• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 인터뷰
  • 인사•부음
  • 글로벌뉴스
창간특집
인공지능
배터리
컨퍼런스
칼럼•연재
포토•영상

ZDNet 검색 페이지

'AI 언어모델'통합검색 결과 입니다. (8건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

"글로벌 수준"...카카오, 멀티모달 언어모델 'Kanana-o' 성능 공개

카카오가 새로운 인공지능 모델을 통해 기술 경쟁력 강화를 이어간다. 카카오(대표 정신아)는 공식 테크블로그를 통해 통합 멀티모달 언어모델 'Kanana-o'와 오디오 언어모델 'Kanana-a'의 성능과 개발 후기를 1일 공개했다. 통합 멀티모달 언어모델인 Kanana-o는 텍스트와 음성, 이미지까지 다양한 형태의 정보를 동시에 이해하고 처리할 수 있는 모델이다. 텍스트, 음성, 이미지 중 어떠한 조합으로 질문을 입력하더라도 처리 가능하며, 상황에 맞는 텍스트나 자연스러운 음성으로 응답 가능한 구조로 설계됐다. 카카오는 '모델 병합' 기술을 기반으로 이미지 처리에 특화된 모델 'Kanana-v'와 오디오 이해 및 생성에 특화된 'Kanana-a' 모델을 통합, 단기간 내 효율적으로 Kanana-o를 개발했다. 통합 후에는 이미지, 오디오, 텍스트 데이터를 동시에 학습하는 '병합 학습'을 통해 시각과 청각 정보를 동시에 이해하고, 텍스트와 연결 지을 수 있도록 통합 훈련을 거쳤다. 이런 과정을 통해 기존 LLM 구조에서 이미지 이해 능력과 음성 인식과 합성, 감정 이해 등 고도화된 오디오 능력을 확장시킨 통합 멀티모달 언어모델이 구현됐다. Kanana-o는 음성 감정 인식 기술을 통해 사용자의 의도를 올바르게 해석하고, 상황에 맞는 적절한 반응과 답변을 제공해준다. 억양, 말투, 목소리 떨림 등 비언어적 신호를 분석하고, 대화 맥락에 맞는 감정적이고 자연스러운 음성의 응답을 생성하는 것이 특징이다. 대규모 한국어 데이터셋을 활용해 한국어의 특수한 발화 구조, 억양, 어미 변화 등을 정밀하게 반영하기도 했다. 특히 제주도, 경상도 등 지역 방언을 인식하고 이를 표준어로 변환해 자연스러운 음성을 생성할 수 있다. 지속적인 성능의 고도화를 위해 카카오는 현재 독자적인 한국어 음성 토크나이저(오디오 신호를 일정 단위로 작게 분해하는 도구) 개발을 진행 중이다. 스트리밍 방식의 음성합성 기술을 적용해 사용자가 긴 대기 시간 없이 응답을 제공하는 강점도 보유했다. 예를 들어, 이미지와 함께 "이 그림에 어울리는 동화를 만들어 줘"라고 입력하면, Kanana-o는 해당 음성을 이해하고 사용자의 억양과 감정 등을 분석해 자연스럽고 창의적인 이야기를 실시간으로 생성해 들려준다. Kanana-o는 한국어 및 영어 벤치마크에서 글로벌 최고 모델들과 유사 수준을 기록했으며, 한국어 벤치마크에서는 높은 우위를 보였다. 특히, 감정인식 능력에서는 한국어와 영어 모두에서 큰 격차를 기록하며, 감정까지 이해하고 소통할 수 있는 AI 모델의 가능성을 입증했다. 이미지와 음성을 통합적으로 이해해야 하는 '이미지-음성 QA(질의응답)' 태스크에서도 강력한 성능을 달성하며, 통합 멀티모달 언어모델로서의 글로벌 경쟁력을 확인했다. 카카오는 향후 Kanana-o를 통해 ▲다중 턴 대화 처리 ▲양방향 데이터 동시 송수신 기술 대응 능력 강화 ▲부적절한 응답 방지를 위한 안전성 확보 등을 목표로 연구 개발을 지속해 갈 계획이다. 이를 통해 다중 음성 대화 환경에서의 사용자 경험을 혁신하고, 실제 대화에 가까운 자연스러운 상호작용을 실현해가는 것이 목표다. 카카오 김병학 카나나 성과리더는 "카나나 모델은 복합적인 형태의 정보를 통합적으로 처리함으로써 기존의 텍스트 중심 AI를 넘어 사람처럼 보고 듣고 말하며 공감하는 AI로 진화하고 있다"며 "독자적인 멀티모달 기술을 바탕으로 자사의 인공지능 기술 경쟁력을 강화하는 한편, 지속적 연구 결과 공유를 통해 국내 AI 생태계 발전에 꾸준히 기여할 계획"이라고 말했다.

2025.05.01 10:13백봉삼

타이핑 없이 느낌으로 코딩하는 시대…'바이브코딩'오나

인공지능(AI) 기술 급격한 발전으로 소프트웨어(SW) 개발 방식에 큰 변화가 있을 것이란 전망이 제기되고 있다. 특히 기존의 수작업 중심 개발 방식에 근본적인 변화를 예고하며 AI가 대신 코딩하는 형태의 개발 문화가 자리잡을 것이란 예상이다. 대표적으로 최근 전 테슬라 AI 디렉터이자 오픈AI 공동 창립자인 안드레 카파시(Andrej Karpathy)는 '바이브코딩(Vibe Coding)'이라는 개념을 SNS를 통해 제시했다. 그는 "최근 내가 '바이브 코딩이라고 부르는 새로운 종류의 코딩이 있다"며 "이 방식은 그저 바이브에 완전히 몸을 맡기고 지수적 변화를 받아들이며 코드가 존재한다는 사실조차 잊는다"고 바이브코딩을 설명했다. 이어 "이러한 개발이 가능한 이유는 LLM의 기능이 너무 좋아졌기 때문"이라고 밝혔다. 그는 실제로 코드 편집기인 커서 컴포저(Cursor Composer), LLM 소넷(Sonnet), 음성 명령 도구 슈퍼위스퍼(SuperWhisper) 등을 AI기반 도구를 활용해 키보드를 거의 사용하지 않고 프로젝트를 진행하고 있다고 밝혔다. 예를 들어 UI 스타일 변경, 버그 수정, 레이아웃 조정 등의 요청을 모두 음성이나 자연어로 입력하는 것 만으로 AI가 이를 인식하고 자동으로 작성한다. 안드레 카파시는 코드 리뷰나 디버깅도 AI에 맡기고 있다고 설명했다. 에러 메시지를 복사해 붙여넣기만 해도 대부분 문제가 해결되며, 코드 변경 내용은 별도 검토 없이 전부 수락하는 방식으로 작업한다. 그는 이러한 흐름을 '더 이상 코딩이라 부를 수 없는 새로운 제작 방식'이라고 표현했다. 안드레 카파시 외에도 실리콘밸리의 스타트업에서 상당수 AI를 활용한 개발이 가속화되고 있는 추세다. 미국 최대 스타트업 액셀러레이터인 와이컴비네이터의 개리 탄 최고경영자는 "포트폴리오 스타트업 중 25%가 전체 코드의 95%를 AI에 의존하고 있다"고 밝힌바 있다. 그는 LLM 기반 개발 도구를 활용하면 소규모 인력으로도 대규모 제품을 빠르게 출시할 수 있으며, 코드 품질 역시 일정 수준 이상을 유지할 수 있다고 설명한다. 더불어 비개발자인 실무자도 직접 앱을 개발하고 운영하는 만큼 속도가 중요한 스타트업의 경쟁력을 높일 수 있다는 것도 장점으로 꼽았다. 비개발자나 초급 개발자도 프로토타이핑 수준의 기능을 빠르게 구현할 수 있어 스타트업과 소규모 팀에 적합하다는 의견이 제시된다. 프로덕트 매니저, 디자이너 등의 직군에서도 AI 기반 개발 도구를 도입하는 사례가 늘고 있다. AI의 개입이 코드 작성 전반을 대체하면서 개발자의 역할도 재정의되고 있다. 코드를 잘 작성하는 능력은 점차 AI로 대체되고 있으며 대신 AI의 효율적 활용, 명확한 설계 지시 능력, 비즈니스 요구사항과 다양한 기술 간 조합 능력이 새로운 핵심 역량으로 부상하고 있다. 안드레 카파시의 바이브코딩에 대해선 아직 긍정과 우려가 교차한다. 생산성과 접근성을 높였다는 평가가 있는 반면, 코드 품질 저하와 기술 부채 누적에 대한 경계도 커지고 있다. 특히 AI가 생성한 코드를 사용자가 충분히 이해하지 못한 채 적용할 경우 보안 취약점이나 논리 오류가 발생할 수 있다. 복잡한 시스템에서는 장기적인 유지보수가 어려워질 수 있다는 지적도 제기된다. 안드레 카파시 역시 바이브코딩이 주말에 만들고 테스트하는 프로젝트용으로 바이브코딩이 적합하며 진짜 코딩은 아니라고 언급했다. 간단한 서비스나 데모 개발 등에는 효과적이지만 정교한 인프라나 실시간 시스템 개발에는 여전히 한계가 있다는 것이다. 더불어 그는 일부 버그의 경우 AI가 해결하지 못해 반복적인 요청이나 질문을 우회해야 했다고 밝혔다. 파이썬 웹 프레임워크 장고(Django)의 공동 창시자인 사이먼 윌리슨도 "LLM은 강력한 보조 도구이지만, 코드에 대한 이해와 검토 과정을 생략해서는 안 된다"며 과도한 AI 의존에 대해 경고했다. 이러한 우려에도 불구하고 AI를 중심에 둔 개발 방식은 빠르게 하나의 흐름으로 자리잡고 있다. 구글, 마이크로소프트, 아마존 등 주요 빅테크는 코파일럿, 제미나이 코드 어시스트, Q디벨로퍼 등 자체 개발한 LLM 기반 개발 도구를 선보이고 있다. AI 기반 개발은 아직 실험과 실전 단계의 경계에 놓여 있다. 그러나 LLM이 생성하는 코드 품질이 빠르게 개선되며 일부 분야에서는 코드를 쓰지 않고 개발이 가능할 것이란 예측이 강세를 보이고 있다. 베타랩스 데니스김 CEO는 "바이브코딩은 아직 초기 개념이지만 직관과 감성, 협업의 시대로 전환하는 디딤돌이 될 수 있다"며 "이제 우리는 AI와 코드를 함께 느끼는 시대로 향하고 있는지도 모른다"고 말했다.

2025.03.30 09:11남혁우

코난테크놀로지, 의료분야 국내 첫 LLM 기반 진료 플랫폼 개발

코난테크놀로지(대표 김영섬)가 생성형인공지능(AI) 기술을 기반으로 의료 분야에 특화된 대규모언어모델(LLM)을 선보인다. 코난테크놀로지는 한림대학교 의료원과 '생성형AI기반 입원환자 전주기 기록지 작성 및 의료원 지식상담 플랫폼 구축' 사업을 계약했다고 5일 밝혔다. 이 사업은 한림대학교의료원과 협력하여 국내 의료 분야에 특화된 생성형 AI 플랫폼을 개발하고 적용하는 것을 목표로 하며, 양 기관은 오는 7월까지 의료 AI 솔루션 공동 개발에 나서게 된다. 입원환자 전주기 의무기록은 접수부터 진료, 검사, 경과 기록, 퇴원까지 모든 과정을 아우르는 통합 기록 시스템으로, 의료 기록 전 과정에 LLM 기술을 적용하는 사례는 국내 최초다. 이에 따라 의무기록 작성에 소요되는 시간이 연간 최대 절반까지 단축될 것으로 예상되며, 실시간 데이터 분석과 함께 입력 오류도 줄어들어 의료기록의 정확성이 한층 높아질 전망이다. 생성형 AI가 의료 현장에 도입되면, 환자 관리와 케어에 더 많은 시간을 할애할 수 있는 환경이 조성되어 궁극적으로 의료 서비스의 품질 향상으로 이어질 것으로 기대된다. 양 기관은 의료 기록 시스템 외에도 검색 증강 생성(RAG) 기술을 활용한 지식 상담 플랫폼을 개발해 의료진과 교직원의 실시간 정보 검색과 상담을 지원할 계획이다. 윤리적 AI 설계와 안전 필터링으로 정보 신뢰성을 강화하며, AI 오남용 방지를 위한 대응 시스템도 구축한다. 김규훈 코난테크놀로지 사업부장은 "생성형 AI 기술을 적용해 병원 행정과 진료 과정에서 업무를 효율화하려는 시도가 늘어나는 만큼, 의무기록 작성 AI 서비스를 시작으로 의료 AI 시장의 수요에 민첩하게 대응하며 관련 모델 고도화와 제품화를 이어가겠다"고 포부를 전했다. 한림대학교의료원은 초기 개념검증(PoC) 단계부터 서비스 기획, 의료진 인터뷰, 방향성 도출까지 사업의 주요 과정을 주도적으로 이끌었다. 코난테크놀로지는 한림대학교의료원이 제공한 실무적 통찰과 피드백, 그리고 의료 AI의 특수성을 반영한 철저한 검증을 기반으로 안전하고 신뢰성 높은 의료 AI 솔루션을 고도화 해나갈 예정이다.

2025.02.05 16:46남혁우

[기고] 기업 데이터 분석의 새로운 패러다임, 생성형 BI

그야말로 AI열풍이다. 기업에서는 업무 전반에 인공지능(AI) 특히, 대규모 언어모델(LLM)을 적용하거나 새로운 비즈니스 기회를 창출하는 시도가 활발하게 이루어지고 있다. LLM은 언어 모델이기 때문에 주로 비정형 텍스트 문서를 기반으로 AI 활용을 모색하고 있다. LLM의 단점을 보완하기 위해 검색 증강 생성(RAG) 아키텍처를 적용하는 경우도 많다. 다만, 기업의 중요한 정보는 비정형(unstructured) 문서에만 존재하는 것이 아니라, 관계형 데이터베이스(RDB) 같은 데이터 저장소에 정형(structured) 형태로도 존재한다. RDB 데이터의 LLM 적용을 위해서 RDB 데이터를 문서형태로 변환하는 것은 비효율적이다. RDB 데이터는 SQL을 통해 질의하고 결과를 얻는 것이 적절하므로, LLM이 SQL을 생성하도록 하는 것이 바람직하다. 이 과정은 자연어 기반 질의(NL2SQL) 영역에 속하며, LLM이 자연어 질의를 SQL로 변환할 수 있다. LLM은 자연어 질의에 대한 답변을 비롯해 SQL 작성에도 비교적 높은 수준의 성능을 보인다. 다만, LLM은 조직의 내부 DB 정보를 학습하지 않았으므로 RAG 방식으로 기업 내 DB 정보를 LLM 프롬프트에 질의와 함께 전달해 주면, 비교적 정확한 SQL을 생성할 수 있다. RDB에 데이터를 저장하고 분석하는 일은 전통적인 비즈니스 인텔리전스(BI) 영역에 속한다. 데이터 분석을 목적으로 한 NL2SQL은 BI 영역에 생성형AI를 적용한 것이므로 '생성형 BI'라 부를 수 있다. 글로벌 리서치 기관인 가트너에서도 생성형 BI라는 용어를 사용하기 시작했으며, 비정형 텍스트를 대상으로 생성형AI가 활발히 적용된 만큼, 정형 데이터를 대상으로 한 생성형 BI 영역도 급속도로 성장할 것으로 예상된다. 하지만 LLM이 생성하는 SQL이 항상 정확한 것은 아니다. 단순한 DB 모델에서는 LLM의 정확도가 높지만, 복잡한 DB 모델에서는 성능이 떨어질 수 있다. 정확도를 높이기 위해 DB 정보에 대한 설명을 풍부하게 만들어주면 성능이 향상될 수 있으나, 여전히 100% 만족하기는 어렵다. 그 이유는 기업의 복잡한 업무가 DB 테이블 설계에 반영되어 있을 뿐만 아니라, DB 설계자의 설계 스타일도 반영되기 때문이다. 이러한 정보를 모두 서술하기도 어렵고, LLM에 전달해도 이해하지 못해 잘못된 SQL을 생성할 가능성이 크다. 또 다른 문제점은 BI 데이터 분석이 주로 수치화된 정보를 다룬다는 점이다. 예를 들어, 판매수량, 판매금액, 생산수량, 불량수량 등을 집계하는 경우가 많은데, 잘못 생성된 SQL의 결과값이 정답 SQL의 결과값과 조금만 다르다면, 예를 들어 연간 매출액이 10조인데 9.9조나 10.1조의 결과가 나왔다면, 사용자가 이를 오답으로 인지하기 어렵다. 텍스트 문서를 기반으로 한 생성형 AI의 답변이 거짓일 경우, 예를 들어 "세종대왕이 아이패드를 던졌다"는 식의 거짓말은 문장의 특성상 사용자가 쉽게 알아차릴 수 있지만, 숫자로 된 답변은 큰 차이가 아니라면 잘못된 결과임을 인지하기 어렵다. 이러한 Gen BI의 한계를 극복하는 방법 중 하나는 온라인 분석 처리(OLAP)를 활용하는 것이다. OLAP은 SQL을 모르는 사용자도 DB 데이터를 분석할 수 있게 해주는 기술이다. 사용자가 OLAP솔루션에서 OLAP리포트를 작성하고 실행 버튼을 누르면, OLAP엔진이 SQL을 자동 생성해주고 실행 결과를 리포트에 반환해준다. 마치 엑셀의 피봇테이블 기능으로 엑셀의 데이터를 분석하는 것과 유사하다. OLAP이 쿼리 생성자로서의 역할을 수행하는 셈이다. OLAP은 수십 년에 걸쳐 상용화된 기술로, OLAP의 쿼리는 항상 안전하고 정확하다. OLAP 메타데이터를 설정할 때 비즈니스 메타데이터와 기술 메타데이터의 매핑 및 테이블 간의 조인 관계를 미리 설정하기 때문에, 설정되지 않은 조합의 SQL은 생성되지 않는다. OLAP 기반의 Gen BI에서는 LLM이 OLAP 리포트 항목을 선택할 수 있도록, RAG 방식에서 DB 정보 대신 OLAP 메타 정보를 전달하면 된다. 이후 LLM이 OLAP 리포트를 생성하면, OLAP 엔진을 통해 정확한 SQL을 생성하고 실행할 수 있다. OLAP 기반 생성형 BI의 또 다른 장점은 NL2SQL 방식의 Gen BI보다 오류 식별이 용이하다는 점이다. 질의에서 바로 SQL이 생성되는 것이 아니라, 중간 단계에서 OLAP 리포트 항목(관점, 측정값, 필터 조건 등)이 만들어지므로, 사용자가 이를 보고 LLM이 올바른 답을 도출했는지 쉽게 검증할 수 있다. 많은 OLAP 기반 BI 솔루션과 분석 솔루션들이 Gen BI 기능과 서비스를 출시하고 있다. 아직 Gen BI는 초기 단계이지만, 정확도를 높이기 위한 RAG 적용이나 외부 LLM 활용에 따른 데이터 보안 문제 등이 점차 개선될 것으로 보인다. 예를 들어 마이크로스트레티지와 같은 OLAP 기반 BI 솔루션 제공업체들은 기존 BI의 장점에 AI를 결합한 솔루션을 제공하고 있다. NL2SQL 기반의 생성형 BI도 SQL을 아는 개발자나 분석가의 생산성을 높이는 초도 Query 작성용으로 활용한다면 가치를 발휘할 것이다. 그러나 SQL을 모르는 일반 사용자에게는 OLAP 기반의 생성형 BI가 더 유리할 것이다. 언제까지? 아마도 LLM이 DB 설계자의 성향까지 극복해 정확한 NL2SQL을 생성할 때까지일 것이다. 챗GPT의 등장과 빠른 업그레이드처럼, 그 시기는 예상보다 빨리 올 수도 있다.

2024.09.13 10:29류진수

IBM, 왓슨x에서 미스트랄 라지 모델 지원

IBM은 '왓슨x.ai'에서 미스트랄 라지 모델을 제공한다고 25일 발표했다. 인공지능(AI) 개발자를 위한 IBM의 기업용 AI 스튜디오인 왓슨x.ai는 IBM의 그래니트 모델 외에도 다양한 오픈 소스 및 상용 모델 선택이 가능하며, 이를 용도에 따라 변형하거나 비즈니스 솔루션 및 애플리케이션과 통합해 사용할 수 있다. IBM은 이미 왓슨x.ai 내에서 기업 환경에 적용할 수 있는 소규모 모델인 믹스트랄-8x7B를 제공하고 있다. 이 모델은 IBM이 최적화한 모델로, 주어진 시간 동안 처리할 수 있는 데이터의 양이 기존 모델보다 50% 증가했다. 새롭게 추가된 미스트랄 라지는 서비스형 소프트웨어(SaaS)로 먼저 제공된다. 이제 왓슨x 고객은 추론과 다국어 기능이 필요한 복잡한 전사적 작업을 처리하도록 최적화된 미스트랄 AI의 가장 강력한 모델을 활용할 수 있다. 검색증강생성(RAG) 전문화를 통해 더 장시간의 채팅 상호작용과 대용량 문서 처리가 가능하며, 사용자 정의 함수나 API와 같은 외부 도구에 연결할 수 있고, 뛰어난 코딩 성능으로 특정 용도에 맞는 애플리케이션을 쉽게 구축할 수 있다. 책임감 있는 AI 구축을 위해 안전장치로 사용할 수 있는 '가드레일' 기능을 내장했다. 기업은 이제 왓슨x 플랫폼에서 미스트랄 라지를 통해 데이터 스토어, 프롬프트 랩, 모델 튜닝, 프로세스 모니터링 및 거버넌스 기능을 포함한 추가적인 엔터프라이즈 지원 제품을 활용할 수 있다. 왓슨x 고객은 특정 플랫폼에 종속되지 않고 온프레미스나 퍼블릭 클라우드 제공업체 등 원하는 환경에서 왓슨x.ai 내 모델을 배포할 수 있다. 빠르게 변화하는 AI 분야에서 기업이 민첩하게 적응하고 인프라 및 개발에 대한 매몰 투자를 피하려면 유연성이 핵심이기 때문이다. IBM은 왓슨 플랫폼에 미스트랄 AI의 상용 모델을 제공함으로써 개방형 멀티 모델 전략을 더욱 확장하고 기업이 혁신, 변화, 확장할 수 있도록 지원한다는 계획이다. 책임감 있게 기업 혁신에 기여하고자 하는 IBM의 의지를 바탕으로, IBM은 한도형 지적 재산권 보상 제도를 통해 미스트랄 라지에 대한 고객 보호를 제공한다고 밝혔다. 이는 IBM이 자사의 AI 모델인 IBM 그래니트 모델에 대한 고객 보증 제도를 적용한 이래 제3자 파운데이션 모델까지 확대한 첫 번째 사례다.

2024.07.25 11:37김우용

업스테이지-플리토, 아시아 다국어 AI모델 함께 만든다

업스테이지(대표 김성훈)가 플리토와 함께 일본어, 태국어 등 데이터가 부족한 아시아 지역 대규모 언어모델을 공동 개발한다. 업스테이지는 플리토와 AI 언어 데이터 구축을 위한 업무협력 협약(MOU)를 체결했다고 9일 밝혔다. 현재 빅테크 기업이 주도하는 거대언어모델(LLM) 개발은 영어에 편중돼, 상대적으로 아시아권의 언어는 학습 데이터가 부족한 실정이다. 이에 양사는 ▲ 한국어 언어모델 평가 플랫폼 'Open-Ko LLM 리더보드' 벤치마크 데이터셋 구축 ▲ 다국어 LLM 리더보드 운영 ▲ 저자원 언어 데이터 구축 및 저자원 언어 활용 LLM 현지화 ▲ 기업용 LLM 구축에 따른 데이터 공급 파트너십 강화 등 다양한 분야에서 협력을 강화하기로 했다. 이를 통해 고품질의 저자원 언어 데이터를 확보, 사전학습 LLM 솔라의 지원 언어를 확장해 동남아시아 등 다양한 지역별 언어에 특화된 맞춤형 모델을 개발하겠다는 전략이다. 솔라는 현재 한국어, 영어를 지원하며, 연내 일본어와 태국어까지 지원 언어를 확대할 예정이다. 플리토는 이번 협약을 바탕으로 언어 데이터와 AI 기술 간의 시너지를 통해 언어 모델의 고도화에 적극적으로 기여할 예정이다. 더불어 다국어 병렬 말뭉치 구축 노하우와 저작권 이슈가 없는 텍스트·이미지·음성 데이터셋을 통해 자사 언어 수집 기술 경쟁력을 높인다는 계획이다. 김성훈 업스테이지 대표는 “언어모델로 촉발된 생성형 AI 열풍이 전 세계를 뒤흔들고 있는 상황에서 양질의 언어 데이터 확보는 필수적인 과제”라며 “업스테이지는 이번 플리토와의 협력을 통해 전 세계 더 많은 사람들이 생성형 AI 혁신을 경험할 수 있도록 데이터 고도화에 나설 것”이라고 밝혔다. 이정수 플리토 대표는 "저자원 언어 학습분야는 초거대언어모델 성능의 핵심 요소로 부상했다”며 “양사 협력을 통해 고품질 데이터와 고도화된 기술 간의 접목이 국내 생성형 AI 생태계에 얼마나 긍정적인 기여를 할 수 있는지 보이자고 한다”고 말했다.

2024.05.09 15:15남혁우

스노우플레이크, 미스트랄AI와 협력…'미스트랄 라지' 모델 제공

스노우플레이크는 최근 프랑스 AI 솔루션 제공업체 미스트랄AI와 파트너십을 체결했다고 11일 일 발표했다. 이 파트너십은 스노우플레이크 산하 벤처 캐피탈인 스노우플레이크 벤처스의 미스트랄AI의 시리즈 A 투자를 포함한다. 양사의 협력으로 스노우플레이크 고객은 미스트랄AI가 가장 최근에 선보인 플래그십 대규모 언어 모델(LLM)인 '미스트랄 라지'를 스노우플레이크 데이터 클라우드 플랫폼에서 적용할 수 있다. 미스트랄AI의 기본 모델인 '미스트랄 7B'와 오픈 소스 모델 '믹스트랄8x7B'에도 액세스할 수 있다. '미스트랄 라지'는 고유한 추론 능력을 갖춘 LLM 모델로 코딩과 수학에 능숙하고 한번의 요청으로 수백 페이지에 달하는 문서를 처리할 수 있다. 프랑스어, 영어, 독일어, 스페인어, 이탈리아어, 5개 언어 처리가 가능하다. 기존 생성형 AI 모델과 '대규모 다중 작업 언어 이해 측정(MMLU)' 비교함에서 뛰어난 성능을 입증하며 챗GPT-4에 이어 API를 통해 사용 가능한 모델 중 2위를 차지하기도 했다. '미스트랄 7B'는 낮은 지연 시간과 메모리 요구사항에 비해 높은 처리량을 갖춘 것이 특징이다. '믹스트랄 8x7B'는 대부분의 성능 비교에서 챗GPT3.5보다 빠르고 품질이 우수한 것으로 나타났다. 미스트랄AI의 모델들은 '스노우플레이크 코텍스'에서 프리뷰 공개 형태로 고객에게 제공된다. 스노우플레이크 코텍스는 스노우플레이크 플랫폼에서 생성형 AI를 활용할 수 있는 완전 관리형 LLM 및 벡터 검색 서비스이다. AI/ML 기술 없이도 쉽고 강화된 보안 환경에서 생성형 AI를 활용할 수 있는 서비스로, 기업 고객은 데이터에 대한 보안, 개인 정보 보호 및 거버넌스는 유지하면서 데이터를 빠른 속도로 분석하고 AI 앱을 구축할 수 있다. 스노우플레이크 지난해 감정 분석, 번역, 요약과 같은 특수 작업을 위한 LLM을 지원하는 코텍스를 처음 공개했다. 또한, 메타 '라마2' 모델을 시작으로 검색증강생성(RAG)을 포함한 기본 LLM 지원을 늘리고 있다. 스노우플레이크는 미스트랄AI와의 파트너십을 통해 생성형 AI에 대한 투자를 이어가면서, 기본형 LLM을 스노우플레이크 코텍스에서 제공해 기업이 다방면 비즈니스에 최첨단 생성형 AI를 도입할 수 있도록 지원하고 있다. 복잡한 GPU 관리 대신 사용자의 AI 활용도를 넓히기 위해 엔비디아와 적극적으로 협력하고 있다. 스노우플레이크 코텍스는 엔비디아 트라이튼 추론 서버를 활용해 풀스택 가속 컴퓨팅 플랫폼을 제공하고 있다. 스노우플레이크 코텍스 LLM 기능이 공개 프리뷰되며 스노우플레이크 기업 고객은 기업 고유의 데이터를 바탕으로 다양하게 AI를 활용할 수 있게 됐다. SQL 기술을 갖춘 사용자라면 누구나 수 초 내에 감정 분석, 번역, 요약과 같은 특수 작업을 비용 효율적으로 진행할 수 있다. 파이썬 개발자라면 스노우플레이크 코텍스에서 제공하는 미스트랄AI의 LLM은 물론, 곧 공개될 스노우플레이크 스트림릿의 대화형 기능을 통해 수 분 내에 챗봇과 같은 풀스택 AI 앱을 개발할 수 있게 된다. 간편해진 경험과 높은 수준의 보안은 역시 곧 공개될 스노우플레이크의 통합 벡터 기능과 벡터 데이터 유형을 통해 RAG에도 동일하게 적용될 예정이다. 슈리다 라마스워미 스노우플레이크 신임 CEO는 “스노우플레이크는 미스트랄AI와의 파트너십을 통해 최정상급 성능의 LLM을 고객에게 직접 제공하고, 사용자는 간편하면서도 혁신적인 AI 앱을 구축할 수 있게 됐다”며 “스노우플레이크 코텍스를 통해 더 많은 기업이 데이터 클라우드의 보안과 개인 정보 보호는 강화하고 새롭고 경제적인 AI 사용 사례를 만들어 내기를 바란다”고 밝혔다. 아르튀르 멘슈 미스트랄AI 공동창립자 겸 CEO 는 “스노우플레이크의 보안, 개인 정보 보호 및 거버넌스에 대한 원칙은 누구나 어디에서든 혁신적인 AI를 활용할 수 있도록 하겠다는 미스트랄AI의 포부와 맞아떨어진다”며 “미스트랄AI는 전세계적으로 기업이 생성형 AI 활용에 더 가까워지도록 고성능, 고효율에 신뢰할 수 있는 AI 모델을 개발하겠다는 스노우플레이크의 목표에 공감한다”고 강조했다. 그는 “스노우플레이크 데이터 클라우드에서 미스트랄AI의 모델을 활용함으로써, 고객이 민주화된 AI를 경험하고 더 큰 가치를 창출하는 고도화된 AI 앱을 생성할 수 있기를 기대한다”고 덧붙였다. 스노우플레이크는 고객, 데이터 클라우드 생태계는 물론, 기술 커뮤니티 전체에 대한 AI 혁신을 위해 노력하고 있다. 이에 스노우플레이크는 최근 개발자, 연구원 및 조직이 개방적이고 안전하며 책임감 있는 AI를 개발하기 위한 국제 커뮤니티인 'AI 얼라이언스'에 가입했다. AI 얼라이언스를 통해 스노우플레이크는 생성형 AI가 가져올 도전과제와 기회에 대해 전방위적이고 개방적으로 대응하며 누구나 AI 기술을 활용하고 혜택을 얻을 수 있도록 지속적으로 노력할 계획이다.

2024.03.11 10:52김우용

구글, 직접 학습하고 개선하는 로봇 훈련도구 공개

로봇이 주변 환경을 인식하고 스스로의 행동을 분석해 작업을 개선하는 대규모 인공지능(AI) 모델 기반 학습도구를 구글에서 공개했다. 5일 테크크런치 등 외신에 따르면 구글 딥마인드 로보틱스는 로봇 학습모델 '오토RT'와 'RT-트레젝토리' 등을 공개했다. 오토RT는 로봇에게 주어지는 다양한 환경과 목적에 따라 명령을 자연스럽게 수행할 수 있도록 개발된 기본 학습모델이다. 대규모 언어모델(LLM)과 비전 언어모델(VLM)과 로봇 제어 모델을 결합해 사전에 설정되지 않은 환경을 스스로 분석 후 주어진 목표를 적합하게 수행하기 위한 방안을 도출하고 수행한다. 예를 들어 '책상 위의 캔을 들어'라는 명령이 주어지면 언어모델이 주변 환경을 스캔한 후 모든 객체에 따른 정보를 텍스트 데이터화 한다. 이후 LLM이 책상과 캔과 관련된 데이터를 확인 후 명령을 수행하기 위한 작업 프로세스을 생성한다. 작업 프로세스는 환경을 고려해 다양하게 생성되며 부적절한 방식과 실제 업무에 필요한 작업 등을 분류하는 과정을 거친다. 실제 유효하다고 판단된 작업만이 업무 프로세스로 샘플링 된 후 로봇에 적용되어 수행된다. 또한, 수행 과정과 결과에 대한 데이터를 수집 후 분석해 이후 작업을 개선할 수 있는 기능도 갖췄다. 구글 측에 따르면 오토RT는 로봇이 얼마나 자율적으로 명령을 수행할 것인지 원하는 정도에 따라 설정할 수 있다. 또한 얼마나 안전하고, 자율적으로 업무를 수행하는지 판단하기 위해 테스트를 진행했다. 7개월에 걸쳐 한 번에 최대 20대의 로봇을 다양한 환경을 조성하며 테스트를 실시한 결과 6천650개의 고유한 언어 지침을 다루는 7만7천 개 이상의 사례를 수집할 수 있었다고 밝혔다. 구글은 로봇이 업무를 수행하는 과정에서 가장 적합한 물리적 동작을 수행하기 위한 RT-트레젝토리라는 학습모델도 도입했다. 로봇의 동작 궤도를 시각화해 반복 학습 과정에서 어떤 동작으로 업무를 수행했을 때 더 좋은 결과를 얻을 수 있는지 확인하고 개선할 수 있도록 지원한다. 훈련 데이터를 지원하지 않은 41개 작업으로 테스트한 결과 작업 성공률이 29%에서 63%로 2배 이상 향상됐다고 밝혔다. 또한 보다 안전한 로봇 활용을 위해 자체 필터링 기능 외에도 추가적인 안전조치 계층을 구성했다. 관절에 가해지는 힘이 주어진 임계값을 초과하면 자동으로 멈추도록 설정했다. 더불어 작동 중인 모든 로봇은 사람이 직접 중단한 수 있는 물리적 비활성화 스위치가 눈에 잘 띄는 곳에 위치하도록 구성할 것을 권했다. 구글 딥마인드 로보틱스 팀은 “우리는 여러 환경에서 다양한 명령을 자연스럽게 수행하기 위한 다목적 로봇개발을 목표로 하고 있다”며 “이번에 공개한 대규모 AI모델과 시스템 등을 통해 더욱 효율적인 로봇을 선보일 수 있을 것으로 기대한다”고 말했다.

2024.01.05 09:09남혁우

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

‘국가 AI’ 지휘할 조직, 통합조정 실행력 갖춰야

위믹스 상장폐지 놓고 법정 공방…재판부 "늦어도 30일까지 결론"

"'카스2' 최적화 시켜줄 수 있어?"...엔비디아 AI 게이밍 시연해보니

양자컴퓨팅 탄력 받았나…아이온큐 36% 급등

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현