있다. LLM은 언어 모델이기 때문에 주로 비정형 텍스트 문서를 기반으로 AI 활용을 모색하고 있다. LLM의 단점을 보완하기 위해 검색 증강 생성(RAG) 아키텍처를 적용하는 경우도 많다. 다만, 기업의 중요한 정보는 비정형(unstructured) 문서에만 존재하는 것이 아니라, 관계형 데이터베이스(RDB) 같은 데이터 저장소에 정형(structured) 형태로도 존재한다. RDB 데이터의 LLM 적용을 위해서 RDB 데이터를 문서형태로 변환하는 것은 비효율적이다. RDB 데이터는 SQL을 통해 질의하고 결과를 얻는 것이 적절하므로, LLM이 SQL을 생성하도록 하는 것이 바람직하다. 이 과정은 자연어 기반 질의(NL2SQL) 영역에 속하며, LLM이 자연어 질의를 SQL로 변환할 수 있다. LLM은 자연어 질의에 대한 답변을 비롯해 SQL 작성에도 비교적 높은 수준의 성능을 보인다. 다만, LLM은 조직의 내부 DB 정보를 학습하지 않았으므로 RAG 방식으로 기업 내 DB 정보를 LLM 프롬프트에 질의와 함께 전달해 주면, 비교적 정확한 SQL을 생성할 수 있다. RDB에 데이터를 저장하고 분석하는 일은 전통적인 비즈니스 인텔리전스(BI) 영역에 속한다. 데이터 분석을 목적으로 한 NL2SQL은 BI 영역에 생성형AI를 적용한 것이므로 '생성형 BI'라 부를 수 있다. 글로벌 리서치 기관인 가트너에서도 생성형 BI라는 용어를 사용하기 시작했으며, 비정형 텍스트를 대상으로 생성형AI가 활발히 적용된 만큼, 정형 데이터를 대상으로 한 생성형 BI 영역도 급속도로 성장할 것으로 예상된다. 하지만 LLM이 생성하는 SQL이 항상 정확한 것은 아니다. 단순한 DB 모델에서는 LLM의 정확도가 높지만, 복잡한 DB 모델에서는 성능이 떨어질 수 있다. 정확도를 높이기 위해 DB 정보에 대한 설명을 풍부하게 만들어주면 성능이 향상될 수 있으나, 여전히 100% 만족하기는 어렵다. 그 이유는 기업의 복잡한 업무가 DB 테이블 설계에 반영되어 있을 뿐만 아니라, DB 설계자의 설계 스타일도 반영되기 때문이다. 이러한 정보를 모두 서술하기도 어렵고, LLM에 전달해도 이해하지 못해 잘못된 SQL을 생성할 가능성이 크다. 또 다른 문제점은 BI 데이터 분석이 주로 수치화된 정보를 다룬다는 점이다. 예를 들어, 판매수량, 판매금액, 생산수량, 불량수량 등을 집계하는 경우가 많은데, 잘못 생성된 SQL의 결과값이 정답 SQL의 결과값과 조금만 다르다면, 예를 들어 연간 매출액이 10조인데 9.9조나 10.1조의 결과가 나왔다면, 사용자가 이를 오답으로 인지하기 어렵다. 텍스트 문서를 기반으로 한 생성형 AI의 답변이 거짓일 경우, 예를 들어 "세종대왕이 아이패드를 던졌다"는 식의 거짓말은 문장의 특성상 사용자가 쉽게 알아차릴 수 있지만, 숫자로 된 답변은 큰 차이가 아니라면 잘못된 결과임을 인지하기 어렵다. 이러한 Gen BI의 한계를 극복하는 방법 중 하나는 온라인 분석 처리(OLAP)를 활용하는 것이다. OLAP은 SQL을 모르는 사용자도 DB 데이터를 분석할 수 있게 해주는 기술이다. 사용자가 OLAP솔루션에서 OLAP리포트를 작성하고 실행 버튼을 누르면, OLAP엔진이 SQL을 자동 생성해주고 실행 결과를 리포트에 반환해준다. 마치 엑셀의 피봇테이블 기능으로 엑셀의 데이터를 분석하는 것과 유사하다. OLAP이 쿼리 생성자로서의 역할을 수행하는 셈이다. OLAP은 수십 년에 걸쳐 상용화된 기술로, OLAP의 쿼리는 항상 안전하고 정확하다. OLAP 메타데이터를 설정할 때 비즈니스 메타데이터와 기술 메타데이터의 매핑 및 테이블 간의 조인 관계를 미리 설정하기 때문에, 설정되지 않은 조합의 SQL은 생성되지 않는다. OLAP 기반의 Gen BI에서는 LLM이 OLAP 리포트 항목을 선택할 수 있도록, RAG 방식에서 DB 정보 대신 OLAP 메타 정보를 전달하면 된다. 이후 LLM이 OLAP 리포트를 생성하면, OLAP 엔진을 통해 정확한 SQL을 생성하고 실행할 수 있다. OLAP 기반 생성형 BI의 또 다른 장점은 NL2SQL 방식의 Gen BI보다 오류 식별이 용이하다는 점이다. 질의에서 바로 SQL이 생성되는 것이 아니라, 중간 단계에서 OLAP 리포트 항목(관점, 측정값, 필터 조건 등)이 만들어지므로, 사용자가 이를 보고 LLM이 올바른 답을 도출했는지 쉽게 검증할 수 있다. 많은 OLAP 기반 BI 솔루션과 분석 솔루션들이 Gen BI 기능과 서비스를 출시하고 있다. 아직 Gen BI는 초기 단계이지만, 정확도를 높이기 위한 RAG 적용이나 외부 LLM 활용에 따른 데이터 보안 문제 등이 점차 개선될 것으로 보인다. 예를 들어 마이크로스트레티지와 같은 OLAP 기반 BI 솔루션 제공업체들은 기존 BI의 장점에 AI를 결합한 솔루션을 제공하고 있다. NL2SQL 기반의 생성형 BI도 SQL을 아는 개발자나 분석가의 생산성을 높이는 초도 Query 작성용으로 활용한다면 가치를 발휘할 것이다. 그러나 SQL을 모르는 일반 사용자에게는 OLAP 기반의 생성형 BI가 더 유리할 것이다. 언제까지? 아마도 LLM이 DB 설계자의 성향까지 극복해 정확한 NL2SQL을 생성할 때까지일 것이다. 챗GPT의 등장과 빠른 업그레이드처럼, 그 시기는 예상보다 빨리 올 수도 있다.

2024.09.13 10:29류진수

업스테이지 "산업 특화 AI로 시장 공략…매출 급증했다"

"생성형 인공지능(AI)을 통해 돈 버는 기업으로 자리매김 했습니다. 올해 1분기 매출 100억원을 기록했습니다. 단순히 AI 모델 개발에만 그치지 않고 국내 금융·법률·의료·커머스 기업들에 맞춤형 거대언어모델(LLM)을 제공했기 때문입니다. 이런 사업 방향으로 국내뿐 아니라 미국 등 해외 시장에서도 본격 활약하겠습니다." 김자현 업스테이지 LLM 사업개발 리드는 최근 기자와 만나 자사 LLM '솔라'를 통한 비즈니스 성과와 향후 계획을 이같이 밝혔다. 김 리드는 업스테이지가 '솔라'를 통해 각 산업 도메인 업무에 특화된 솔루션을 제공해 왔다고 설명했다. 현재 업스테이지는 신한투자증권, 케이뱅크 등 금융회사에 파이낸스 LLM을 공급하고 있으며 법률상담 플랫폼 로톡을 운영하는 로앤컴퍼니에 법률 특화 솔루션을 제공하고 있다. 김 리드는 "고객이 요구하는 문제를 해결하기 위해 맞춤형 솔루션을 제공한 점이 주효했다"며 "이를 통해 고객사에 실질적인 가치를 제공하고 성공에 일조할 수 있었다"고 강조했다. 업스테이지는 금융과 법률뿐만 아니라 의료와 커머스 분야에서도 활약하고 있다. 의료 분야에서는 카카오 헬스케어와 손잡고 대학병원 3곳을 대상으로 AI 솔루션 제공용 메디컬 특화 모델을 제공한다. 커머스 분야에서는 커넥트웨이브와 협력해 AI 기반 맞춤형 상품 검색 및 추천 서비스를 구축했다. 현재 업스테이지는 생성형 AI 비즈니스로 올해 1분기 100억원 넘는 매출을 기록했다. 이는 지난해 회사 전체 매출보다 높은 수치다. 김 리드는 "업스테이지가 창업 원년부터 매출 창출을 목표로 사업을 진행했다"며 "최근 이례적인 성과를 얻은 셈"이라고 말했다. 이어 "생성형 AI 기업이 실제 매출을 올린 사례가 적다"며 "이런 상황에서 업스테이지 성과가 더 주목받고 있다"고 덧붙였다. 매출 성과 비결을 자체 개발한 LLM '솔라'와 파인튜닝 기술로 꼽았다. 파인튜닝은 LLM을 특정 작업이나 도메인에 맞게 학습 시키는 기술로, 업스테이지는 '솔라'를 특정 도메인에 맞게 파인튜닝해 고객사에 제공했다. 김 리드는 '솔라'가 번역·수학 풀이 등 특정 작업에서 오픈AI 'GPT-4' 같은 타사 LLM보다 뛰어난 성능을 보인다고 주장했다. 김 리드는 "파인튜닝 전문사인 프레디베이스(Predibase)와 협력해 '솔라' 성능 테스트를 500번 이상 실시했다"며 "'솔라'가 특정 도메인에선 빅테크 모델보다 우수하단 점을 정량적으로 입증했다"고 강조했다. 美·日 등 해외 진출 가속…"시장 수요에 맞는 전략 채택" 업스테이지는 글로벌 시장 진출도 빠르게 추진하고 있다. 현재 미국과 일본, 동남아시아 등 아시아태평양 지역으로 사업을 확장하며 국가 특성에 맞는 전략을 구사하고 있다. 김 리드는 "미국 시장에서는 온프레미스(On-premise) 수요를 주로 공략하고 있다"며 "생성형 AI 보안이나 비용 효율성 측면에서 온프레미스를 선호하는 기업 수요가 늘어났기 때문"이라고 밝혔다. 또 아태지역에서는 각국 언어와 도메인에 맞는 모델을 개발 중이다. 최근 '솔라' 일본어 버전을 개발 개발해 일본 시장 문을 두드리고 있다. 특히 '솔라' 일본어 버전은 니케이 아시아가 발표한 일본어 모델 벤치마크 테스트에서 상위 20위권에 포함된 것으로 알려졌다. 이중 유일한 한국산 모델이다. 김 리드는 "아태지역에서는 대규모 LLM을 자체 구축하기 어려운 경우가 많다"며 "한국서 입증된 경쟁력 있는 AI 솔루션을 통해 향후 베트남, 인도네시아, 아랍에미리트 등 다양한 국가에 언어 특화 모델을 제공할 계획"이라고 밝혔다. 김 리드는 업스테이지가 '솔라' 영어 모델을 공개해 AI 생태계 강화에 기여하고 있다는 점도 설명했다. 이를 통해 피드백과 사용 사례를 추가 확보하기 위함이다. 김 리드는 "오픈소스를 통해 개발자와 기업들이 업스테이지 모델을 활용하면 더 많은 애플리케이션과 솔루션이 나올 것"이라며 "이는 AI 공동 발전을 도모하고 AI 경쟁력을 알리는 좋은 기회"라고 강조했다. 같은 목적으로 업스테이지는 한국어 모델 성능을 평가하는 자체 리더보드를 운영 중이다. 리더보드 시즌 1에서는 LLM 기본 능력인 자연어 이해나 상식 등의 지표를 주로 사용했다. 최근에는 평가를 시즌 2로 업데이트 해 한국어 모델 성능뿐만 아니라 문화와 규범을 이해하는 능력까지 포함시켰다. 김 리드는 "평가 세트를 공개하지 않음으로써 모델들이 평가 세트를 학습하는 문제를 방지했다"며 "이로써 공정하고 정확한 성능 평가가 가능해졌다"고 밝혔다. 그러면서 "오픈소스와 리더보드 등을 통해 국내 AI 생태계가 함께 상생하고 발전하길 바란다"며 "이는 업스테이지도 한층 더 성장할 수 있는 기회일 것"이라고 강조했다.

2024.09.08 09:32조이환

獨 알레프알파, 외국어·공학 전문 LLM '파리아' 출시

독일 인공지능(AI) 기업 알레프알파가 다국어와 특정 도메인에 최적화된 생성형 AI 모델을 오픈소스 형태로 공개했다. 알레프알파 거대언어모델(LLM) '파리아-1-LLM'을 출시했다고 27일 밝혔다. 매개변수 70억개로 이뤄졌다. '파리아-1-LLM'은 독일어·프랑스어·스페인어 등 다양한 언어에서 최적화된 기능을 제공하며 자동차와 공학 분야에 특화된 것으로 알려졌다. 현재 비상업적 연구 및 교육 용도로만 활용될 수 있다. 이 모델은 유럽연합(EU) 및 각 회원국의 저작권과 데이터 프라이버시 법규를 준수하며 제작 됐다. 알레프알파는 "엄선된 데이터를 사용해 모델을 훈련했다"고 설명했다. 알레프알파는 이번 모델 투명성과 안전성을 특히 신경썼다고 강조했다. 부적절한 답변을 걸러내는 데이터셋을 활용해 학습시키는 등 추가 안전장치를 도입했다. 또 답변이 지나치게 장황하거나 불필요한 정보를 포함하지 않도록 하는 기법도 적용했다. '파리아-1-LLM'은 두 가지 버전으로 제공된다. 하나는 사용자 지시에 특화된 '통제(control)' 모델이고 다른 하나는 안전성을 보다 강화한 '통제-정렬(control-aligned)' 모델이다. 독일의 머신러닝 엔지니어인 사마이 카파디아는 "'파리아'는 저작권과 개인정보 보호법 등 EU 규제를 완전히 준수해 훈련됐다"며 "이런 모델의 출시 자체만으로도 상당히 인상적인 성과"라고 평가했다.

2024.08.27 10:19조이환

"AI 운영비용 최대 90% 감소"…앤트로픽, 프롬프트 캐싱 도입

앤트로픽이 생성형 인공지능(AI) 클로드의 운영비용을 최대 90% 줄이고 반응속도를 개선하는 새로운 기능을 공개했다. 16일 실리콘앵글 등 외신에 따르면 앤트로픽은 프롬프트 캐싱을 공식 홈페이지를 통해 발표했다. 이 기능은 앤트로픽의 멀티모달 대규모언어모델(LLM) 클로드3.5 소네트와 고속 AI모델인 클로드3 하이쿠에서 베타모드로 먼저 도입된다. 프롬프트 캐싱은 AI챗봇의 응답 처리 과정에서 발생하는 비용을 줄이고 반응속도를 높이기 위한 기술이다. 일반적인 AI모델은 프롬프트를 입력할 때마다 해당 데이터를 새로 입력해야 하는 만큼 많은 비용과 시간을 소모한다. 반면, 프롬프트 캐싱은 반복적으로 사용할 긴 문서나 복잡한 프롬프트를 캐시에 저장해 반복 사용하는 방식이다. 앤트로픽에 따르면 프롬프트를 캐시에 저장할 때는 백만 토큰당 3.75달러의 비용이 든다. 하지만 캐시에 저장된 데이터를 불러와 사용할 경우에는 백만 토큰당 0.3달러로 줄어든다. 이를 통해 반복적인 작업에서 기존 대비 최대 90%의 비용 감소효과를 일으킬 수 있다는 설명이다. 더불어 매번 데이터를 새로 불러올 필요가 없는 만큼 응답 시간 역시 2배 이상 높일 수 있다. 앤트로픽에 따르면 10만 토큰 규모의 특정 문서 기반 대화의 경우 캐싱 전 지연 시간은 11.5초수준이었다. 프롬프트 캐싱 적용 후 지연 시간은 2.4초로 79% 줄어드는 성과를 기록했다. 앤트로픽은 프롬프트 캐싱의 실무 사례로 노션을 소개했다. 노션은 해당 기능을 통해 AI 운영 비용을 최대 90%까지 절감했으며, 10초가 걸리던 응답 시간도 약 2.5초로 단축했다고 밝혔다. 더불어 AI응답속도가 증가하고 비용을 절감하게 되면서 더 많은 사용자에게 보다 빠른 AI서비스를 제공할 수 있어 사용자 경험 향상에 큰 영향을 미쳤다고 답했다. 노션의 공동창업자인 사이먼라스트는 "프롬프트 캐싱을 사용해 노션AI를 더 빠르고 저렴할 뿐 아니라 높은 품질을 유지할 수 있게 됐다"며 해당 서비스를 평가했다.

2024.08.16 09:52남혁우

[현장] 오픈AI 제이슨 권 "AI 극초기 단계…낙관론 유지해야"

"사람들이 인공지능(AI)을 '스마트하다'고 느끼기 시작했음에도 이 기술은 아직 초기 단계에 있습니다. 기술의 유용성을 극대화하기 위해서는 AI를 '과대광고'라고 생각하지 말고 합리적 낙관론을 유지해야 합니다." 제이슨 권 오픈AI 최고전략임원(CSO)은 12일 서울 페럼홀에서 열린 '서울 AI 정책 컨퍼런스(Seoul AI Policy Conference) 2024'에서 임용 서울대 교수와 대담하며 AI 기술의 현황과 잠재력에 대한 자신의 견해를 밝혔다. 권 이사는 지난 2022년 11월 '챗GPT-3.5'가 출시된 후 생성 AI에 대한 대중의 인식이 급격히 변화했다고 언급했다. 거대언어모델(LLM)을 통해 AI가 사람의 말을 이해하게 되면서 20년 전에는 상상할 수 없었던 기술들이 실현됐기 때문이다. 그는 직접 오픈AI 'GPT-4o' 최신 음성 모드를 시연하며 기술의 급격한 발전을 증명했다. 한국인 교수와의 대화를 통역해 달라는 권 이사의 영어로 된 요청에 'GPT-4o'는 그의 말을 한국어로 실시간 변환하며 성공적인 통역을 수행했다. 권 이사는 "불과 1년 반 전만 해도 텍스트를 키보드로 입력해야 했던 모델이 이제는 음성으로 실시간 통역을 제공할 수 있게 됐다"며 "기술은 매우 빠르게 발전하고 있다"고 강조했다. AI 능력의 급격한 발전에도 여전히 할루시네이션(환각)이나 음성 인식 오류와 같은 문제가 존재한다. 그럼에도 불구하고 AI는 여전히 추론 능력을 개선하고 있으며 엔지니어들은 최신 기술인 '트랜스포머' 이후의 새로운 패러다임을 모색하고 있다. 이러한 발전 과정에 대해 권 이사는 "우리는 기술을 점진적으로 발전시키고 AI가 일상 업무를 대신하도록 하는 것이 목표"라며 "단 한번의 도약이 아닌 점진적인 진화 과정을 통해 종국에는 일반인공지능(AGI)에 도달할 것이라고 믿는다"고 밝혔다. AI의 급격한 발전이 안전성 문제를 초래할 수 있지 않냐는 질문에 그는 AI 시스템 발전이 오히려 '정렬(Alignment)' 문제를 해결하는 데 도움될 수 있다는 점을 강조했다. 실제로 'GPT-2' 시절의 AI는 일반화 능력이 부족해 비윤리적인 명령을 실행했던 바 있으나 현재의 강력한 모델들은 스스로를 윤리적인 방향으로 제어할 수 있게 됐다. 또 권 이사는 AI 기업의 구조·거버넌스는 필요에 따라 변할 수 있지만 중요한 것은 조직을 운영하고 결정을 내리는 사람이라는 점을 강조했다. 오픈AI 역시 비영리로 시작했지만 컴퓨팅 자원과 투자 유치로 인해 복잡한 구조를 가지게 됐기 때문이다. 권 이사는 "AGI라는 핵심 목표를 위해 우리는 세상과 상호작용하며 유연하게 진화해 왔다"며 "이는 회사 구성원들이 원했던 목적을 이루기 위해 변화한 결과"라고 주장했다. 오픈AI의 향후 계획에 대해 권 이사는 "앞으로 사람들이 AI를 지금보다 많은 방향으로 활용하며 잠재력을 실현할 것"이라며 "AI의 추론 능력을 더욱 발전시켜 사람들의 업무에 실질적인 도움을 주고 동시에 안전성을 확보하는 것이 회사의 목표"라고 밝혔다.

2024.08.12 14:52조이환

오픈AI 中 서비스 중단…알리바바 '큐원2'가 대안될까

오픈AI가 중국 내 서비스를 전면 차단한 가운데 알리바바가 대규모 언어 모델(LLM) '큐원2-수학(Qwen2-Math)'을 출시해 관심이 쏠린다. 현존하는 LLM 중 최상위권 수학 AI로 평가돼 현지 연구자와 개발자들의 대안으로도 각광 받고 있다. 9일 미국의 기술 매체 벤처비트에 따르면 알리바바의 '큐원2-수학'은 LLM용 수학 벤치마크 '매스(MATH)' 테스트에서 84%의 정확도를 기록했다. 벤치마크 성능 1위인 오픈AI의 'GPT-4 코드 인터프리터(GPT-4 Code Interpreter)'가 기록한 87.92%에 근접한 성과로, 알리바바의 기술력을 입증했다는 평가다. '큐원2'는 초등학교 수준의 수학을 테스트하는 'GSM8K'에서 96.7%, 대학 수준의 수학 테스트에서는 47.8%의 점수를 기록하며 눈에 띄는 성과를 거뒀다. 이는 오픈AI 'GPT-4o', 앤트로픽 '클로드 3.5 소네트', 구글 '수학-제미나이 스페셜라이즈드 1.5 프로(Math-Gemini Specialized 1.5 Pro)'와 같은 주요 경쟁 모델들을 능가하는 결과다. 이번 성과는 중국 유저들에게 의미가 크다. 오픈AI의 서비스 차단으로 중국 개발업계와 학계가 '챗GPT'를 사용하지 못하고 있기 때문이다. 지금까지 중국 개발자·연구자들은 가상사설망(VPN)을 통해 제한적으로 파인튜닝, 연구 및 벤치마킹을 진행해 왔으나 이마저도 지난 7월 전면적으로 차단돼 연구에 제약을 받아 왔다. 이런 상황에서 '큐원2'는 'GPT-4 코드 인터프리터'에 거의 준하는 수학 능력을 달성해 중국 유저들의 업무를 효율적으로 지원할 것으로 예측된다. 이에 맞춰 알리바바는 해당 모델의 광범위한 활용을 위해 배포를 계획하고 있다. 특히 월간 사용자 수가 1억 명 이하인 기업들에게 오픈소스로 제공해 스타트업과 중소기업이 사실상 무료로 사용할 수 있게 할 방침이다. 벤처비트는 "LLM 모델 경쟁이 매우 빠르게 진행되면서 '큐원'이 지금까지는 경쟁자들에게 밀려났었다"며 "이번 수학 능력의 비약적인 향상은 알리바바가 다시 경쟁력을 회복하는 계기가 될 수 있을 것"이라고 분석했다.

2024.08.09 15:28조이환

식신, 아마존 서비스 활용한 AI 대시보드 구축

푸드테크 기업 식신은 아마존의 '아마존 베드록' 서비스를 활용한인공지능(AI) 대시보드 '외식메타 인덱스'를 구축했다고 8일 밝혔다. 아마존 베드록은 선도적인 AI 스타트업과 아마존의 고성능 파운데이션 모델을 활용한 생성형 AI 애플리케이션 구축을 지원하는 완전 관리형 서비스다. 외식메타 인덱스는 식신이 보유한 100만개 이상의 맛집 데이터 및 월간 350만명의 이용자 데이터를 기반으로 금융·공공·검색·SNS·방문자 정보 등 다양한 데이터를 통합·분석한다. 이를 통해 ▲지역별 인기 메뉴 ▲스토리가 있는 메뉴 트렌드 ▲상황이나 장소에 맞는 테마 데이터 ▲메뉴별 사용된 식자재 등의 데이터를 실시간으로 확인할 수 있다. 구축된 데이터는 수요처의 니즈에 따라 API, 콘텐츠형 위젯, 분석형 대시보드 등 다양한 형태로 제공한다. 식신은 아마존웹서비스(AWS)의 스타트업 고객 지원 프로그램에 선정돼 전략적 서비스 도입을 위한 리소스를 지원받았다. 이번 프로젝트는 AWS, 메가존클라우드, 스노우플레이크와의 협력을 통해 진행됐다 메가존클라우드는 AWS의 아마존 베드록과 스노우플레이크의 데이터 플랫폼 기능을 연동해 거대언어모델(LLM) 기반 마케팅 솔루션의 데이터 파이프라인을 구축했다. AWS는 아마존 베드록을 통해 LLM 서비스의 확장성을 제공함으로써 프로젝트에 필요한 AI 기능을 구현할 수 있도록 지원했으며, 스노우플레이크는 데이터 관리의 효율성을 높여 방대한 양의 데이터를 저장하고 분석할 기반을 마련했다. 식신은 이번 프로젝트 결과물을 통해 다양한 분야로 비즈니스를 확대할 계획이다. 에프엔비(F&B)와 여행관광 산업에서는 식신의 데이터를 통해 가맹점 컨설팅, 신메뉴 분석, 외식트렌드 등에 대한 인사이트를 제공할 예정이다. 사용자 재방문 및 전환 리마케팅용 콘텐츠를 필요로 하는 기업에도 자료를 유통한다. 식신 안병익 대표는 "글로벌 기업과 협력해 수십억건의 데이터를 효율적으로 분석하는 AI 프로젝트를 진행했다"며 "앞으로 LLM 기반 AI 프로젝트를 더욱 고도화할 예정"이라고 말했다.

2024.08.08 10:38정석규

리턴제로, '로직Kor' 리더보드 sLLM 파트서 1위

음성인식 AI 스타트업 리턴제로(대표 이참솔)가 한국어 언어모델의 다분야 사고력을 측정하는 '로직Kor' 리더보드에서 sLLM(경량화된 거대언어모델) 가운데 1위를 달성했다고 2일 밝혔다. 매개변수(파라미터) 9B의 모델 크기를 갖는 리턴제로 LLM은 지난 31일 로직Kor에서 총점 8.67점을 기록, 매개변수 13B이하인 sLLM 모델 중 최고 성능을 보여 신기록을 달성했다. 이는 직전 최고기록인 8.21점을 웃도는 수치다. 로직Kor은 오픈AI·앤스로픽 등 글로벌 빅테크와 국내 기업들이 모두 참여하는 한국어 언어모델 벤치마크로, LLM의 한국어 추론·수학·글쓰기·코딩·이해 등 6개 요소를 측정한다. 특히 리턴제로 LLM은 '이해' 능력 파트에서 두각을 드러냈다. 리턴제로 LLM 이해 능력은 10점을 기록하며, 동일 크기의 LLM은 물론 모든 크기의 매개변수를 가진 LLM을 모두 통틀어 가장 높은 점수를 나타냈다. 추론 능력에서도 미스트랄 AI, 오픈AI 등 글로벌 빅테크 외에는 처음으로 최상위권인 9점대를 기록했다. 또 리턴제로 LLM은 짧은 기간 내에 높은 수준의 성능을 구현했다. 이번에 선보인 리턴제로의 LLM 모델은 한 달 정도의 신규 파운데이션 모델 파인튜닝 기간을 거쳐 탄생했음에도, 로직Kor 리더보드의 성능 평가에서 높은 점수를 받았다. 최근 업무에 AI를 도입하는 기업이 빠르게 늘어나면서, AI 모델을 빠르게 파인튜닝하는 역량의 중요성이 높아지고 있는 추세다. 리턴제로 팀이 선보인 매개변수가 13B 이하인 sLLM은 현재 AI를 도입하려는 기업들 사이에서 가장 인기가 많은 크기로 꼽힌다. 방대한 매개변수와 데이터를 필요로 하는 기존의 LLM은 천문학적인 비용 탓에 기업 입장에서는 부담스럽지만, sLLM은 적은 매개변수에도 고도화를 통해 성능을 높이고 비용 부담은 줄일 수 있다. 특히 최근 들어 온디바이스 AI에 대한 관심도가 높아지면서 경량화된 sLLM에 대한 수요는 더욱 커지는 모양새다. 리턴제로는 음성인식 AI 스타트업으로 고객관리를 돕는 AI컨택센터(AICC) 플랫폼 구축부터 모바일음성뱅킹, AI콜센터 상담사 등 다양한 핵심 서비스를 제공하고 있다. 실제로 리턴제로는 신한금융그룹의 공통 AICC 모델 구축에 필요한 STT 솔루션을 제공하는 등 전사적인 AX를 가속화하고 있다. 특히 1시간 분량의 유튜브 동영상을 3.5초 만에 정확하게 텍스트로 변환이 가능한 속도와 정확성을 갖춘 음성인식 기술을 보유하고 있다. 이참솔 리턴제로 대표는 "리턴제로 LLM이 더욱 매개변수가 많은 일부 모델보다도 우수한 성능을 보여주면서 리턴제로의 기술 역량을 증명한 것 같아 기쁘다"며 "앞으로도 리턴제로의 노하우를 접목해 글로벌 빅테크와 견주어도 손색없는 최고 수준의 기술을 선보일 것"이라고 말했다.

2024.08.02 18:05백봉삼

오픈AI, 챗GPT 때문에 파산할 수도…왜?

오픈AI가 챗GPT의 유지 비용이 높아서 올해 안에 파산 위기에 처할 수 있다는 우려가 나왔다. 인공지능(AI) 기업인 오픈AI는 AI 챗봇 '챗GPT' 운영비 부담 때문에 올해 50억 달러(약 6조9천250억원) 가량 손실을 볼 가능성이 있다고 튀르키예투데이, 디인포메이션 등 외신들이 28일(현지시간) 보도했다. 보도에 따르면 챗GPT는 하드웨어를 운영 비용만 매일 70만 달러(약 9억6천950만원) 가량이 필요하다. 이 수치는 앞으로 AI 기능이 정교해지게 되면 더 늘어날 것으로 예상된다. 또 오픈AI는 올해 ▲AI 교육 부문 70억 달러(약 9조6천950억원) ▲인건비 15억 달러(약 2조775억원) 가량 필요할 전망이다. 이는 아마존의 지원을 받는 앤트로픽 등 경쟁업체의 같은 기간 지출 27억 달러(약 3조7천395억원)를 능가하는 수치다. 반면 오픈AI가 챗GPT로 벌어들이는 돈은 운영 비용을 감당하기에는 턱 없이 부족한 수준이다. 디인포메이션에 따르면 오픈AI는 챗GPT로 연간 약 20억 달러(약 2조7천700억원)를 벌어들이고 있다. 이와 별도로 대규모언어모델(LLM) 이용료로 10억 달러(약 1조3천850억원) 매출을 추가로 만들어내고 있다. 현재 오픈AI의 기업 가치는 800억 달러(약 110조8천억원)를 웃도는 수준이다. 또 생성형 AI에 대한 기업들의 관심이 높아짐에 따라 오는 2025년까지 매출이 두 배 이상 증가할 것이라는 기대도 있다. 오픈AI는 7번의 투자 라운드를 통해 110억 달러(약 15조2천416억원) 이상의 금액을 모금했으며, 마이크로소프트의 클라우드 서비스 '애저(Azure)' 할인 혜택도 누리고 있다. 그럼에도 오픈AI는 35만개의 서버 중 29만개를 챗GPT 전용으로 운영 중이다. 오픈AI는 파산을 피하기 위해 향후 12개월 이내에 추가 자본을 확보해야 한다. 이러한 리스크에도 오픈AI는 샘 알트만(Sam Altman) 대표와 함께 일반인공지능(AGI)을 발전에 집중하고 있다. 또한 AI 기반 검색 엔진인 서치(Search)GPT를 출시하며 제품과 수익원을 다각화를 모색 중이다.

2024.07.29 13:48정석규

IBM, 왓슨x에서 미스트랄 라지 모델 지원

IBM은 '왓슨x.ai'에서 미스트랄 라지 모델을 제공한다고 25일 발표했다. 인공지능(AI) 개발자를 위한 IBM의 기업용 AI 스튜디오인 왓슨x.ai는 IBM의 그래니트 모델 외에도 다양한 오픈 소스 및 상용 모델 선택이 가능하며, 이를 용도에 따라 변형하거나 비즈니스 솔루션 및 애플리케이션과 통합해 사용할 수 있다. IBM은 이미 왓슨x.ai 내에서 기업 환경에 적용할 수 있는 소규모 모델인 믹스트랄-8x7B를 제공하고 있다. 이 모델은 IBM이 최적화한 모델로, 주어진 시간 동안 처리할 수 있는 데이터의 양이 기존 모델보다 50% 증가했다. 새롭게 추가된 미스트랄 라지는 서비스형 소프트웨어(SaaS)로 먼저 제공된다. 이제 왓슨x 고객은 추론과 다국어 기능이 필요한 복잡한 전사적 작업을 처리하도록 최적화된 미스트랄 AI의 가장 강력한 모델을 활용할 수 있다. 검색증강생성(RAG) 전문화를 통해 더 장시간의 채팅 상호작용과 대용량 문서 처리가 가능하며, 사용자 정의 함수나 API와 같은 외부 도구에 연결할 수 있고, 뛰어난 코딩 성능으로 특정 용도에 맞는 애플리케이션을 쉽게 구축할 수 있다. 책임감 있는 AI 구축을 위해 안전장치로 사용할 수 있는 '가드레일' 기능을 내장했다. 기업은 이제 왓슨x 플랫폼에서 미스트랄 라지를 통해 데이터 스토어, 프롬프트 랩, 모델 튜닝, 프로세스 모니터링 및 거버넌스 기능을 포함한 추가적인 엔터프라이즈 지원 제품을 활용할 수 있다. 왓슨x 고객은 특정 플랫폼에 종속되지 않고 온프레미스나 퍼블릭 클라우드 제공업체 등 원하는 환경에서 왓슨x.ai 내 모델을 배포할 수 있다. 빠르게 변화하는 AI 분야에서 기업이 민첩하게 적응하고 인프라 및 개발에 대한 매몰 투자를 피하려면 유연성이 핵심이기 때문이다. IBM은 왓슨 플랫폼에 미스트랄 AI의 상용 모델을 제공함으로써 개방형 멀티 모델 전략을 더욱 확장하고 기업이 혁신, 변화, 확장할 수 있도록 지원한다는 계획이다. 책임감 있게 기업 혁신에 기여하고자 하는 IBM의 의지를 바탕으로, IBM은 한도형 지적 재산권 보상 제도를 통해 미스트랄 라지에 대한 고객 보호를 제공한다고 밝혔다. 이는 IBM이 자사의 AI 모델인 IBM 그래니트 모델에 대한 고객 보증 제도를 적용한 이래 제3자 파운데이션 모델까지 확대한 첫 번째 사례다.

2024.07.25 11:37김우용

오픈AI, 더 똑똑한 AI 모델 내놓나…비밀리에 '스트로베리' 개발

오픈AI가 인공지능(AI) 모델 추론능력 향상을 위해 비공개 연구를 진행 중인 것으로 전해졌다. 성공 시 AI는 인터넷을 자율적으로 탐색하고 작업을 순차적으로 계획·수행 할 수 있게 된다. 15일 로이터에 따르면 오픈AI는 코드명 '스트로베리(Strawberry)'라는 모델을 개발 중인 것으로 알려졌다. 이 모델의 목표는 AI가 심층연구(Deep Research)를 수행하도록 하는 것이다. 심층연구란 AI가 자율적으로 인터넷을 탐색하고 문제를 해결하며 단계에 따라 계획을 수립·실행하는 능력이다. 스트로베리는 질의에 대한 답변만 생성하는 기존 AI모델과 달리 고도의 심층연구 능력을 달성하는 것을 목표로 한다. '챗GPT' 등 생성형 AI 서비스는 이미 인간보다 빠르게 텍스트를 요약하고 산문을 작성할 수 있다. 그러나 인간이 직관적으로 이해하는 상식적 문제나 논리적 오류를 해결하지는 못한다. 대신 거짓 정보를 내뱉는 '환각(Hallucination)' 문제가 발생한다. 로이터는 스트로베리가 성공적으로 개발된다면 현재 AI가 직면한 추론 능력 문제를 해결할 수 있을 것으로 분석했다. 전문가들은 향후 AI가 애플리케이션 개발과 과학적 발견에 중요한 역할을 하게 될 것으로 기대하고 있다. 로이터 소식통은 "스트로베리 개발은 진행 중인 사안"이라며 "모델의 작동원리는 오픈AI 내부에서도 철저한 기밀"이라고 말했다. 스트로베리는 지난해 '큐스타(Q*)'로 알려져 있었다. 이 모델은 기존 AI가 해결하지 못하던 과학 및 수학 문제에 대해 답을 하는 등 발전된 추론능력을 보였다. 오픈AI 관계자는 스트로베리에 대한 직접적인 언급을 피하며 "우리는 AI 모델이 인간처럼 세상을 보고 이해하기를 바란다"며 "AI 기능에 대한 지속적인 연구는 업계에서 일반적인 관행"이라고 밝혔다.

2024.07.15 14:19조이환

美 클라우드플레어, '웹사이트 스크랩' 차단 지원

미국의 인터넷 보안 업체 클라우드플레어가 웹사이트 소유자들이 인공지능(AI) 서비스의 콘텐츠 접근을 차단하는 기능을 출시했다. 여러 AI 기업들이 타사 웹사이트를 무단으로 스크랩해 콘텐츠를 수집하자 대응 조치를 내놓은 것이다. 지난 6일 포브스 등 외신에 따르면, 클라우드플레어는 공식 블로그를 통해 클라우드플레어 고객이 자신의 웹사이트를 방문하는 AI 봇을 차단하는 기능을 출시했다고 밝혔다. 클라우드플레어 관계자는 해당 기능을 출시한 이유에 대해 "생성형 AI의 인기로 모델 학습이나 추론 실행에 사용되는 콘텐츠 수요가 급증하고 있다"며 "웹 스크래핑용 AI봇을 투명하게 운영하지 않는 일부 AI 기업이 무단으로 콘텐츠를 가져가는 사례도 발생하고 있다"고 설명했다. 해당 기능은 클릭 한 번으로 클라우드플레어 고객 누구나 활성화할 수 있으며 무료 사용자도 이용 가능하다. 해당 기능이 활성화되면 클라우드플레어 자체 기술로 봇 점수를 계산하며, AI봇을 식별하고 막는다. 클라우드플레어는 발표와 함께 자사가 수집한 'AI 스크랩퍼'들의 활동 데이터를 공유했다. AI 모델을 학습시키기 위해 대규모언어모델(LLM) 등의 콘텐츠 수요가 급증하자 여러 기업에서 타사의 홈페이지의 스크랩해 콘텐츠를 도용한 것이다. 해당 데이터에 따르면, 6월 한 달 간 클라우드플레어 사용자 중 약 39%가 AI 봇에 의해 홈페이지 스크랩을 당했다. 또한 이 중 2.98%만이 홈페이지 스크랩을 자체적으로 차단한 것으로 나타났다. 클라우드플레어 관계자는 "봇 탐지를 회피하기 위해 기존 감지 규칙을 우회해 콘텐츠에 접근하려는 AI 기업이 계속 나올 것으로 보인다"며 "클라우드플레어는 머신러닝 모델을 고도화하고 더 많은 AI봇을 차단목록에 추가해 콘텐츠 제작자가 성장할 환경을 제공할 것"이라고 말했다.

2024.07.07 14:13정석규

"AI와 인간 사이 격차 줄인다"…메타, 새로운 AI 학습방법 제시

메타가 사람의 언어를 보다 깊이 이해할 수 있는 인공지능(AI) 학습 방법을 제시했다. 5일 벤처비트 등 외신에 따르면 메타는 다중토큰예측 방식으로 사전학습한 대규모언어모델(LLM) 4종을 허깅페이스를 통해 출시했다. 다중토큰예측은 지난 4월 메타의 연구진이 발표한 논문을 통해 처음 소개된 기술이다. 순차적으로 토큰 하나씩 예측하는 기존 LLM 훈련과 달리 동시에 여러 토큰을 예측하는 방식이다. 토큰은 LLM이 인식하는 문자데이터의 기본 단위다. 이는 여러 토큰을 동시에 예측함으로써 언어 구조와 맥락에 대한 세밀한 관계를 보다 깊게 파악할 수 있어 언어에 담긴 내용을 AI가 더욱 정확하게 이해할 수 있도록 지원한다. 이를 통해 코드 생성부터 글쓰기 등 다양한 작업에서 보다 효율적이고 높은 수준의 결과물을 작성하는 것이 가능하다. 메타는 해당 방식을 통해 기존 방식보다 LLM의 성능을 향상시킬 뿐 아니라 훈련 시간과 학습에 필요한 컴퓨팅파워를 줄일 수 있다고 밝혔다. 이를 통해 AI 개발·운영 비용을 절감하고 환경에 미치는 악영향을 최소화해 지속가능한 업무환경을 구축할 수 있다고 설명했다. 허깅페이스에 공개된 4종의 LLM은 모두 70억 개의 매개변수를 기반으로 하지만 성능 비교를 위해 토큰에 차이를 뒀다. 7B_200B_1와 7B_200B_4는 2천억 개의 토큰을 활용하지만 7B_200B_1는 기존 방식으로 7B_200B_4는 다중토큰예측모델이 적용됐다. 7B_1T_1와 7B_1T_4는 토큰의 개수가 1조개로 늘어났으며 방식은 동일하다. 메타는 AI 성능 테스트인 MBPP와 휴먼에벌 벤치마크 테스트를 실시한 결과 각각 17%와 12% 더 높은 정확성을 기록했으며 생성속도는 3배 더 빨랐다고 밝혔다. 메타의 연구원들은 "우리의 접근 방식은 LLM의 속도를 향상시킬 뿐 아니라 더 나은 모델의 성능과 훈련 효율성을 제공한다"며 "새로운 학습 방법은 단순한 효율성의 확장을 넘어 언어에 대한 더욱 깊이 있는 이해를 제공해 AI와 인간 사이의 격차를 줄일 수 있는 잠재력을 가지고 있다"고 논문을 통해 강조했다.

2024.07.05 10:44남혁우

아마존, '홈페이지 무단 스크랩' 혐의로 AI 스타트업 조사

아마존이 자사 홈페이지를 무단 스크랩했다는 혐의로 인공지능 스타트업 '퍼플렉시티'를 조사 중이다. 최근 엔가젯·와이어 등 외신 보도에 따르면, 아마존 운영사 '아마존웹서비스'는 퍼플렉시티가 규정을 위반하고 있는지 확인하기 위한 조사를 시작했다. 퍼플렉시티는 AI 개발의 토대가 되는 대규모언어모델(LLM) 훈련용 콘텐츠를 수집하기 위해 아마존 홈페이지를 무단으로 스크랩했다는 의심을 받고 있다. 대부분의 프로그램 개발자는 봇이 특정 페이지에 액세스할 수 있는지에 대한 지침이 포함된 '로봇(robots.txt)'이라는 문서 파일을 도메인에 넣는다. 이는 자발적인 조치지만, 프로그램 개발자들이 90년대에 표준화한 이래로 대부분의 스크랩 프로그램은 이를 지켜왔다. 아마존웹서비스의 클라우드 사업부는 퍼플렉시티가 '로봇' 문서 지침을 무시하는 스크랩 프로그램을 사용했다는 혐의를 조사하고 있다. 와이어드 등의 외신은 아마존 웹 사이트의 '로봇' 지침을 우회하는 가상 머신을 발견했다고 보도했다. 보도에 따르면, 이 시스템은 퍼플렉시티의 IP 주소를 사용해 아마존 서버에서 웹사이트의 사용됐다. 아마존웹서비스 대변인은 관련 성명서에서 "우리 회사의 서비스 약관은 불법적인 활동을 금지하며 고객은 이러한 약관을 준수할 책임이 있다"며 "우리는 다양한 출처로부터 관련 혐의에 대한 보고를 지속적으로 받고 있다"고 밝혔다. 그는 "우리 클라우드 사업부는 퍼플렉시티의 규정 위반 가능성에 대한 모든 정보를 종합해 조사 중이다"고 덧붙였다. 사라 플랫닉 퍼플렉시티 대변인은 자사의 스크랩 프로그램이 로봇 배제 프로토콜을 우회하고 있다는 사실을 부인했다. 그는 "아마존에서 실행되는 퍼플렉시티 봇은 로봇 문서를 존중하며, 퍼플렉시티가 아마존 서비스 약관을 위반하지 않는다는 것을 확인했다"고 말했다.

2024.07.01 09:36정석규

알리바바, 자사 AI 프로그래머로 앱 개발 돕는다

알리바바 클라우드가 자체 개발한 대규모언어모델(LLM)을 기반으로 첫 '인공지능(AI) 프로그래머'를 도입했다. 23일 사우스차이나모닝포스트 보도에 따르면, 알리바바 클라우드는 AI 프로그래머가 앱 개발 시간을 분 단위까지 단축하는 것을 목표로 한다고 밝혔다. AI 프로그래머 출시는 알리바바 클라우드의 첫 AI 코딩 비서인 통이 링마(Tongyi Lingma)가 소개된 지 7개월 만이다. 알리바바 클라우드는 개인·기업 개발자 모두를 고객으로 상정했으며, 구체적인 사용료는 아직 공개되지 않았다. 알리바바에 따르면, 비서 역할을 하는 AI 프로그래머는 ▲소프트웨어 설계자 ▲개발 엔지니어 ▲테스트 엔지니어의 역할을 결합해 제품 개발을 돕는다. 알리바바 클라우드의 LLM 서비스 '통이치엔원'을 관리하는 쑤동(Xu Dong)은 지난 21일(현지시간) 상하이에서 열린 회사의 클라우드AI 행사에서 "소프트웨어 앱 개발의 패러다임이 변하고 있다"고 말했다. 그는 "미래에는 사용자가 문제를 식별하고 요구사항을 표현하기만 하면 몇 분 만에 AI가 앱 개발을 완료하는 일이 낯설지 않을 것"이라고 덧붙였다. AI 프로그래머의 출시는 통이치엔원이 지원하는 알리바바 클라우드의 첫번째 AI 코딩 도우미 '통이링마'가 도입된 지 7개월 만에 이뤄졌다. 오픈 소스 코드 교육을 받은 '통이링마'는 자연어 지침을 기반으로 ▲코드 생성 ▲단위 테스트 실행 ▲코드 디버그·최적화가 가능하다다. 롱이링마의 기본 버전은 개인 사용자에게 무료이며, 추가 관리 기능을 갖춘 기업 버전은 1인당 월 159위안(약 3만원)의 요금으로 사용할 수 있다.

2024.06.24 14:57정석규

KAIST, 멀티모달 대형언어모델 '깃허브' 공개…GPT-4V 시각성능 "제꼈다"

국내 연구진이 오픈AI의 GPT-4V와 구글 제미나이-프로(Gemini-Pro)의 시각 성능을 능가하는 멀티모달 대형언어모델을 개발, 오픈소스 커뮤니티 깃허브(Github)에 공개했다. 최근 주목받는 생성형 AI 트랜드가 멀티모달화로 진화 중이어서 귀추가 주목됐다. KAIST는 전기및전자공학부 노용만 교수 연구팀이 GPT-4V 등 비공개 상업 모델의 시각 성능을 넘어서는 공개형 멀티모달 대형언어모델을 선보였다고 20일 밝혔다. 연구팀은 멀티모달 대형언어모델 시각 성능을 개선하기 위해 '콜라보(CoLLaVO)'와 '모아이(MoAI)' 2가지 기술을 자체 개발했다. 이병관 연구원(박사과정,제1저자)은 "GPT-4V나 제미나이-프로 등과 시각성능 만을 비교하면 점수나 정확도 면에서 최대 10% 더 우수하다"고 말했다. 인지추론성도 함께 따져봐야 하지만, 이는 이번 연구 주제에서 벗어나 나중에 생각할 부분이라는 것이 이 연구원 얘기다. 사실 인지추론성도 개별 검토한 결과 오픈AI나 구글 모델 대비 결코 뒤지진 않는다는 것이 이 연구원의 귀뜸이다. 연구팀은 '콜라보'를 개발하기 전 기존 공개형 멀티모달 대형언어모델 성능이 비공개형에 비해 떨어지는 이유를 1차적으로 물체 수준에 대한 이미지 이해 능력 저하에서 찾았다. 연구팀은 이를 개선하기 위해 이미지 내 정보를 배경과 물체 단위로 분할하고 각 배경 및 물체에 대한 정보를 멀티모달 대형언어모델에 직접 넣어주는 '크레용 프롬프트(Crayon Prompt)'라는 시각적 프롬프트를 새로 설계했다. 또 시각적 지시 조정 단계에서 크레용 프롬프트로 학습한 정보를 잃어버리지 않기 위해 물체 수준 이미지 이해 능력과 시각-언어 태스크 처리 능력을 서로 다른 파라미터로 학습시키는 획기적인 학습전략인 '듀얼 큐로라(Dual QLoRA)'를 제안했다. 이병관 연구원은 "이로 인해 이미지 내에서 배경 및 물체를 1차원적으로 구분하는 능력이 크게 향상됐다"고 덧붙였다. 대형언어모델인 모아이(MoAI)'도 개발했다. 인간이 사물을 판단하는 인지과학적 요소(물체 존재나 상태, 상호작용, 배경, 텍스트 등)에서 영감을 얻었다는 것이 연구팀 설명이다. 연구팀은 "기존 멀티모달 대형언어모델은 텍스트에 의미적으로 정렬된 시각 인코더(vision encoder)만을 사용하기 때문에, 이미지 픽셀 수준에서의 상세하고 종합적인 실세계 장면에 대한 이해가 모자란다고 판단했다"고 말했다. 연구팀은 △전체적 분할 △한계가 없는 물체 검출기 △상황 그래프 생성 △글자 인식 등 4가지 컴퓨터 비전 모델을 언어로 변환한 뒤 멀티모달 대형언어모델에 입력했다. 이를 연구팀이 실제 검증한 결과 '콜라보'는 Math Vista(대학수준 수학 및 물리문제)나 MM-벤치(영어 객관식 문제), MMB-CN(중국어 객관식 문제), AI2D(어학문제) 등의 풀이에서 기존 모델 대비 최대 10%까지 점수와 정확도가 우수했다. 또 '모아이'는 기존 공개형 및 비공개형 LLVMs(멀티모달 대형언어)와 비교한 결과 각 질문에 따라 점수가 20포인트 이상 우수하게 답변한 경우도 나타났다. 이병관 연구원은 "3개월전 깃허브에 올려놓은 '콜라보'(https://github.com/ByungKwanLee/CoLLaVO)와 '모아이'(https://github.com/ByungKwanLee/MoAI)에 관심을 가져달라"며 "박사학위가 마무리되면 멀티모달 대형언어를 아이템으로 창업할 생각도 있다"고 말했다. 박사과정 5년차인 이 연구원은 또 "개인적으로 향후 기회가 닿는다면, 핸드폰에 들어가는 사이즈로 현재 성능을 유지하는 멀티모달 대형언어모델을 만들어 볼 것"이라고 덧붙였다. 노용만 교수는 “연구팀에서 개발한 공개형 멀티모달 대형언어모델이 허깅페이스 일간 화제의 논문(Huggingface Daily Papers)에 추천됐다"며 "SNS 등을 통해 전세계에 점차 알려지는 등 관련분야 발전에 기여할 것"으로 기대했다. 연구에는 논문 제1저자 이병관 박사과정 연구원 외에도 박범찬 석박사통합과정, 김채원 박사과정이 공동 저자로 참여했다. 연구결과는 '콜라보'의 경우 자연어 처리(NLP) 분야 국제 학회 'ACL Findings 2024'(5월16일자)에 게재됐다. '모아이(MoAI)'는 컴퓨터 비전 국제 학회인 'ECCV 2024'에 논문을 제출하고 결과를 기다리고 있다. 한편 이 연구는 KAIST 미래국방 인공지능 특화연구센터 및 전기및전자공학부 지원을 받아 수행했다.

2024.06.20 14:26박희범

"기업 환경에 LLM 특화"…미스트랄AI, 미세조정 SDK 공개

미스트랄AI가 대규모언어모델(LLM)의 성능을 개선하거나 기업에 특화할 수 있도록 기술 지원을 제공한다. 미스트랄은 5일(현지시간) AI모델 미세 조정을 위한 소프트웨어 개발 키트(SDK)인 미스트랄 파인튠(Mistral-Finetune)을 출시했다. 깃허브를 통해 공개된 미스트랄 파인튠는 미스트랄의 AI 모델을 워크스테이션, 서버 및 소규모 데이터 센터 노드 등 다양한 인프라에 최적화할 수 있도록 지원한다. 공개된 내용에 따르면 해당 SDK는 다중 GPU 설정에 최적화되어 있지만 미스트랄 7B와 같은 소형 모델을 미세 조정하기 위해 엔비디아 A100 또는 H100 GPU 단일 모델로 설정을 변경하는 것도 가능하다. 예를 들어 오픈AI의 챗GPT를 사용한 140만 개의 대화 모음인 울트라챗과 같은 데이터 세트를 미세 조정하는 과정은 8개의 H100 GPU를 활용해 약 30분 만에 완료할 수 있다. 보다 효율적인 AI 개발을 위해 '라 플랫폼'과 같은 유로 개발 서비스와 연계한 작업도 가능하다. 라플랫폼을 활용하면 특정 요구 사항에 맞게 모델을 정의하거나 교육하는 API를 호출해효과적으로 AI를 개발할 수 있다. 미스트랄은 몇 주에 걸쳐 미세 조정 서비스에 새로운 모델을 추가할 예정이라고 밝혔다. 이와 함께 미스트랄은 SDK를 효율적으로 활용할 수 있도록 지원하기 위한 교육 서비스를 함께 제공한다. 교육서비스에는 기업의 자체 데이터를 사용해 미스트랄 AI 모델을 미세조정하는 커리큘럼이 포함돼 보다 효율적이고 전문적으로 AI를 활용할 수 있는 방법을 제시한다. 미스트랄 AI 팀은 "우리는 개발자에게 강력한 개방형 생성 모델을 제공하고 이를 효율적으로 사용할 수 있는 방법을 제공한다"고 강조했다.

2024.06.06 15:00남혁우

업스테이지-플리토, 아시아 다국어 AI모델 함께 만든다

업스테이지(대표 김성훈)가 플리토와 함께 일본어, 태국어 등 데이터가 부족한 아시아 지역 대규모 언어모델을 공동 개발한다. 업스테이지는 플리토와 AI 언어 데이터 구축을 위한 업무협력 협약(MOU)를 체결했다고 9일 밝혔다. 현재 빅테크 기업이 주도하는 거대언어모델(LLM) 개발은 영어에 편중돼, 상대적으로 아시아권의 언어는 학습 데이터가 부족한 실정이다. 이에 양사는 ▲ 한국어 언어모델 평가 플랫폼 'Open-Ko LLM 리더보드' 벤치마크 데이터셋 구축 ▲ 다국어 LLM 리더보드 운영 ▲ 저자원 언어 데이터 구축 및 저자원 언어 활용 LLM 현지화 ▲ 기업용 LLM 구축에 따른 데이터 공급 파트너십 강화 등 다양한 분야에서 협력을 강화하기로 했다. 이를 통해 고품질의 저자원 언어 데이터를 확보, 사전학습 LLM 솔라의 지원 언어를 확장해 동남아시아 등 다양한 지역별 언어에 특화된 맞춤형 모델을 개발하겠다는 전략이다. 솔라는 현재 한국어, 영어를 지원하며, 연내 일본어와 태국어까지 지원 언어를 확대할 예정이다. 플리토는 이번 협약을 바탕으로 언어 데이터와 AI 기술 간의 시너지를 통해 언어 모델의 고도화에 적극적으로 기여할 예정이다. 더불어 다국어 병렬 말뭉치 구축 노하우와 저작권 이슈가 없는 텍스트·이미지·음성 데이터셋을 통해 자사 언어 수집 기술 경쟁력을 높인다는 계획이다. 김성훈 업스테이지 대표는 “언어모델로 촉발된 생성형 AI 열풍이 전 세계를 뒤흔들고 있는 상황에서 양질의 언어 데이터 확보는 필수적인 과제”라며 “업스테이지는 이번 플리토와의 협력을 통해 전 세계 더 많은 사람들이 생성형 AI 혁신을 경험할 수 있도록 데이터 고도화에 나설 것”이라고 밝혔다. 이정수 플리토 대표는 "저자원 언어 학습분야는 초거대언어모델 성능의 핵심 요소로 부상했다”며 “양사 협력을 통해 고품질 데이터와 고도화된 기술 간의 접목이 국내 생성형 AI 생태계에 얼마나 긍정적인 기여를 할 수 있는지 보이자고 한다”고 말했다.

2024.05.09 15:15남혁우

  Prev 1 2 3 4 5 Next  

지금 뜨는 기사

이시각 헤드라인

5천억 짜리 과제, 전화로 5분 평가..."이제 그만, 새 틀 짜자"

스마트폰 美 25% 관세 리스크…삼성 언팩 앞두고 '고심'

"2030년 기업용 PC 10대 중 1대는 AI 기반 워크스테이션"

日 다이소, '쓰리피' 이름으로 韓 시장 재진출하나

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현