• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 인터뷰
  • 인사•부음
  • 글로벌뉴스
창간특집
인공지능
배터리
컨퍼런스
칼럼•연재
포토•영상

ZDNet 검색 페이지

'AI 알고리즘'통합검색 결과 입니다. (12건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

엑스게이트 "AI와 양자로 차세대 방화벽 시장 주도"

"우리가 보유한 여러 보안 솔루션에 인공지능(AI)과 양자기술을 접목, 강력한 보안 플랫폼을 제공합니다. " 주갑수 엑스게이트 대표는 13일 서울 양재동 엘타워에서 열린 기자간담회에서 이같이 밝히며 "차세대 방화벽 시장을 주도하겠다"고 강조했다. 이날 엑스게이트는 인공지능(AI)과 양자기술로 기존 방화벽 한계를 넘겠다며 차세대 방화벽 '엑스게이트(AXGATE)'를 선보였다. 주 대표는 “엑스게이트 차세대 방화벽은 멀티코어에 알맞은 엔진 설계 및 자체 부하 분산 알고리즘을 이용해 최고 성능을 구현한다”고 소개했다. ▲애플리케이션(APP)에서 네트워크 접근 및 사용을 정밀하게 통제하는 'APP 제어' ▲암호로 된 통신 내용을 사람이 읽을 수 있는 형태로 되돌리는 '보안소켓계층(SSL) 복호화 원천 기술' ▲자동으로 상관관계를 분석해 복잡하고 숨겨진 공격 흐름을 알아채는 기능 등을 갖췄다. 엑스게이트는 네트워크 보안 전문업체다. 코스닥 상장사다. 작년 매출은 432억원, 영업이익은 35억원을 기록했다. 2023년에 이어 2년 연속 매출 400억대를 달성했다. 이날 기자간담회는 엑스게이트가 파트너 초청 행사를 열기에 앞서 출입기자들을 초청, 개최했다. 엑스게이트 파트너사는 총판 3개사에 약 300여곳에 달한다. 엑스게이트는 국내 1위 가상사설망(VPN) 기업이기도 하다. 윈스 등과 경쟁하고 있다. 세간을 흔들고 있는 SK텔레콤(SKT) 해킹 원인 중 하나로 VPN 취약점이 거론되는데 주 대표는 “실제 SK텔레콤 해킹 후 우리 회사 '가상사설망(VPN) 제품을 사고 싶다'는 문의를 많이 받고 있다"고 들려줬다. 그는 대규모 해킹 사고는 VPN 취약점이 원인일 가능성이 있다면서 “보안 패치가 미흡하고 수준 높은 암호화가 안 돼서”라고 진단했다. 행사에서 주 대표는 AI와 양자기술을 강조했다. 양자 기술을 적용하면 보안 단계가 올라간다는 것이다. 주 대표는 “양자컴퓨터가 암호 알고리즘을 풀기 어렵게 하는 양자내성암호(PQC·Post Quantum Cryptography)를 국내에서 엑스게이트가 처음으로 상용화하겠다”고 발표했다. 그는 “양자컴퓨터가 나와 암호 알고리즘이 힘을 잃었다”며 “양자컴퓨터가 암호를 빠르게 잘 풀어 보안을 위협한다”고 지적했다. 그러면서 “양자 위협에 대응할 수 있는 양자 통신 보안이 필수”라며 “양자컴퓨터가 암호 알고리즘을 풀기 어렵게 하는 PQC를 국내 최초로 상용화하겠다”고 말했다. 엑스게이트는 관련 기술을 서울대와 함께 연구개발하고 있다. 서울대가 연구한 기술을 올해 제품화해 내놓을 예정이다. 젠슨 황 엔비디아 최고경영자(CEO)가 올해 초 “양자컴퓨터가 상용화하려면 20년은 더 걸릴 것”이라고 발언한 데 대해 주 대표는 “시점이 중요한 게 아니다”라며 “언젠가 올 세상을 차근차근 준비하고 있다”고 답했다. 이어 “새로운 기술이 상용화됐을 때 대비한 기업이 살아남을 것”이라고 연구개발에 투자하는 이유를 내놨다. 주 대표는 “양자컴퓨터 보안 기업으로 주목받아 주가가 한 달 새 10% 넘게 오른 것 같다”며 “주가는 10년 먼저 움직이는 듯하다”고 덧붙였다. 이날 코스닥시장에서 엑스게이트는 전날보다 160원(2.06%) 오른 7천910원에 거래를 마쳤다. 한 달 전(6천980원)과 비교하면 13.32% 상승했다.

2025.05.13 17:24유혜진

"AI 알고리즘, 안전성·신뢰성·공공성 확보해야”

국회 과학기술정보방송통신위원회 박민규 의원(더불어민주당)은 인공지능과 데이터 기반 기술의 급속한 발전에 따라 알고리즘의 안전성과 신뢰성, 공공성을 확보하기 위해 지능정보화 기본법 개정안을 대표발의 했다고 25일 밝혔다. 최근 금융, 의료, 채용, 행정 등 다양한 분야에서 알고리즘이 주요 의사결정 도구로 활용되고 있지만 알고리즘이 내포한 편향성이 사회적 불평등을 심화시키고 공정성을 저해할 수 있다는 우려가 지속적으로 제기되고 있다. 특히 고위험 인공지능의 경우 인간의 생명과 안전, 기본권, 재산 등에 심각한 영향을 미칠 수 있어 이에 대한 제도적 장치 마련이 필요하다는 지적이 크다. 박 의원이 발의한 개정안은 과학기술정보통신부 장관이 알고리즘의 안전성, 신뢰성, 공공성에 관한 기준과 지능정보기술 개발, 활용자와 지능정보서비스 제공자가 준수해야 할 사항을 담은 가이드라인을 마련하고 보급하도록 하는 내용을 담고 있다. 또한 지능정보기술을 개발하거나 활용하는 자와 지능정보서비스 제공자는 알고리즘 설계 운용 시 안전성, 신뢰성, 공공성 향상을 위해 노력해야 한다는 내용을 명시했다. 박 의원은 “알고리즘의 편향성과 오작동을 사전에 방지하고 공공성과 신뢰성이 확보된 지능정보기술 환경 조성을 위한 제도 마련의 필요성이 지속적으로 제기됐다”며 “이번 개정안 발의가 국민들의 일상과 밀접한 분야에서 알고리즘으로 인한 부정적 효과를 예방하기 위한 제도적 기반이 마련되는 계기가 될 것”이라고 말했다.

2025.03.25 17:21박수형

"목표는 AI 3대 강국, 현실은 10위권 밖"…어디부터 손봐야 할까

인공지능(AI)을 둘러싼 글로벌 패권 경쟁이 가속화되면서 한국 정부가 'AI 3대 강국'을 목표로 강도 높은 정책을 내놓고 있다. 다만 미국, 중국뿐만 아니라 프랑스, 독일 등 주요국과의 격차가 크고 현실적인 경쟁력 확보에도 많은 과제가 남아 있다는 지적이 나온다. 정부는 최근 국가인공지능위원회를 통해 'AI 컴퓨팅 인프라 확충 방안'을 발표하고 내년 상반기까지 그래픽처리장치(GPU) 1만8천 장을 확보하는 동시에 세계 최고 수준의 거대언어모델(LLM) 개발을 추진하겠다는 계획을 내놓았다. 정치권에서도 여야를 막론하고 'AI강국 위원회'를 발족하거나 AI 특위를 구성하는 등 관련 논의가 활발히 진행되고 있다. 그럼에도 국내 AI 기술 수준이 실제로 어느 정도에 와 있는지와 정부가 목표한 'AI 3대 강국'이 과연 현실적인가에 대해서는 논란이 많다. 데이터·알고리즘·컴퓨팅 파워라는 AI 3대 요소 중 어디가 취약한지, GPU 등 인프라 부족 문제는 어떻게 해결해야 할지, 나아가 AI 인재 양성과 사회 전반의 AI 활용 역량을 높이기 위해 무엇이 필요한지 등 다양한 쟁점이 제기되고 있는 상황이다. 이에 지디넷코리아는 최근 'AI강국 코리아의 현 주소와 전망'을 주제로 좌담회를 개최했다. 좌담회에서는 한국 AI 산업의 현주소, GPU 인프라와 원천 기술 경쟁력, 기업의 버티컬AI 활용 전략, 인재 및 리터러시 문제 등 핵심 의제에 대해 심도 있는 논의가 오갔다. 이날 행사에는 박은지 서울벤처대학원대학교 AI문화경영연구소장, 이경전 경희대학교 경영대 교수, 이제현 한국에너지기술연구원 책임연구원(에너지AI·계산과학실장), 지용구 더존비즈온 성장전략부문 대표(부사장), 차인혁 디지털플랫폼정부위원회(디플정) 서비스분과위원장이 참석했다. 사회는 방은주 지디넷코리아 전문기자가 맡았다. 'AI 3대 강국' 목표하나 현실은 10위권 밖…美·中 '초격차'에 佛·獨도 앞서 -방은주 전문기자(이하 사회): 곧 스탠퍼드 대학교에서 AI 지수 발표가 있을 예정인데 작년에 순위가 매우 낮게 나와 난리 한 번 났던 바 있다. 파운데이션 모델 순위에서 우리가 세계 6위라고 나오기도 했지만 인덱스에 따라 다르게 나오는 것도 많다. 현재 정부는 AI 3대 강국을 목표로 한다고 하는데 도대체 'AI 3대 강국'이라는 게 무엇이라고 생각하는가. 뭘 기준으로 3대 강국이라고 하는지, 한국 AI 기술 수준은 어디까지 왔는지, 현실적으로 따져봤을 때 우리가 3대 강국이 될 수 있는 건지 한번 짚어보자. -이제현 실장: 우리보다 위에 있는 나라를 생각해 보면 미국과 중국은 당연하고 프랑스도 미스트랄 같은 모델을 굉장히 잘 만들고 있다. 이 나라들은 확실히 우리보다 앞서 있다고 본다. 그 외에도 추가적으로 앞선 나라들이 더 있을 것이다. 최소한 우리가 6위보다 더 높은 순위는 아니라고 본다. -차인혁 위원장: 독일도 자체적인 소버린 AI를 보유하고 있다. 독일의 알레프 알파(Aleph Alpha)라는 기업이 있는데 파운데이션 모델을 기반으로 한 AI를 개발하고 있으며 상당히 높은 기술력을 갖춘 기업이다. 글로벌 자본으로부터도 많은 투자를 받았고 유럽 내에서도 주목받고 있는 회사다. 우리나라의 모델보다 훨씬 앞서 있다고 본다. -이경전 교수: 현재 AI 기술 수준을 보면 미국, 중국, 영국, 캐나다, 프랑스가 상위 5개국에 속한다. 그 다음으로 독일, UAE, 일본 등이 경쟁력을 보이고 있다. 우리가 AI 3위를 목표로 해야 한다는 얘기는 했지만 실제로 3위라고 평가받은 적은 없다. 지난 2023년 초까지만 해도 네이버 '하이퍼클로바(HyperCLOVA)'가 있어서 그 정도로 평가받을 가능성이 있었지만 이후 상황이 달라졌다. 물론 단순히 생성 AI만 보면 그렇지만 반도체 산업까지 포함하면 한국은 5위 안에 들어갈 수도 있다. 다만 로봇 기술을 기준으로 보면 프랑스, 독일이 더 앞서 있기 때문에 우리는 5위권에서 밀려난다. 또 제조, 의료, AI 관련 법·제도 측면에서도 우리는 경쟁력을 갖추지 못하고 있다. 특히 AI 의료나 원격 의료 관련 제도를 보면 한국은 10위권 밖이라고 봐야 한다. 만약 우리가 AI 디지털 교과서 같은 것을 신속하게 도입했다면 교육·응용 AI 분야에서 순위를 더 끌어올릴 기회가 있었을 것이다. 현재 한국의 AI 비즈니스가 제대로 성장하려면 제도적 준비가 필수적이나 현재로서는 10위권 밖으로 평가할 수밖에 없다. AI 활용도는 상황이 더 심각하다. 지난해 기준으로 AI 활용 수준은 20위권 밖이었고 이는 인도네시아나 필리핀보다는 높지만 글로벌 기준으로는 여전히 낮은 수준이다. 결국 AI 활용 속도가 너무 늦다는 점이 가장 큰 문제다. 기술 수준을 높이는 것만큼이나 제도 개혁과 AI 도입 촉진 정책이 시급하다. -지용구 부사장: 2주 전에 디지털 정책 포럼에서 최형두 국민의 힘 의원, 정동영 더불어민주당 의원과 만났을 때 비슷한 질문을 받았다. 당시 내 대답은 "이 격차가 의미가 있는가"였다. 현재 AI 기술 격차는 미국과 중국이 압도적으로 기술을 이끌어가는 '초격차' 수준이다. 그렇다면 '3위 이후부터는 이 순위가 큰 의미가 있는가'라는 생각이 들었다. 이경전 교수님 말씀처럼 어느 산업 분야를 포함하느냐에 따라 한국의 AI 순위도 달라진다. 5위권에 들어갈 수도 있고 10위권에 머무를 수도 있다. 또 하나 중요한 점은 단순히 AI를 사용하는 인구 수보다 'AI를 활용하는 기업의 수'가 더 중요한 지표가 될 것이라는 점이다. AI 생산성 지수가 점점 중요한 척도로 자리 잡고 있기 때문에 앞으로는 AI를 도입한 기업이 얼마나 늘어나는지가 더 핵심적인 논의가 돼야 한다고 본다. 또 AI를 사용하는 기업들이 실제로 성과를 내지 못하면 의미가 없다. AI를 활용하는 기업의 수가 얼마나 되는지 그리고 그들이 생산성 향상에 얼마나 기여하고 있는지를 측정하는 것이 중요하다. 현재 AI 산업은 반도체부터 로봇까지 다양한 분야에서 적용되고 있다. 중요한 것은 AI를 응용해 실질적인 수익 모델을 구축하는 것이다. AI 기업이라면 AI 기반 제품이 있어야 하고 이를 사용할 고객이 존재해야 하며 이를 통해 수익을 창출해야 한다. 단순히 AI 연구원을 많이 보유하고 있다고 해서 AI 기업이라고 할 수는 없다. 기업 관점에서 본다면 AI를 연구하는 것보다 이를 실제로 비즈니스에 적용해 수익을 내는 것이 더 중요하다. AI가 기업의 경쟁력을 높이는 실질적인 도구로 작용해야 한다. -사회: 한국의 순위는 대략 몇 정도로 평가하는가. -지용구 부사장: 현재 한국의 AI 경쟁력 순위는 대략 10위권 언저리 정도로 본다. 다만 이는 그다지 중요한 포인트는 아니라고 생각한다. -사회: 박은지 교수님은 문화예술 콘텐츠 분야에서 AI 활용을 연구하고 계신데 이에 대한 의견은 어떠한가. -박은지 소장: 문화예술 콘텐츠 분야에 국한해 말씀드리자면 이 분야에서 우리나라의 역량을 더욱 강화할 수 있는 기회가 있다고 본다. 사실 국내 문화예술 콘텐츠 분야에서는 이미 다양한 방식으로 AI가 활용되고 있다. 만약 AI 활용도를 이 분야에 한정해 집계한다면 해당 분야에서는 한국의 경쟁력이 상대적으로 높게 평가될 가능성이 있다고 생각한다. -사회: 콘텐츠 산업도 영화, 미술 등 여러 분야가 있다. 만약 예술 분야로 한정해 계량화한다면 한국의 순위는 더 높게 나올 수 있다고 생각하는가. 콘텐츠 분야는 우리가 강한 편 아닌가. -차인혁 위원장: 그런데 크리에이터 이코노미(Creator economy) 자체가 명확한 통계가 없어서 감으로 판단할 수밖에 없는 상황이다. -사회: 그렇다면 이 부분에 대한 통계를 만들 필요가 있다는 의미인가. -차인혁 위원장: 그렇다. 다만 현재 통계로 잡히는 문화 산업만 봐도 그 규모가 상당히 작다. 실제 대한민국의 세계 시장 점유율을 보면 우리가 생각하는 것보다 낮다. 현재 게임 산업에서의 점유율이 6% 이상으로 가장 높은 수준이고 나머지 문화 콘텐츠 산업은 대부분 2~3% 대에 불과하다. 특히 음악 산업은 K-POP의 영향으로 크다고 생각할 수 있지만 실제 세계 시장 점유율은 2.7% 정도에 그친다. 한국의 문화 산업 자체가 규모가 작고 해외 시장에서도 점유율이 1~3% 수준에 불과하다. 이 정도 규모에서 국가가 문화 방면에 집중해 대규모 지원 정책을 펼치는 것이 타당한지 고민해야 한다. 물론 문화 콘텐츠 산업에 종사하는 분들에게는 죄송한 말씀이다. 다만 우리가 가진 제한된 자원을 고려할 때 우선적으로 레버리지를 극대화할 수 있는 분야에 집중해야 하지 않을까 한다. 다양한 시도와 실험이 이루어지는 것은 긍정적이다. 한국인들은 원래 새로운 시도를 잘하고 창의적인 아이디어도 많다. 다만 지속적인 성과로 이어지려면 보다 전략적인 접근이 필요하다고 보는 것이다. AI 핵심 5대 경쟁 요소, GPU·데이터센터·전력망까지…韓, 준비됐나 -사회: 그렇다면 한국에서도 자체적인 기술과 기업이 나와야 하지 않나. 이를 위해서는 AI 경쟁력을 구성하는 핵심 요소들을 하나씩 점검할 필요가 있다. AI 경쟁력을 구성하는 요소로 데이터, 알고리즘, 컴퓨팅 파워, 법·제도, 인력 이 다섯 가지를 꼽을 수 있을 것 같다. 우선 컴퓨팅 파워부터 살펴보자. 얼마 전 정부가 국가 'AI 컴퓨팅센터' GPU 인프라 구축 계획을 발표했는데 해외 언론에서는 이에 대해 의문을 제기하는 반응도 있었다. "이 정도로 글로벌 경쟁력을 확보할 수 있겠느냐"는 시각이 있는 것이다. 또 모 대학교수가 연구를 위해 전력 공급 요청을 했는데 대학 측에서 이를 승인해주지 않아 결국 연구를 중단할 수밖에 없었다는 내용이 보도되기도 했다. 이처럼 컴퓨팅 자원 부족 문제는 단순히 GPU 수량 확보를 넘어 전력 인프라 같은 구조적 문제와도 연결돼 있는 것 같다. 이런 상황에서 현재 한국의 컴퓨팅 파워 경쟁력을 어떻게 평가할 수 있을까. 또 이 문제를 해결하기 위한 현실적인 방안은 무엇이라고 생각하는지 논의해보자. -이경전 교수: 현재 AI 데이터 센터 사업을 준비하는 사람들이 많지만 정작 수요 기업이 부족한 것이 문제다. 정부가 지원한다고 해도 기업들이 실제로 이를 활용할 의지가 없거나 경제성이 낮다면 사업이 원활히 진행되기 어려울 것이다. 또 전라도에 3기가와트(GW) 규모의 AI 데이터센터를 건설하겠다는 이야기가 최근 언론의 조명을 받았는데 이를 업계에서 매우 회의적으로 보고 있는 분위기다. 어제 다른 업계 관계자들과 논의할 기회가 있었는데 이 계획에 대한 신뢰도가 낮다는 의견이 많았다. 특히 전라남도의 AI 데이터 센터 사업과 관련해서는 전력 인프라가 충분한가에 대한 논란이 크다. 데이터 센터를 운영하려면 안정적인 전력 공급이 필수적인데 현재 인프라로 가능한지 의문이다. 뿐만 아니라 여러 지역에서 데이터 센터를 짓겠다고 나서지만 미래의 투자 수익률(ROI)이 불확실하다. 이 때문에 수요 기업들이 선뜻 참여하지 않는다. 이미 부지 확보와 발전 계획 허가까지 받은 경우도 있지만 문제는 수요 기업이 없다는 점이다. 결국 데이터 센터 사업자들은 입주 기업이 확정돼야만 투자를 진행하는데 아직 그 단계까지 이르지 못하고 있다. -사회: 그 말을 들으니 결국 투자자들이 선뜻 나서지 않는 이유는 명확해 보인다. 투자자 입장에서 실제 수요가 보장되지 않으면 데이터 센터 사업에 뛰어들 이유가 없지 않겠나. -이경전 교수: 이런 상황이어서 국가가 AI 데이터센터를 하나 정도 운영하는 건 그 자체로 큰 의미가 있다고 보긴 어렵다. 오히려 우리나라가 AI 데이터센터 구축에서 늦어진다면 그만큼 소프트웨어 경쟁력이 더 좋아야 한다고 생각한다. 그래서 내가 주장했던 것이 '연합 데이터 뱅크' 같은 개념이다. AI 데이터센터를 단순히 하드웨어로 접근하는 게 아니라 이를 활용하는 소프트웨어적인 요소들을 함께 구축해야 한다. 그래야 데이터 주체들과 AI 개발자들이 공정한 시장 경제 안에서 제대로 협력할 수 있고 실질적인 경쟁력을 확보할 수 있다. 그런 소프트웨어 기반의 제도적 장치가 함께 마련되어야 한다고 본다. -사회: 비슷한 맥락에서 우리가 LLM 경쟁을 해야 하느냐는 의문이 있다. 어차피 현실적으로 쉽지 않은데 국내 리소스를 모두 모아도 글로벌 경쟁에서 의미 있는 수준이 될 수 있을지 모르겠다. 결국 이 문제도 데이터센터와 비슷한 듯 하다. -이경전 교수: 그래서 어떻게 보면 데이터센터에 대한 논의 자체를 무시해도 될 수도 있다. LLM만이 전부가 아니라 거대행동모델(Large Action Model) 같은 개념도 있고. 이를 하려면 필요한 자원이 충분해야 한다. 마치 LLM이 AI의 전부인 것처럼 얘기하는 것은 문제가 있다. 사실 LLM 경쟁 자체는 벌써 한참 지난 이야기다. 이제는 AI 에이전트나 로봇 기술로 넘어가야 하는 시점이다. 특히 딥시크 같은 흐름이 나오면서 LLM 관련 경쟁은 너무 빠르게 지나갔다. 이미 끝난 이야기나 다름없다. 국가가 지금 이걸 다시 하겠다고 하면 방향 자체가 맞는지 의문이다. -차인혁 위원장: 내가 업계에서 들은 바로는 모 글로벌 서비스로서의 GPU(GPUaaS) 기업은 내부수익률(IRR)이 일반적인 투자 수익률을 한참 상회하는 수준이라고 한다. 엔비디아 'H100' 한 대를 구매하면 그걸로 사업을 운영할 때 두자릿수의 수익률이 늘 나온다는 뜻이다. 이런 곳들은 GPUaaS 사업을 하는 기업들에게 공급이 부족할 정도고 수요는 엄청나게 많다. 전력 효율도 낮지 않아서 데이터센터를 짓기만 하면 바로 수익을 창출할 수 있는 구조다. 이 점에서 한국과는 완전히 다른 상황이다. 반대로 국내 기업들은 AI를 적극적으로 도입하는 것 같아 보여도 실상은 외국의 AI 서비스를 가져다 쓰는 게 대부분이다. 실제로 국내에서 AI를 내재화하고 활용하는 기업이 많지 않다. 내가 보기엔 국내 기업들이 AI 도입을 했다고는 하지만 결국 외산 솔루션을 빌려 쓰는 수준이고 이것도 적용 분야 등이 아직 좁고 이제 시작 단계다. 아직은 진정한 AI 활용이라고 보기 어렵다. 일례로 우리가 국내에서 GPUaaS 사업을 시작한다고 해보자. 단순히 GPU만 제공한다고 해결될 문제가 아니다. 미국 등 글로벌 GPUaaS 사업자들은 이미 투자자들에게 명확한 데이터를 제시하며 투자 유치를 하고 있다. 'H100'을 한 대 사면 단기간 내에 높은 IRR로 수익이 충분히 나온다는 걸 증명하기 때문이다. 이렇게 명확한 수익 모델이 있으니 투자자들이 몰리는 것이다. 그런데 한국은 어떠한가. 지금 AI 사업을 한다면서 정작 AI를 활용하는 기업이 많지 않다. 투자자들이 선뜻 나서지 않는 이유도 결국 이 때문이다. -사회: SKT도 자체적으로 AI 센터를 짓고 사업을 하겠다고 하지만 결국 미국 기술을 빌려 쓰는 형태 아닌가. 우리나라의 LLM 경쟁도 같은 상황인데 이 부분에 대해 어떻게 보나. -차인혁 위원장: 안타까운 상황이다. LLM이 국가 안보에 위협이 된다고 걱정하는 시각이 있지만 사실 LLM뿐만 아니라 우리가 사용하는 거의 모든 소프트웨어와 IT 장비가 미국산이다. 칩도 미국 제품인데 그 안에 어떤 요소가 들어 있는지는 아무도 알 수 없다. 사람들은 중국 장비 보안 문제를 걱정하지만 정작 네트워크 인프라부터 소프트웨어까지 전부 미국산이다. 라우터, 스위치, 네트워크 장비 모두 해외 기업 제품이고 미국이 필요하면 언제든 이를 통제할 수 있는 구조다. 이런 상황에서 LLM만 국산화를 주장하는 것이 과연 의미가 있는지 의문이다. -사회: 중국은 국가가 마음만 먹으면 데이터를 볼 수 있는 체계지만 미국은 그렇지 않지 않나. 애플도 정부 요구에 맞서 싸운 적이 있고 시스코 같은 기업도 트럼프 행정부 1기때 비슷한 태도를 보였던 것으로 아는데. -차인혁 위원장: 맞다. 다만 미국도 결국 정부가 나서면 강제할 수 있는 부분이 있다. 일례로 인스타그램에서 미 공군, 해군, 육군 관련 콘텐츠가 검열되는 과정을 보면 그렇다. 최근 미국 대통령의 행정명령과 국방장관의 지시에 따라 특정 콘텐츠들이 삭제됐다. 미 정부가 승인하지 않은 콘텐츠는 '삭제됨'이라는 표시와 함께 사라졌고 다양성, 형평성, 포괄성(DEI)과 관련된 내용은 모두 사라졌다. 이게 단순한 예가 아니다. 실제로 SNS에서 미군 계정이 올린 콘텐츠들의 검열 순서를 보면 공군이 가장 먼저 영향을 받았고 그다음이 해군, 육군 순이었다. 지금도 미 정부는 자국 내 정보 통제를 매우 적극적으로 하고 있다. 이런 상황에서 '소버린 AI'나 'LLM 자립' 같은 논의가 다소 허망하게 느껴진다. 사이버 보안부터 소프트웨어까지 모든 핵심 기술이 해외 기업에 의해 통제되는 상황에서 단순히 LLM을 국산화한다고 해서 국가 주권이 지켜지는 건 아니라는 거다. -사회: 요즘 '소버린 AI' 얘기 자체가 잘 안 나오지 않는 듯 하다. 네이버도 더 이상 적극적으로 언급하지 않는 것 같다. 회사 차원에서 '소버린 AI'라는 말을 하지 말라는 식으로 정리됐다는 얘기도 들리는데 이 실장님은 어떻게 보시나. 아까 전력 문제도 이야기했는데. -이제현 실장: 3년 전에 서울대 세미나에서 전자과 교수님께 들은 얘기가 있다. 클라우드를 단순히 접속하는 게 아니라 온프레미스 서버를 내부에 추가하는 것조차 어렵다는 이야기였다. 이유는 간단했다. 전기가 부족하기 때문이었다. 당시에도 전력을 추가로 공급받는 것이 어려웠고 특히 GPU 서버처럼 전력 소모가 큰 장비는 더더욱 설치가 힘들었다. 이건 형평성 문제가 아니라 서울대가 사용하는 전력 자체가 이미 한계치에 도달했기 때문이었다. 그럼 "전력 증설을 하면 되지 않겠냐"는 의문이 들 수 있다. 그런데 관악구로 들어오는 전력망 자체가 이미 한계를 넘어선 상황이라 서울대 하나 때문에 관악구 전체의 전력 공급망을 새로 공사해야 하는 문제가 발생한다. 결국 이건 개별 대학의 문제가 아니라 국가적 전력망 문제와 연결된 것이다. 전력 문제 외에도 한국어를 목적으로 한 LLM 개발 자체를 우리가 꼭 해야 하느냐는 논의도 필요하다. 이에 대해서는 회의적인 입장이다. 지금 우리가 AI 응용 서비스를 만들 때는 큰 비용이 들어가지 않는다. 그렇기 때문에 시행착오를 겪어도 부담이 적고 여러 플레이어들이 경쟁할 수 있다. 그런데 목적이 불분명한 LLM을 자체적으로 개발하는 것은 완전히 다른 문제다. 우선 AI를 활용하는 다양한 기업들이 많기 때문에 이들이 먼저 성공적인 사례를 만들어내야 시장이 활성화될 것이다. 그래야 다른 기업들도 '이거 유용하네, 우리도 도입해야겠다'고 생각할 것이다. 마치 K-콘텐츠가 세계적으로 성공한 것처럼. 물론 AI도 우리나라에서 경쟁력을 가지려면 자체적인 기술이 하나쯤은 필요하지 않을까 하는 생각도 들기는 한다. 다만 GPU를 도입하는 기술은 결국 '몰빵 투자'가 필요하다. 다만 이렇게 투자했을 때 지속 가능한가에 대한 고민이 필요하다. GPU는 소모품이다. 현재 GPU 한 대를 도입하는 데 1~2억원이 들고 1년 뒤에는 또 새로운 GPU를 구매해야 하는 상황이다. 다만 정치권에서는 이런 기술 교체 주기를 제대로 이해하지 못할 가능성이 크다. 일례로 정부에서 한 번 GPU 예산을 지원했다고 가정해 보자. 그런데 1년 후 또 GPU가 필요하다고 하면 "작년에 지원했는데 또 필요한가"라는 반응이 나올 것이다. 결국 GPU는 계속적인 투자 없이는 유지가 어려운 소모품이라는 점을 고려해야 한다. -차인혁 위원장: GPU의 수명은 대략 2년 정도로 본다. 그런데 이는 현실과는 조금 다른 측면이 있다. 우리는 실제로 GPU 사업을 운영해 본 경험이 부족하다. 그래서 특정 워크로드에 어떤 GPU가 최적화되는지 잘 모르는 경우가 많다. 이 노하우라는 것은 굉장히 중요한데 실제 AI 인프라 운영을 보면 무조건 최신 GPU만 사용할 필요가 없기 때문이다. 일례로 학습(Training)과 추론(Inference)은 완전히 다르다. 또 산업별(버티컬)로도 워크로드 특성이 다 다르다. 심지어 기업마다 요구사항이 천차만별이라 GPU 선택도 다를 수밖에 없다. 이런 이유로 기업들은 최적화된 맞춤형 AI 인프라를 구축한다. 최신 GPU만 고집하지 않고 심지어 2~3세대 전 모델도 경제적인 이유로 여전히 많이 사용된다. 이를 잘 활용하면 수익을 30% 이상을 내는 것도 가능하다. 그런데 우리는 무조건 최신 모델만 써야 한다고 생각하는 경향이 있다. AI 인프라 운영에서는 단순히 하드웨어 스펙이 중요한 것이 아니다. 학습 단계 이후 리소스를 어떻게 최적화하고 관리하느냐가 핵심이다. 결국 AI 사업에서 중요한 것은 "어떤 하드웨어를 어떻게 조절하고 최적화할 수 있는가"다. 우리는 이러한 운영 최적화 경험이 부족하다. 그러다 보니 매번 외국 기업들의 말을 듣고 "GPU는 2년마다 새로 사야 한다"는 식의 단순한 전략만 세우는 것이다. 다만 실제로는 이를 최적화해서 더 오래 활용하는 방법도 충분히 있다. -사회: 예전에 컴퓨팅 시대를 돌아보면 온프레미스 서버의 사용률이 20~30%밖에 되지 않는 경우가 많았다. 그래서 클라우드 사업자들이 강조했던 것이 온프레미스보다 클라우드가 자원 활용을 최적화할 수 있다는 점이었다. 지금의 AI 컴퓨팅 환경도 비슷한 상황이라고 본다. 단순히 GPU를 많이 도입하는 것이 아니라 이를 효율적으로 활용할 수 있는 컨설팅과 최적화 전략이 중요하다. 전력 인프라 역시 마찬가지다. 단순히 GPU를 추가하는 것이 아니라 전력 수급 문제를 고려한 최적의 운영 방식이 필요한 듯 하다. -지용구 부사장: GPU의 효과는 확실하다. 학습 속도를 빠르게 하고 무조건적으로 성능 향상을 제공한다. 다만 앞서 나온 발언과 같이 문제는 어떻게 GPU를 효율적으로 사용할 것인지다. 현재 기업들이 AI 프로젝트를 구축하는 과정에는 보통 3개월에서 1년 정도 소요된다. 그런데 초기 단계에서는 GPU가 대량으로 필요하지 않다. 이때는 GPU를 대량 구매하는 것보다 '애저(Azure)'와 같은 클라우드 서비스를 활용하는 것이 더 효율적일 수 있다. 기업들이 GPU 수요를 정확히 예측하지 못하는 상황에서 물리적인 인프라에 대한 과도한 투자는 비효율적일 수밖에 없다. 또 현재 AI 트렌드를 보면 LLM보다는 소규모언어모델(SLM)의 활용이 현실적이라고 본다. 많은 AI 기업들이 기업들이 필요로 하는 버티컬 전문가 모델을 만드는 것으로 안다. 기업 입장에서 방대한 LLM보다 회계사, 세무사, 노무사, 변리사, 법무사, 관세사 등 특정 분야의 전문적인 업무를 자동화하는 모델이 더 실용적이기 때문이다. 일례로 한 기업이 해외 수출을 준비하면서 인보이스를 작성해야 한다면 기존의 LLM 모델로는 정확한 업무 처리가 어렵다. 오히려 특정 분야에 최적화된 모델이 있다면 국제 무역에서 상품을 분류하는 코드인 'HS 코드'까지 자동으로 생성하고 인보이스를 실시간으로 작성할 수 있다. 현재 AI 모델이 발전하는 방향은 단순히 생성형 AI를 넘어서 실질적인 비즈니스 프로세스를 지원하는 형태로 가고 있다. 한국은 개별 기관과 기업이 자체적으로 보유한 데이터가 많기 때문에 이러한 버티컬 AI 분야에서 경쟁력을 가질 수 있다. 문제는 이러한 데이터를 활용하고 최적화할 전략이 필요하다는 점이다. 결국 AI 활용의 핵심은 "우리가 가진 데이터를 어떻게 최적화할 것인가"에 달려 있다. 단순히 최신 모델을 도입하는 것이 아니라 각 산업이 필요로 하는 맞춤형 AI 솔루션을 구축하는 것이 중요한 시점이다. -차인혁 위원장: AI 기술을 활용하는 것은 당연히 필요하고 효과적인 전략이 될 수 있다. 다만 이 분야에서 우리가 가장 뛰어나다고 단정할 수 있을지는 의문이다. 결국 AI 도입과 최적화는 모든 나라가 추진하는 방향이며 글로벌 경쟁이 치열한 영역이다. 각국의 주요 기업들도 AI 기반 비즈니스 모델을 구축하고 있기 때문에 단순히 우리가 선점한다고 해서 경쟁력이 보장되는 것은 아니다. -지용구 부사장: 그렇다고 해서 손을 놓고 있을 수는 없다. AI 기술은 각국에서 적극적으로 개발하고 있으며 결국 빠르게 움직이는 것이 핵심이다. 경쟁이 치열한 만큼 한국도 가능한 한 신속하게 전략을 수립하고 실행해야 한다. -차인혁 위원장: 그렇다면 결국 중요한 것은 타이밍이다. AI 시장에서 앞서 나가기 위해서는 적절한 시점에 기술을 확보하고 활용 가능한 데이터를 최대한 효과적으로 적용하는 것이 관건이다. -이제현 실장: 현재 AI를 활용한 연구 방식은 점점 더 최적화되고 있지만 국내에서는 아직 활용도가 낮은 편이다. 일례로 특정 신약 개발을 위한 최적의 조건을 찾는 과정에서 '챗GPT'를 활용하면 논문 검색과 데이터 분석을 빠르게 수행할 수 있다. 다만 실제로 이를 실험해보면 상당한 시간이 걸린다. 최근 해외 사례를 보면 실시간으로 복잡한 데이터 검색을 수행하는 AI 모델이 등장하고 있다. 일례로 한 연구팀이 공개 시연을 했는데 복잡한 쿼리를 입력하자 1분도 채 안 돼 유의미한 결과가 도출됐다. 이후 해당 연구자에게 물어보니 실험에 사용된 연산 자원은 HPL 1천장 수준이었다고 한다. 물론 이는 실시간 학습이 아니라 사전 학습된 'GPT-3.5' 애플리케이션 프로그램 인터페이스(API)를 활용해 병렬 연산을 수행한 결과였을 가능성이 높다. 현재 엔비디아 같은 글로벌 기업들은 대학에 AI 연산 자원을 제공하고 학생들이 이를 적극적으로 활용할 수 있도록 유도하고 있다. 이를 통해 학생들은 자연스럽게 AI 기술을 익히고 이후 산업 현장에서 이를 응용하는 경험을 축적할 수 있다. 다만 국내 대학의 상황은 다소 다르다. 최근 서울대를 방문했을 때 교수들 중 일부는 여전히 전통적인 연구 방식을 선호하며 AI 기술 도입에 대해 회의적인 태도를 보이고 있었다. "손으로 직접 하는 것이 더 정확하다"는 의견도 여전히 많았다. 학생들 사이에서도 AI 도입에 대한 온도 차이가 크다. 일부 연구실에서는 '챗GPT'를 논문 작성이나 보조 도구로만 활용하는 반면 AI를 적극적으로 활용하는 연구실은 빠르게 혁신적인 변화를 만들어내고 있다. 결국 연구 환경에서 AI 기술을 얼마나 빠르게 수용하고 적응하는지가 연구 성과의 차이를 만들어내는 중요한 요소가 되고 있다. -차인혁 위원장: 이와 별개로, 앞서 AI 인프라와 전력 문제를 논의했는데 전력 인프라 확보는 단순한 문제가 아니다. 발전소를 새로 짓는 것은 쉽지 않고 전력 수요가 급증한다고 해서 즉각적인 해결이 가능한 것도 아니다. 전력이 남아도는 국가 자체가 드물다. 흔히 미국은 전력이 충분할 것이라고 생각하지만 실제로는 전력 수요가 공급을 초과하고 있다. 미국은 규제가 많아 발전소 건설에 오랜 시간이 걸리고 지역 주민들의 반대도 심해 신규 발전소를 짓는 데 한국보다 훨씬 더 긴 시간이 소요된다. 한국의 경우 경북·경남 지역의 기존 공업 지대가 점차 쇠퇴하면서 상대적으로 전력 여유가 생기는 지역이 있다. 이러한 지역에서는 대규모 AI 데이터 센터를 유치하겠다는 논의가 진행 중이다. 현재 일부 기업들이 "땅을 제공해 주고 전력 인프라를 정비해 주면 우리가 알아서 하이퍼스케일 데이터센터를 구축해 필요한 전력을 자체적으로 소비하겠다"는 제안을 하고 있다. 특히 경북 지역이 이러한 논의에 적극적인데 반면 전라남도의 경우 원자력 발전소가 있음에도 불구하고 데이터센터 구축에 대한 논의가 활발하지 않은 상황이다. 결국 AI 인프라를 확충하려면 단순히 GPU 확보에만 초점을 둘 것이 아니라 전력 공급 문제까지 포함한 종합적인 전략이 필요하다고 생각한다. -이경전 교수: 경북 지역이 AI 데이터센터 구축에 적합하다는 주장은 어느 정도 타당하지만 전라남도는 왜 거론되는가. -차인혁 위원장: 전라남도에는 6기의 원자력 발전소가 있다. 현재 한국의 원자력 발전소는 전국에 총 26기가 있으며 그중 20기가 경북·경남 지역에 있고 부산 기장에도 5기가 있다. 전남 지역에서 가장 최근 건설된 발전소들은 한빛 5·6호기로, 각각 1천메가와트(MW)급 설비를 갖추고 있다. 경북에는 울진군 한울 원전에 1천400MW급 신규 원전 2기가 최근 건설된 바 있다. 이러한 원자력 발전소가 위치한 지역에서는 전력 공급이 상대적으로 원활할 가능성이 높다. 현재 경북 지역은 데이터센터 투자 유치를 적극 추진하고 있으며 이곳에 대규모 AI 컴퓨팅 센터를 유치하는 방안이 검토되고 있다. 현재 국가 AI 컴퓨팅 센터보다 10배, 100배 규모의 대형 데이터센터 설립이 가능한 상태인데 만약 이를 제대로 준비하지 않으면 글로벌 기업들이 주도하는 형태로 진행될 가능성이 크다. 또 최근 메타 같은 글로벌 기업들도 한국에 데이터센터를 설립하는 방안을 검토 중인 것으로 알려져 있다. 이들이 한국을 데이터센터 입지로 고려하는 이유는 바로 안정적인 전력 공급이 가능한 지역이 존재하기 때문이다. 나아가 한국에서 구축한 대규모 데이터센터는 일본, 대만, 베트남 등 인근 국가까지 서비스를 제공할 수 있는 잠재력이 있다. 이에 따라 단순히 한국 내 AI 인프라 구축을 고민하는 것이 아니라 우리가 보유한 자원 중 글로벌 시장에서 경쟁력이 있는 것이 무엇인지 먼저 고려해야 한다. 결국 우리가 가진 자원을 전략적으로 활용하는 방안을 고민해야 하며 단순히 다른 국가들을 따라가는 것이 아니라 한국만의 차별화된 데이터센터 및 AI 인프라 전략을 구축할 필요가 있다. -사회: 최근 모 정부 ICT 담당자와 만남을 가졌다. 그는 글로벌 클라우드 제공업체(CSP)에서 근무한 경험이 있는 인물인데 그 자리에서 "우리가 데이터센터를 굳이 유치해야 하는가"라는 의문을 제기했다. 그의 설명에 따르면 데이터센터에서 발생하는 수조원 규모의 매출 중 한국에 남는 수익은 약 천억원 수준에 불과하다. 다시 말해 데이터센터 운영으로 인한 고부가가치 이익은 대부분 글로벌 기업이 가져가고 우리는 하부 운영 역할만 담당하는 구조라는 것이다. 실제로 글로벌 클라우드 기업이 한국에서 데이터센터를 운영하면 연간 2조8천억원의 매출이 발생하더라도 상당 부분의 수익이 싱가포르 등 해외 본사로 빠져나간다. 결국 한국에 데이터센터를 유치한다고 해도 핵심적인 이익은 글로벌 기업이 차지할 가능성이 높다. 그렇다면 네이버나 KT 같은 국내 기업들이 글로벌 클라우드 기업과 경쟁할 수 있을까. 우리는 데이터센터를 유치하는 것이 아니라 장기적으로 경쟁력을 높이는 방향으로 가야 하는 것이 아닐까. 과거 지자체들은 데이터센터를 유치하면서 고용 창출을 기대했지만 실제로는 자동화가 진행되면서 기대했던 효과가 나타나지 않았다. 결국 글로벌 기업이 해당 지역에 진출했다는 마케팅 효과 정도밖에 남지 않았다. 그럼에도 불구하고 여전히 여러 지역에서 데이터센터 유치를 추진하고 있다. 그런데 전력 공급 문제까지 고려해야 하는 상황이라면 우리가 글로벌 기업에 전력을 제공하면서까지 데이터센터를 유치해야 하는지에 대한 고민이 필요하다는 생각이 든다. -차인혁 위원장: 해외 기업들이 데이터센터를 한국에 유치하려고 한다면 단순히 인프라를 제공하는 역할에 머무를 것이 아니라 국내 기업들도 그 워크로드 안에 포함될 수 있도록 해야 한다. 만약 글로벌 기업들이 단순히 전력과 공간을 활용하는 것에 그친다면 우리는 단순한 하부 구조 제공자로 남을 수밖에 없다. 반대로 국내 기업들이 해당 데이터센터에서 AI 연산과 서비스를 수행하는 방식으로 참여한다면 실질적인 기술 경험을 쌓고 글로벌 시장에서도 경쟁력을 가질 수 있다. 즉 "우리가 단순히 글로벌 기업들의 데이터센터를 유치하는 역할만 할 것인가, 아니면 이 기회를 활용해 국내 AI 산업의 경쟁력을 강화할 것인가"가 중요한 전략적 과제가 돼야 한다. -사회: 그렇다. 결국 데이터센터를 단순한 인프라 제공 차원이 아니라 우리가 직접 기술을 개발하고 수출할 수 있는 산업으로 만들어야 한다. 지금 글로벌 기업들이 각국에서 데이터센터를 운영하는 방식을 보면 해당 국가의 기술력이 단순히 하드웨어 제공을 넘어선 경우가 많다. 우리도 단순히 인프라 제공자로 머무르지 않고 동남아 등 해외 시장에서도 AI 데이터센터 구축 경험을 활용할 수 있는 전략이 필요하다. 이러한 경험을 쌓기 위해서는 처음부터 독자적으로 구축하기보다는 글로벌 기업들과 협업해 기술적 경험을 축적하는 것이 중요한 듯 하다. 즉 해외 기업들이 국내에 데이터센터를 설립할 때 우리 기업들도 그 안에서 함께 운영 경험을 쌓고 이후에는 이를 바탕으로 독자적인 데이터센터 사업을 해외에서 추진할 수 있도록 하는 것이 이상적인 방향이다. -차인혁 위원장: 맞다. 해외 기업이 들어올 때 단순한 호스팅 제공이 아니라 우리가 그 안에서 기술적 경험을 확보하고 이를 기반으로 다른 나라에서도 데이터센터 사업을 할 수 있는 구조를 만들어야 한다. 현재 글로벌 IT 기업들은 데이터센터 운영을 통해 AI 서비스뿐만 아니라 알고리즘 최적화, 전력 효율화, 데이터 관리 등 다양한 부가가치를 창출하고 있다. 국내에서도 단순히 물리적 인프라를 제공하는 것이 아니라 운영 경험을 바탕으로 글로벌 시장에 진출할 수 있는 기회를 모색해야 한다. 알고리즘·소프트웨어 역량부터 '활용 생태계'까지…韓 AI, 어디로 가야 할까 -사회: 이제 알고리즘 경쟁력에 대해서도 이야기해보자. AI 산업에서 단순히 하드웨어뿐만 아니라 소프트웨어 경쟁력이 점점 더 중요해지고 있다. 엔비디아도 오랜 기간 소프트웨어 개발을 지속하면서 경쟁력을 키워왔다. 이런 측면에서 '쿠다(CUDA)' 같은 프레임워크를 활용하는 것이 핵심이다. 또 하나는 AI 연구와 관련해 "우리는 왜 '어텐션 메커니즘' 같은 것을 자체적으로 개발하지 못하느냐"는 질문이 자주 나온다. 이는 AI 소프트웨어 인프라, 알고리즘 기술, 그리고 인력 양성이 모두 연결된 문제다. AI 소프트웨어 경쟁력과 알고리즘 개발 역량이 중요한데 현재 국내에서는 이 부분이 부족하다. 글로벌 컨설팅 업체 대표가 한국을 방문했을 때 한국의 AI 인력을 평가하며 "현재 5천 명 정도의 전문 인력이 있다고 하지만 최소 10배 이상은 필요하다"고 언급한 바 있다. 실제로 글로벌 컴퓨팅 상위 100대 연구팀을 분석해 보면 한국 연구팀은 거의 찾아보기 어렵다. 국내 AI 연구 인력이 많다고 하지만 실제로 글로벌 수준에서 경쟁력을 갖춘 사례는 제한적이다. 일례로 국내에서도 LG 등 일부 기업이 AI 연구를 진행하고 있지만 결국 핵심 인력들은 미국 등 해외로 스카우트되는 경우가 많다. 한국이 AI 산업에서 경쟁력을 확보하려면 알고리즘 및 소프트웨어 개발 역량을 더욱 강화해야 한다. -이경전 교수: 왜 항상 등수에 집착하는가. 정작 해외에서는 이러한 순위를 신경도 쓰지 않는다. 좋은 서비스와 성공적인 기업 사례를 논의하는 것이 더 중요하지 않은가. 단순한 순위 비교보다는 실질적으로 AI 산업을 발전시킬 수 있는 논의가 필요하다. 정부가 할 역할은 분명히 있다. 다만 정부 정책뿐만 아니라 실제 AI를 적용하는 기업들이 어떻게 혁신을 만들어가고 있는지에 대한 논의도 함께 이뤄져야 한다. -사회: 그렇다고 원천 기술을 그냥 포기할 수는 없지 않은가. 원천 기술이 있어야 장기적인 경쟁력을 갖출 수 있다. 단순히 비용을 줄이는 것이 아니라 알고리즘 경쟁력과 원천 기술 개발에도 집중할 필요가 있다. 연구 분야에서 활동하고 계신 이제현 실장님께서는 이에 대해 어떻게 생각하는가. -이제현 실장: 저는 원천 기술 개발을 직접 담당하는 분야가 아니라서 자세한 내용은 알기 어렵다. 다만 개인적으로는 이경전 교수님과 비슷한 생각을 가지고 있다. 원천 기술을 개발할 수 있는 인재들은 분명히 존재한다. 그런데 이들이 성장한 후 국내에서 계속 연구하고 기여할 수 있는 환경이 조성되지 않는 점이 아쉽다. 일례로 박사 과정에서 뛰어난 연구 성과를 내는 인재들이 있다. 카이스트, 서울대 등에서 우수한 논문을 발표하는 연구자들이 많지만 결국 글로벌 기업이나 해외로 빠져나가는 경우가 많다. 국내 기업이 이들을 적극적으로 채용하고 연구 환경을 개선해 지속적인 성장을 지원할 필요가 있다. -사회: 고급 AI 전문 인력을 양성해야 한다는 점에는 모두 동의할 것이다. -이제현 실장: 그렇다. 다만 단순히 인력 양성만으로는 충분하지 않다. 소프트웨어의 품질 역시 인력의 수에 비례하는 측면이 있기 때문에 연구 환경이 단절되면 경쟁력을 유지하기 어렵다. 일례로 학생 시절에는 연구와 개발에 몰두하다가도 졸업 후 적절한 기회가 주어지지 않으면 해외로 빠져나가거나 다른 산업으로 전향하게 된다. 국내에 지속적으로 연구할 수 있는 환경이 조성되지 않는다면 결국 인력 수급과 기술 개발의 연속성이 끊길 수밖에 없다는 우려가 있다. -사회: 현재 한국의 알고리즘 및 소프트웨어 경쟁력에 대한 의견을 듣고 싶다. 이 교수님께서는 어떻게 평가하는가. -이경전 교수: 질문 자체가 다소 잘못된 것 같다. 지금은 단순한 소프트웨어 경쟁력 논의를 넘어서야 한다. 현재 AI 기술이 발전하는 방향을 보면 단순한 LLM 시대는 지나가고 AI 에이전트와 행동 기반 AI가 핵심이 되고 있다. 이제는 AI가 실제 효과를 내는 기업, 정부, 개인의 관점에서 논의해야 한다. 또 지능형 로봇 기술이 국방 수준까지 도달한 시대다. 그런데 한국에는 눈에 띄는 로봇 기업이 부족하다. 이에 로봇 산업을 키우는 것이 중요하다고 본다. 일례로 평상시에는 공장에서 작업하는 로봇이지만 전시 상황에서는 예비군 로봇으로 전환될 수 있는 개념도 가능하다. 군대에서 예비군 시스템을 운영하는 것처럼 AI 기반 로봇도 국가 차원에서 일정 부분 소유권을 갖고 필요 시 징발할 수 있는 체계를 만들 수 있다. 다시 말해 소프트웨어는 너무 옛날 개념이라고 생각한다. -사회: 질문을 바꿔보자. 결국 정부의 자원은 한정되어 있다. AI 원천 기술 확보도 중요한 과제지만 동시에 애플리케이션과 서비스 영역도 무시할 수 없는 상황이다. 그렇다면 정부 차원의 자원 배분에서 원천 기술과 응용 기술 중 어느 쪽에 더 집중해야 할까. -이경전 교수: 왜 자꾸 국가 중심으로 생각하는가. 마치 우리가 대통령이 된 것처럼 논의하고 있다. 언론 매체가 각 개인이 무엇을 해야 하는지를 조명하는 역할을 해줬으면 한다. 국가 정책이 중요한 것은 맞지만 결국 기사를 읽는 독자들은 공무원이 아니라 기업인, 개발자, 연구자들이다. 많은 교수들이 칼럼을 정치인들에게 말하는 형식으로 쓰는데 나는 그게 비효율적이라고 본다. 중요한 것은 이 기사를 읽는 사람들이 "이걸 보고 나서 내가 오늘 무엇을 바꿀 수 있을까"를 고민할 수 있어야 한다는 점이다. 일례로 한 기업의 대표가 이 기사를 보고 "우리 회사에서 AI를 어떻게 활용할까"를 고민할 수 있어야 하고 개발자가 봤을 때 "내가 어떤 기술을 배워야 할까"를 생각할 수 있어야 한다. AI 기술을 논할 때도 단순히 정부 정책 차원의 논의에서 벗어나 개인과 기업이 어떻게 대응해야 하는지에 대한 실질적인 방향을 제시하는 것이 더 중요하다고 본다. -지용구 부사장: 앞서 말한 의견들을 다시 종합해보자면 AI 경쟁력을 평가하는 데 있어 단순한 순위나 인력 규모와 같은 양적인 지표는 한계가 있다. 일례로 외부에서 회사를 평가할 때 "AI 연구원이 몇 명 있느냐"는 질문을 자주 받는다. 다만 이는 단순한 숫자 비교일 뿐 기업의 실제 기술력이나 경쟁력을 제대로 반영하는 기준이 될 수 없다. AI 원천 기술 개발도 같은 맥락이다. 물론 새로운 개념을 창출하고 논문을 발표하는 것은 의미 있는 일이지만 기업의 입장에서 그것이 반드시 수익으로 직결되는 것은 아니다. 현실적으로 기업들은 완전히 새로운 원천 기술을 개발하기보다는 기존에 검증된 기술을 활용하여 실질적인 비즈니스 가치를 창출하는 방안을 선호한다. 우리가 집중해야 할 것은 '기술 격차'다. 경쟁사들이 우리 기술을 따라잡는 데 얼마나 시간이 걸릴지를 예측하고 그 기간 동안 어떻게 경쟁 우위를 유지할지를 고민해야 한다. 일례로 AI 모델을 운영하는 기업들이 있다고 가정하자. 새로운 모델이 등장했다고 해서 반드시 기존 모델을 즉시 교체할 필요는 없다. 현재 사용 중인 모델이 기업의 목적을 충분히 달성할 수 있다면 최신 기술이 나오더라도 굳이 변경할 이유가 없는 것이다. 특히 AI 기반 기업들은 '최신 기술 도입'이 아니라 '보유한 기술을 최적화하여 실질적인 성과를 내는 것'을 목표로 삼아야 한다. 일례로 우리가 경쟁사보다 훨씬 빠르고 뛰어난 AI 추론 모델을 개발했다고 가정하자. 이 기술이 신문 기사에 실리면 대중적으로는 긍정적인 반응을 얻을 수 있다. 그런데 기업들이 이를 바라보는 관점은 다르다. 단순히 "한 단계 더 발전했다"는 기술적 성과보다는 "이걸 실제로 어떻게 활용할 수 있을까"가 더 중요한 문제다. 결국 기업들은 "이 기술이 내 비즈니스에 어떤 실질적인 가치를 줄 수 있는가"에 집중한다. 기술 개발의 방향도 단순한 혁신보다 실용적인 응용 사례를 만들고 이를 실제 비즈니스 환경에서 활용할 수 있도록 하는 것이 중요하다. -이경전 교수: 이외에 AI 기술이 발전하면서 이제 모든 직장인들이 개인 AI 에이전트를 활용해야 하는 시대가 올 수도 있다. 일례로 기업 내 모든 직원들이 자신의 AI 에이전트를 만들고 이를 업무에 활용한다면 해당 기업의 생산성과 효율성은 크게 향상될 것이다. 과거 김대중(DJ) 정부 시절 '100만 PC 보급 운동'이나 벤처 육성 정책이 있었다. 그 당시 정책의 핵심은 특정 IT 기업을 육성하는 것이 아니라 '국민이 IT를 가장 잘 활용하는 나라'를 만들겠다는 점이었다. 그런 점에서 지금의 정책은 과거에 비해 이런 비전이 부족한 것이 문제다. 과거 김영삼(YS), DJ, 노무현 정부 시절에는 이런 IT 정책이 강조됐고 박근혜 정부 때도 '창조경제'라는 개념이 있었다. 현재는 이런 장기적인 전략이 부족한 상태다. 이제는 AI를 단순히 개발하는 것이 아니라 "어떻게 하면 국민과 기업이 AI를 가장 효과적으로 활용할 수 있도록 할 것인가"에 대한 정책적 접근이 필요하다는 점을 강조하고 싶다. -사회: 결국 'AI 강국'의 정의가 중요한듯 하다. AI 강국이란 무엇을 의미하는가. AI를 잘 활용하는 국가인가 아니면 AI 원천 기술을 보유한 국가인가. 이 개념이 명확해야 논의가 구체화될 수 있다. -차인혁 위원장: 예전에 'IT를 가장 잘 활용하는 나라'라는 개념이 있었던 것처럼 AI도 단순히 기술 보유를 넘어 활용 역량까지 고려해야 할 것이다. -사회: 그 개념이 타당하다고 본다. 단순한 기술 보유보다 "얼마나 AI를 실질적으로 활용하고 있는가"가 더 중요한 기준이 될 수 있다. -이경전 교수: 내 생각에는 세계 10대 기업 중 3개 정도가 AI 기반 기업이라면 그 나라를 AI 강국이라고 부를 수 있다. 여러 차례 이런 기준을 언급했는데, 중요한 점은 한국이 과거에는 그런 위치에 가까웠다는 것이다. 5년 전만 해도 삼성전자가 세계 10대 기업에 속해 있었지만 지금은 아니다. 일본의 경우도 비슷한 상황이다. 일본은 지난 10년 이상 글로벌 30대 기업에 단 한 개의 기업도 포함되지 못했다. 도요타조차도 현재 세계 30대 기업이 아니다. 일본 기업들이 세계 경제에서 차지하는 위상이 낮아지면서 일본인들 역시 점점 자신감을 잃고 있는 모습이다. 이와 같은 흐름을 보면 단순히 국가가 AI를 잘하는지 여부보다는 글로벌 AI 기업이 그 나라에서 얼마나 나오느냐가 더 중요한 지표가 될 수 있다. 다시 말해 'AI 강국'이라는 개념보다 더 중요한 것은 세계 10대 기업 중 3개 정도를 보유한 나라가 되는 것이다. 즉 AI 자체보다 경제적 강국이 되는 것이 더 본질적인 목표가 돼야 한다. -사회: 꼭 AI 강국이 아니더라도 경제 강국이면 충분하지 않나. -이경전 교수: 어제 경희대 교수들에게도 같은 이야기를 했다. AI를 전면적으로 도입해 모든 대학생과 대학원생에게 가르친다면 경희대가 연세대·고려대보다 더 앞서갈 수도 있다. AI를 가장 잘 가르치는 대학이 된다면 글로벌 교육 시장에서도 1위가 될 수 있다는 의미다. -차인혁 위원장: 굳이 가르칠 필요도 없다. AI를 활용해 스스로 배우게 하면 된다. 학생들에게 AI 에이전트를 제공하고 자율적으로 학습하도록 유도하는 방식도 가능하다. -이경전 교수: 어쨌든 중요한 것은 AI를 가장 잘 활용하는 국가, 가장 AI 친화적인 환경을 가진 국가가 되는 것이다. -사회: 결국 AI를 가장 잘 활용하는 나라가 AI 강국이라고 볼 수 있겠다. -이경전 교수: 그렇다. AI를 활용하는 방식도 변해야 한다. 예전에는 "챗GPT를 잘 쓰자"가 핵심이었지만 이제는 그마저도 변화하고 있다. 이제 LLM이라는 용어 사용 자체도 줄여야 한다. -사회: 왜 그런지 설명해 달라. -이경전 교수: 딥시크 같은 모델들이 등장하면서 AI 개발 경쟁의 흐름이 바뀌고 있기 때문이다. 영어를 원어민 수준으로 구사하는 사람이 많다고 해서 그들이 꼭 우리보다 더 똑똑한 것은 아니다. 마찬가지로 AI 모델이 단순히 더 많은 정보를 처리한다고 해서 인간보다 더 지능적이라고 볼 수는 없다. AI의 지능을 높이는 방법은 결국 그 모델을 얼마나 자주, 얼마나 효율적으로 활용하는가에 달려 있다. -사회: 즉 AI 기술의 발전보다 AI를 활용하는 방식이 더 중요하다는 뜻인가. - 이경전 교수: 그렇다. AI 모델이 아무리 좋아도 기업들이 제대로 활용하지 않으면 의미가 없다. 기업들은 AI 모델을 도입할 때 최신 버전이냐 아니냐보다 실제 비즈니스에 적용했을 때 효과가 있느냐를 더 중요하게 본다. LLM 기반 AI 모델들이 점점 보편화되고 있고 딥시크 같은 새로운 흐름이 나오면서 AI 경쟁은 단순한 모델 성능이 아니라 '누가 AI를 더 잘 활용하느냐'의 싸움이 되고 있다. -사회: 그렇다면 AI 강국이 되기 위해 중요한 것은 최신 AI 기술을 따라가는 것이 아니라 AI를 활용하는 생태계를 구축하는 것이라는 것이겠다. -이경전 교수: 정확하다. AI 경쟁의 패러다임이 바뀌고 있다. 딥시크 'R1'도 이제 추론 모델로 나와 경쟁을 증폭시킨 상황이다. 오픈AI 'GPT-5' 같은 차세대 모델이 패러다임에 영향을 줄 정도로 엄청나게 대단할지도 모른다. 다만 결국 중요한 것은 그 모델을 어떻게 활용할 것인가다. 기술을 개발하는 것만큼이나 이를 실제 비즈니스와 산업에 적용하는 전략이 더욱 중요해지고 있다. 내 예상으로는 딥시크는 6개월 내에 또 다른 오픈소스 모델을 공개할 것이다. 현재 중국에서는 정부 차원의 강력한 AI 표준화 정책이 진행되고 있다. 시진핑 주석의 지시로 모든 기업이 딥시크를 사용하도록 유도되고 있다. 현재 자동차 제조사, 로봇 기업, 가전 회사 등이 모두 딥시크를 표준으로 채택하고 있는 상황이다. 중국은 AI를 특정 기업에 의존하는 것이 아니라 국가 차원의 AI 생태계를 조성하는 방식을 선택한 것이다. 그렇다면 한국은 어떻게 대응해야 하나. 자체적으로 딥시크와 유사한 AI 모델을 개발하여 삼성, LG 등 대기업에 강제 도입할 것인가. 아니면 각 기업이 독립적으로 AI를 개발하도록 둘 것인가. 현재 중국의 접근법과 비교했을 때 한국이 어떤 AI 전략을 선택할지가 중요한 이슈다. -이제현 실장: 여기서 '지시'라는 개념을 조금 더 설명하고 싶다. 사실 한국 정부도 AI 활용에 대한 지침을 내린 적이 있다. 윤석열 대통령이 지난 2023년 1월 신년사에서 직접 "공무원들은 AI를 적극적으로 활용해 업무를 수행하라"는 취지의 발언을 한 바 있다. -이경전 교수: 맞다. 당시 AI를 공공행정에 도입하는 데 대한 기대감이 컸다. -사회: 그때 정책이 발표되었을 때 AI에 대한 기대가 컸는데 그 이후 실제로 AI 도입이 얼마나 진행되었는지도 따져봐야 할 문제다. -이제현 실장: 이러한 지시 덕분에 공공기관에서 AI에 대한 관심이 확산된 것이 긍정적이라고 생각한다. 다만 공공에서의 도입은 정량적 측면만이 아니라 질적 측면에서 실제 AI 활용 방안을 고민하는 것이 매우 중요하다고 생각한다. 특히 AI를 실무에서 직접 활용할 수 있는 환경이 조성하기 위해 개인적으로도 'GPTs' 같은 맞춤형 AI 도구를 적극적으로 활용하고자 항상 강조한다. 이러한 조직 내부의 실질적인 변화가 이뤄지려면 단순한 관심을 넘어 실무 적용 사례가 늘어나야 한다. AI를 직접 경험하고 업무에서 효과적으로 활용하는 사례들이 쌓이면서 자연스럽게 조직 문화도 변화할 것으로 기대된다. -사회: 박 소장님도 AI를 많이 활용하는 쪽이니까 기술적인 부분이나 실제 활용 과정에서 느낀 점이 있을 것 같다. AI를 활용한 콘텐츠 산업이 한국에서 어떤 방향으로 가야 할지 얘기해 보면 좋겠다. -박은지 소장: 한국의 문화예술 콘텐츠 산업 자체의 규모는 크지 않지만 중요한 건 문화예술 콘텐츠가 사람들의 일상 속에 자연스럽게 스며든다는 점이다. 우리는 미술관이나 박물관에서만 문화예술을 소비하는 게 아니라 일상적으로도 무의식적으로 문화적 영향을 받고 있다. 옷을 사거나 특정 브랜드를 선택하는 것도 문화예술의 영향을 받은 결과라고 볼 수 있다. 이런 점에서 정부가 "이 기술을 활용하라"는 식으로 탑다운 방식으로 정책을 주도하는 것도 필요하지만 사람들이 스스로 원하는 콘텐츠를 만들고 즐길 수 있도록 환경을 조성하는 것이 더 효과적일 수 있다. 실제로 많은 사람들이 AI 기반 서비스와 구독 모델을 활용하면서 새로운 방식으로 콘텐츠를 소비하고 있다. 나도 AI 서비스를 여러 개 구독하고 있는데 한 달에 지출되는 비용이 상당하다. 사람들이 자신이 원하는 콘텐츠에는 기꺼이 돈을 지불하고 몰입할 준비가 되어 있다는 걸 보여주는 부분이다. 결국 AI가 문화예술 콘텐츠 산업에서 성공하려면 사용자 중심의 몰입형 경험을 제공하는 것이 중요하다. 단순히 기술을 도입하는 걸 넘어 사람들이 자발적으로 활용할 수 있는 기반을 만드는 게 핵심이다. -사회: AI가 생성한 영화나 예술 작품을 창작의 영역으로 볼 수 있다고 생각하는가. -박은지 소장: AI가 예술과 창작 영역에서 이미 상당한 영향을 미치고 있다고 본다. 지난 2018년에 오비어스(Obvious)라는 AI 아티스트가 43만 달러(한화 약 5억원)에 작품을 판매한 적이 있다. -사회: 43만 달러라니 상당히 큰 금액이다. -박은지 소장: 그 사건이 중요한 이유는 당시에는 '챗GPT'조차 등장하기 전이었음에도 불구하고 AI가 예술적 가치를 인정받았다는 상징적인 의미를 가졌기 때문이다. 올해 3월에도 유사한 사례가 나왔다. 결국 중요한 건 어떤 직업을 갖고 있든 어떤 분야에서 활동하든 인간은 본능적으로 자신을 표현하려는 욕구를 가지고 있다는 점이다. 이러한 표현의 욕구가 AI와 결합될 때 어떤 시너지를 낼 수 있는지, 그리고 AI가 창작 과정에서 어떻게 활용될 수 있는지를 더 깊이 살펴볼 필요가 있다고 본다. -사회: '챗GPT' 같은 AI 도구는 결국 경쟁력 향상의 도구다. 전 세계적으로 AI를 많이 활용하는 국가일수록 경쟁력이 높아지는 게 현실이다. 그러다 보면 AI 활용도를 높이는 정책이 중요해질 수밖에 없다. -차인혁 위원장: 아까 이 교수님의 말처럼 정책을 우리가 이를 기획한다고 해도 실제로 이를 읽고 반영하는 사람들이 얼마나 될지는 의문이다. 현실적으로 정책을 기획하는 사람들이 AI 활용을 충분히 이해하고 있는지에 대해서도 확신이 없다. -사회: 이 때문에 요즘 정책 방향이 다소 모호하게 느껴지는 부분이 있을 수 있겠다. -이경전 교수: 국가가 AI 자원 배분을 어떻게 해야 하는지 논의하는 것도 중요하지만 너무 거시적인 논의에만 집중하는 건 비효율적이다. -차인혁 위원장: 맞다. 그렇기에 AI가 창작 도구로 활용될 수 있도록 지원하는 방법을 고민해야 한다. 예술가들이 AI를 활용해 창작할 수 있도록 실질적인 지원책이 필요하다. 다만 지금 정책 담당자들은 이에 대한 아이디어가 부족한 듯 하다. -사회: 그렇다면 결국 자유롭게 AI를 활용할 수 있는 환경을 만들어주는 게 핵심 아니겠나. 일종의 실험 공간을 제공하는 거다. -박은지 소장: 그게 사실 가장 중요한 부분이다. 창작자들이 AI를 활용할 수 있는 환경을 만들어야 한다. -차인혁 위원장: 그런 지원책이 마련된다면 확실히 의미가 있을 것 같다. -사회: 온 국민이 AI 에이전트를 자유롭게 사용할 수 있도록 하면 어떨까. '챗GPT' 같은 서비스를 전 국민이 쉽게 접할 수 있도록 지원하는 거다. AI를 많이 활용하는 사람이 결국 더 높은 경쟁력을 가지게 되니까 이를 정책적으로 지원하는 것도 하나의 방법일 수 있다. -박은지 소장: AI 활용에 대한 거부감이 있는 경우도 많다. 특히 퇴임하신 분들의 경우 업무적으로 AI에 대한 실질적인 기회와 사용처를 찾기 어려운 경우가 있다. 그런데 만약 AI를 활용해 이런 분들께 자신의 자서전을 만들어 보라고 하면 생각이 달라지신다. 실제로 그런 방식으로 AI를 접하면 자연스럽게 관심을 가지게 되고 오히려 적극적으로 활용하려는 태도를 보이시기도 한다. -사회: 맞다. 직접 경험해보면 확실히 다르게 느껴진다. -이제현 실장: 재미있는 사례가 하나 있다. 예전에 AI를 활용해 그림을 그린 적이 있는데 그게 9시 뉴스에 소개된 적이 있었다. 이후 한 경비를 하시던 한 어르신이 연구원 전화번호를 수소문해서 직접 연락을 하셨다. 70세가 넘은 분이셨는데 젊을 적 그림을 그렸지만 생계를 위해 미술을 포기하고 평생 다른 일을 하셨다고 했다. 그런데 뉴스에서 AI 그림을 보고 "나도 다시 그림을 그려볼 수 있겠구나"라는 생각이 들어 직접 연락을 해온 거였다. 그분에게 AI로 그림을 그리는 방법을 간단히 알려드렸는데 이후 얼마나 활용하셨는지는 모르겠지만 적어도 그 순간은 새로운 가능성을 느끼셨을 거다. AI가 이런 식으로 사람들에게 희망을 줄 수도 있다는 게 인상적이었다. "내가 대통령이라면"…AI 강국 위한 전문가 최종 진단은 -사회: 정부는 오래전부터 디지털 디바이드(정보 격차) 해소를 위한 사업을 추진해왔다. 현재도 전국의 경로당과 취약 계층을 대상으로 디지털 교육을 진행하고 있다. 정부 차원에서 디지털을 강조하며 관련 정책을 추진해왔지만 이를 더욱 적극적으로 활용할 방법도 있을 것 같다. 이제 좌담 시간이 얼마 남지 않았다. 마지막으로 정리해보자. 만약 대통령이 돼 AI 강국을 만들기 위해 모든 제도를 바꿀 수 있다면 가장 시급하게 추진해야 할 정책은 무엇인가. 현재 법·제도적으로 여러 장애물이 있지만 만약 제한 없이 AI 정책을 결정할 수 있다면 어떤 부분을 가장 먼저 개혁해야 한다고 보는가. 각자 짧게 한마디씩 정리해달라. -이경전 교수: 내가 정책을 결정할 수 있다면 새로운 기업 형태를 인정하는 법적 제도 개혁이 가장 먼저 이뤄져야 한다고 본다. 현재 한국에서는 창업 환경이 지나치게 경직돼 있다. 주 52시간제, 비정규직 관련 규제, 중대재해처벌법 등이 창업가들에게 너무 큰 부담이 된다. 기업이 성장하기도 전에 각종 규제에 묶여 제대로 운영하기 어려운 상황이다. 이런 제도가 인재 유출의 원인이 되고 있다. 뛰어난 인재들이 창업하려 해도 규제 때문에 성공하기 어렵고 결국 미국이나 해외로 나가버린다. 한국에서 창업을 하면 다양한 법적 리스크 때문에 오히려 위험을 감수해야 하는 구조다. 결국 제도가 바뀌어야 한다. 새로운 기업 형태를 인정하고 창업가들이 더 자유롭게 인재를 채용하고 기업을 운영할 수 있도록 해야 한다. '일할 사람은 자율적으로 일하고 기업이 성장할 수 있도록 지원하는 환경'을 만드는 것이 중요하다. -사회: 제도라 하면 어떤 것을 뜻하는지 말해 달라. -이경전 교수: 제도가 좋아야 우수한 인재들이 한국에 머물고 기업들이 성장할 수 있다는 말이다. 현재는 주 52시간제 등 각종 규제로 인해 기업 운영이 경직돼 있다. 조금만 규제를 완화하려 해도 반발이 크고 기존 기득권층이 변화에 소극적이다. 반대로 미국에는 일반 법인(C-Corp), 공익 기업(B-Corp) 등 다양한 기업 형태가 존재한다. 한국도 이런 것처럼 특별 기업 제도를 도입해야 한다. 결국 새로운 기업의 형태를 만들지 않으면 혁신은 일어나기 어렵다. 기존의 정규직·비정규직 개념으로 묶어놓고 창업 환경을 제한하면 스타트업이 성장하기 힘들다. 전체적인 노동 시장을 한꺼번에 바꾸는 건 현실적으로 저항이 너무 크니 우선적으로 벤처 기업들이 좀 더 자유롭게 인재를 고용하고 운영할 수 있도록 해야 한다. 지금 한국에서는 창업을 하려는 젊은 친구들이 많지만 대학 정원 문제부터 시작해서 제약이 너무 많다. 중국을 보면 AI 연구 인재들이 빠르게 양성되고 있는데 우리는 그런 유연성이 없다. 대학 구조조정도 제대로 안 되고 비인기 학과 폐지나 수도권·비수도권 조정도 못 하는 상황이다. 이런 것들이 전부 규제로 묶여 있어서 변화를 만들기가 어렵다. 병역 특례 제도도 더 확대할 필요가 있다. 유능한 인재들이 군대 문제 때문에 연구를 중단하지 않고 경력을 쌓아갈 수 있도록 해야 한다. 최근 누군가도 비슷한 얘기를 했는데 젊은 인재들이 AI나 연구 분야에서 지속적으로 경험을 쌓고 성장할 수 있도록 제도를 바꿔야 한다. 결국 중요한 건 창업과 연구 환경을 근본적으로 유연하게 만들어주는 것이다. 그래야 AI 인재들도 해외로 빠져나가지 않고 국내에서 성장할 기회를 얻을 수 있다. -사회: 이스라엘 같은 경우는 군대에서 배운 기술을 바탕으로 창업하는 사례가 많다고 한다. 실제로 AI나 사이버 보안 같은 분야에서 군 출신 창업가들이 많이 나오고 있는데 한국에서는 그런 모델이 가능할까. 이 교수님의 제안이 현실적으로 실현될 수 있을지 고민이 되는 부분이다. -차인혁 위원장: 그렇다. 이는 기본적으로 우리나라가 스스로 규제를 혁신하고 바꾸는 것이 쉽지 않다고 가정하기 때문이다. 이미 제도적 관성이 굳어진지 오래된 상태고 규제도 강하게 자리 잡고 있기 때문에 내부적으로 바꾸기가 어려운 상황이다. 그래서 오히려 새로운 지역을 설정하고 여기에 집중적으로 투자를 퍼부어 발전시키는 방식이 필요하다고 본다. 기존 시스템을 뒤엎는 것이 아니라 실험적으로 완전히 자유로운 경제·산업 구역을 만들어 그곳에서 먼저 혁신을 이루고 이를 다른 곳으로 확산하는 전략이 필요하다. -사회: 경제 자유 구역 같은 개념인가. -차인혁 위원장: 그렇다. 새만금 같은 지역을 활용하는 것도 방법이다. 현재 인구가 줄고 있고 땅은 남아도는 상황이다. 그렇다면 이런 지역을 완전히 새로운 혁신 구역으로 만들어 경제뿐만 아니라 법적, 제도적 자유를 보장하는 방식으로 운영하는 것이 가능할 수 있다. 이런 지역에서 규제 없는 환경에서 혁신이 어떻게 이루어지는지 데이터를 축적하고 다른 지역과 비교하면서 실제로 어떤 방식이 효과적인지 검증하는 것이 필요하다. 단순히 AI 산업뿐만이 아니라 한국 사회 전반적으로 규제의 벽이 너무 높아 변화가 어려운 상황이기 때문에 이런 실험적 접근이 없으면 근본적인 변화는 어려울 거라고 본다. -사회: 예전에 전국에 중기부 규제 자유 특구가 있었다. 거기서 아까 말한 프로젝트들이 이미 실증도 거쳤는데 그래도 부족한 부분이 있기도 했다. -이경전 교수: 법적인 문제는 당연히 생길 수밖에 없다. 그런데 아부다비 같은 곳은 거의 드라이브 스루처럼 규제를 확 풀어놨다. 영국식 글로벌 기준 맞춰서 자국 법 대신 국제적인 보호를 받을 수 있게 몇 킬로미터 규모로 특별 구역을 만든 거다. 그래서 많은 기업이 그쪽으로 간다. 물론 비용이 비싸긴 하지만 확실한 보호와 재량권, 최소한의 규제만 적용받을 수 있으니까. 내가 자문하는 사람들에게도 다 그리로 가라고 한다. 그들 입장을 생각하면 우리나라에 있으라고 할 수가 없다. 다들 실리콘밸리로 가려고 한다. 참 아쉽다. -이제현 실장: 개인적으로는 연구개발을 위해 행정 절차와 조직 문화의 경직성을 다소 개선해야한다는 생각이 든다. 각 분야의 전문성을 발휘하도록 만들어진 현재의 조직체계는 AI 전환(AX) 구현 혁신을 막는 장애물로 작용하는 경우가 많다. 한 연구부서에서 구축한 AX 노하우가 다른 부서로 넘어가기 어렵고 행정부서원들의 연구과제 참여도 근본적으로 막혀있다. 더 큰 문제는 연구과제 선정 평가 인력이 적어 제대로 된 평가가 이루어지지 않고 AI 과제 자체가 시도되지 못하고 좌초되는 경우가 많다는 점이다. AI에 대한 지식과 식견을 갖춘 이들이 적기 때문에 엉뚱한 지적을 받고 탈락하는 것인데 AI 인력들은 부서에 관계없이 풀을 만들어 이런 업무에 투입할 필요가 있다. 단순한 행정 절차 문제를 넘어 인사·평가 제도 전반을 개혁해야 한다고 본다. 감사나 평가 부담이 크다면 실질적으로 중요한 일보다 형식적인 절차를 더 우선하게 될 수 있다. 이런 구조를 바꾸지 않으면 새로운 시도와 혁신이 이루어지기 어렵다고 생각한다. 또 조직의 역동성을 높일 수 있는 환경이 필요하다. 단순히 제도를 바꾸는 것만이 아니라 조직 문화 자체를 유연하고 자율적으로 바꿔야 한다. 공공기관뿐만 아니라 민간에서도 이러한 변화가 이루어질 수 있도록 정부 차원의 정책적 지원이 뒷받침돼야 한다. -지용구 부사장: 정부가 AI 산업을 지원하는 정책을 수립할 때 단기적 성과 중심의 정책과 장기적인 전략을 분리해서 운영할 필요가 있다. 너무 먼 미래를 바라보며 복잡한 제도를 만들다 보면, 오히려 실행이 어려워지는 경우가 많다. 과거 DJ 정부의 'IT 3만 개 기업 육성' 정책처럼 AI 기업들이 성장할 수 있도록 실질적인 지원책이 필요하다. 일례로 AI 연구개발(R&D) 투자 기업에 대한 세제 혜택을 한시적으로라도 확대해야 한다. 또 AI 바우처 지원 제도도 적극적으로 활용할 필요가 있다. 현재 AI 기업들이 직면한 문제는 단순한 기술적인 장애물이 아니라 정책과 제도의 비효율성이다. 정부 부처 간 역할이 명확하지 않아 기업들이 지원을 받으려 해도 어디서 담당하는지조차 혼란스러운 경우가 많다. 이러한 문제를 해결하기 위해 정부 내 부처 간 협업을 강화하는 '융합팀(퓨전팀)'을 신설하는 것이 필요하다. 이를 통해 과기정통부, 산업부, 교육부 등 관련 부처가 협력하여 정책을 수립하고 AI 산업을 체계적으로 지원할 수 있도록 해야 한다. 또 AI 기업들이 자유롭게 연구하고 실험할 수 있는 특구를 조성하는 것이 필요하다. 단순한 규제 특례 수준을 넘어 기업들이 글로벌 수준의 연구 환경에서 활동할 수 있도록 '프리존(Free Zone)'을 조성하고 이를 통해 혁신적인 AI 기업들이 성장할 수 있도록 유도해야 한다. 마지막으로 정부가 AI 기업에 대한 투자 환경을 개선해야 한다. 현재 투자 유치 활성화를 위해 기업형 벤처캐피털(CVC) 설립을 장려하고 있지만 관련 법과 규제는 오히려 강화되고 있다. 기업들이 실제로 투자할 수 있도록 사전 개별 통제(규제) 방식 보다는 사후 포괄 규제(Negative) 방식을 도입하고 기업들에게 더 많은 자율성과 혁신 기회를 제공하며 AI 기업들이 글로벌 경쟁력을 갖출 수 있도록 적극적인 지원이 필요하다. 현재와 같은 환경이 지속된다면 AI 기업들은 국내에서 성장하기 어렵고 결국 인재들도 해외로 유출될 가능성이 크다. 정부가 실질적인 지원책을 마련하지 않으면 AI 산업이 경쟁력을 확보하기 어려울 것이다. -박은지 소장: AI뿐만 아니라 첨단 기술 전반에 관심이 많다. 특히 로봇 기술에 주목하고 있는데 이제 대부분의 로봇이 AI를 탑재하면서 하나의 거대한 지능형 시스템이 형성되고 있다고 본다. 앞으로 인간과 로봇이 공존하는 시대가 올 텐데 이를 효과적으로 관리하고 조율할 수 있는 전담 조직이 필요하지 않을까 한다. 단순히 개별 기업이 로봇 기술을 개발하는 것이 아니라 국가 차원에서 '로봇과 인간이 함께 살아가는 사회'를 어떻게 설계할지 고민해야 한다. 강의할 때도 종종 이야기하는데 지금부터 10년 안에 우리 주변에 로봇이 자연스럽게 존재하는 환경이 조성될 가능성이 크다. 어쩌면 10년이 아니라 그보다 훨씬 빠르게 변화할 수도 있다. 이제는 로봇을 단순한 자동화 기계가 아니라 산업 전반을 변화시킬 중요한 요소로 바라봐야 한다. 그렇다면 "로봇과 AI가 결합된 환경에서 한국이 어떤 산업 경쟁력을 확보할 것인가"에 대한 논의가 보다 필요해진다. 이런 흐름을 체계적으로 관리하고 연구할 수 있는 전담 부서나 조직이 필요하다고 생각한다. -차인혁 위원장: 지금 나온 이야기 중에서 가장 중요한 부분이라고 생각한다. UAE가 AI를 전략적으로 육성하는 이유도 여기에 있다. UAE는 지난 2016년에 세계 최초로 AI 전담 부처를 설립했다. 단순히 AI만 신경 쓴 것이 아니라 기후 대응 부처도 세계 최초로 만들었고 식량 안보 부처까지 운영하고 있다. 이들은 단순한 기술 발전이 아니라 미래 생존 전략으로 AI를 포함한 핵심 산업을 선정하고 집중적으로 육성하고 있다. UAE는 20년 단위로 국가 전략을 세우고 10년마다 이를 업데이트하는 방식으로 장기적인 비전을 구축하고 있다. UAE가 선정된 핵심 분야는 ▲식량 안보 ▲에너지 전환 ▲생명 연장 ▲인공지능(AI) 네 가지였다. 그리고 최근 10년 전략을 업데이트하면서 우주산업을 추가했다. 즉 이들은 AI를 포함한 미래 핵심 산업을 장기적 시각에서 육성하고 이를 뒷받침하는 정부 조직을 만들어 정책적으로 지원하는 방식을 택했다. 이런 접근이 없으면 국가적으로 AI를 전략적으로 활용하는 것이 어려울 수밖에 없다. -이경전 교수: UAE 같은 나라에서는 이런 방식이 가능하다. 전제군주국이기 때문에 강력한 정책 추진이 가능하다는 점도 고려해야 한다. 우리는 민주주의 국가라 그런 방식이 쉽지 않다. 과거 박정희 시대처럼 국가 주도로 산업을 육성할 수도 있었겠지만 지금은 상황이 다르다. 일론 머스크도 "미국이 AI 주도권을 유지하려면 강한 리더십이 필요하다"는 취지의 발언을 하며 현재 정부 차원의 적극적인 AI 정책을 요구하고 있는 상황이다. 즉 국가가 AI 같은 핵심 기술을 빠르게 발전시키려면 강한 정책 드라이브가 필요하다는 문제의식에서 다양한 전략을 추진하고 있다. -차인혁 위원장: 이전에 경북도지사와 대화를 할 때 경북이 지난 60~70년간 훌륭한 지도자를 많이 배출했지만 동시에 매번 중앙정부에 지원금을 요청하는 데 집중한 점이 아쉽다는 점을 지적했다. 이렇게 해서 받은 예산은 결국 자유롭게 활용할 수 있는 폭이 제한될 수밖에 없다. 대신 그 돈 중 일부라도 전략적으로 아껴 지역 소버린(Provincial Sovereign Fund)를 조성했어야 한다. 나는 경북을 호주의 남호주나 캐나다의 사스카추완 같은 지역과 비교해 봤다. 이 지역들은 우리와 인구 규모가 비슷하지만 독립적인 기금을 운용하며 자율적인 투자 능력을 키웠다. 특히 캐나다 온타리오주의 교사 연금 펀드는 4천억 달러(한화 약 560조원) 규모의 자산을 보유하고 있으며 글로벌 기술 기업의 초기 투자자로도 참여하는 강력한 경제적 영향력을 행사하고 있다. 이런 모델을 참고해 지자체 차원에서도 자율적인 펀드를 조성하고 전략적인 투자를 할 수 있는 구조를 만들어야 한다. 이게 중요한 이유는 한국의 정치 구조상 5년마다 정책이 바뀔 수 있지만 지자체는 12년 동안 지속적인 정책 추진이 가능하기 때문이다. 지자체가 독립적인 경제력을 갖추고 장기적인 프로젝트를 추진할 수 있어야 중앙정부 정책 변화와 상관없이 지속 가능한 성장을 이끌 수 있다. 이 때문에 지자체들은 단순히 중앙정부 지원을 받는 것이 아니라 자체적으로 지속 가능한 경제 모델을 만들어야 한다.

2025.03.14 09:14조이환

사진 몇 장만으로도 3D 영상 만드는 AI 알고리즘 개발

건국대학교 김원준 교수(전기전자공학부) 연구팀이 적은 수의 이미지 입력만으로 특정 장면의 모든 시점 이미지를 생성할 수 있는 인공지능(AI) 알고리즘을 개발했다. 이번 연구 성과는 오는 6월 미국 내슈빌에서 열리는 '컴퓨터 비전 및 패턴 인식 학술대회(IEEE/CVF CVPR·Conference on Computer Vision and Pattern Recognition)'에서 발표될 예정이다. CVPR은 컴퓨터 비전·AI 분야에서 권위 있는 학술대회 중 하나다. 연구팀은 3차원 장면을 표현하는 핵심 기술인 'Gaussian Splatting' 기법을 보다 적은 입력 데이터만으로도 정밀하게 수행할 수 있도록 'Dropping 기반 학습 전략'을 새롭게 제안했다. 연구팀 관계자는 “이 방법은 특정 신경망 구조에 종속되지 않으면서 추가 메모리 사용 없이 적용할 수 있어 범용성이 높다”며 “기존 기술보다 적은 수의 입력 이미지만으로도 높은 정밀도의 3차원 장면 렌더링이 가능해졌다”고 설명했다. 이번 연구는 3차원 장면 이해 및 콘텐츠 생성, 이머시브(Immersive) 서비스 등 다양한 분야에서 핵심적으로 활용될 전망이다. 논문 제1저자는 박현우 석사과정 학생이며, 김원준 교수가 교신저자로 참여했다.

2025.03.13 12:42주문정

"AI로 반도체 회로 예측"…韓 스타트업 기술에 SK·ASML도 '주목'

"크로사이트는 반도체의 성능 및 수율을 좌우하는 웨이퍼 회로의 정렬도를 예측할 수 있습니다. 반도체 공정을 위한 '전용 알고리즘' 덕분이죠. 반도체 업계의 오랜 염원을 해결한 것으로 내년 SK하이닉스, ASML 등 주요 기업과 테스트를 진행할 예정입니다." 지태권 크로사이트 대표는 최근 서울 모처에서 기자와 만나 회사의 핵심 솔루션 및 사업 방향에 대해 이같이 말했다. ■ 반도체 업계 '오랜 염원' 풀었다…오버레이 정밀 예측 올해 6월 설립된 크로사이트는 AI를 기반으로 반도체 제조 공정의 신뢰성·수율을 향상시키는 소프트웨어를 개발하는 스타트업이다. 램리서치·ASML 등 주요 반도체 장비기업과, 삼성전자·SK하이닉스·인텔 등 주요 반도체 소자업체에서 14년 이상 반도체 제조공정을 다룬 지태권 대표가 창업했다. 크로사이트의 핵심 경쟁력은 정밀한 '예측' 기술에 있다. 반도체 내부에는 수 많은 회로가 집적돼 있는데, 각 칩이 균일하고 바르게 정렬돼 있어야 안정적인 성능을 구현한다. 이 때 회로 상층부와 하층부가 틀어진 정도(오버레이), 각 회로 폭의 오차 정도(CD; 임계치수)를 봐야 한다. 다만 기존 물리적인 계측은 생산성 및 비용 문제로 전체 물량의 1% 수준만을 샘플 검사하는 수준에 그치고 있다. 또한 웨이퍼 상에 문제가 발견돼야만 수정이 가능하기 때문에, 공정에 대한 피드백 속도가 느릴 수밖에 없다. 이에 크로사이트는 자체 개발한 머신러닝(ML) 알고리즘을 기반으로, 반도체 장비에서 나온 각종 데이터를 분석해 오버레이·CD를 예측하는 솔루션을 독자 개발했다. 이를 활용하면 공정에 투입된 웨이퍼의 오버레이·CD를 0.2나노미터(nm) 수준까지 예측할 수 있다. 테스트 단계이긴 하나 정밀도 역시 98~99% 수준으로 매우 높다. 지 대표는 "범용 알고리즘으로는 오버레이·CD 예측 정확도를 50% 미만으로 밖에 구현할 수 없어, 크로사이트는 반도체 공정 전용 알고리즘을 개발했다"며 "오버레이 예측이 반도체 업계에서 오랜 숙제였기 때문에 매우 유용하게 활용될 수 있을 것"이라고 설명했다. ■ 반도체 수율 향상 가능…SK하이닉스·ASML와 협업 논의 현재 크로사이트는 반도체 제조의 핵심인 노광 공정에 자사 솔루션을 우선 적용할 계획이다. 노광은 빛을 통해 반도체 웨이퍼에 미세 회로를 새기는 기술이다. 이를 위해 크로사이트는 국내외 주요 반도체 소자와 장비업체를 모두 공략한다. 내년 상반기 SK하이닉스의 D램 공정에서 테스트를 진행할 예정이다. 최첨단 노광기술인 EUV(극자외선)을 전 세계에서 유일하게 상용화한 네덜란드 반도체 장비기업 ASML과도 테스트를 준비 중이다. 지 대표는 "노광을 시작으로 식각, 박막, 세정 등 다른 공정으로도 솔루션을 점차 확대해나갈 것"이라며 "공정 전반에서 오버레이 및 CD를 정확하게 예측해 반도체 수율을 지금보다 10% 포인트 높이는 것이 크로사이트의 궁극적 목표"라고 강조했다. 또한 크로사이트는 LLM(거대언어모델)을 기반으로 반도체 공정 상의 문제를 빠르게 해결할 수 있는 솔루션도 개발하고 있다. 반도체 공정에 특화된 알고리즘을 통해 복잡하게 얽힌 반도체 공정 내 인과관계를 자동으로 분류해주는 것이 핵심이다. 해당 솔루션은 세계적인 광학 분야 학술대회인 'SPIE 어드밴스드 리소그래피'의 발표 주제로 선정됐다. 발표 일정은 내년 2월경이다.

2024.12.08 09:00장경윤

"개발 인재에 진심"...엘리스그룹, AI 개발자 적극 영입

엘리스그룹(대표 김재원)에 실력 있는 AI 개발자들의 발걸음이 이어지고 있다. 엘리스그룹은 지난해부터 생성형 AI 기술을 고도화하고, AI 전용 클라우드 사업을 본격화하며 이를 이끌어 나갈 개발자 채용에 총력을 기울이고 있다고 23일 밝혔다. 올해에만 이미 국내외에서 20여 명의 엔지니어를 영입했고, 애플·아마존 등 글로벌 빅테크 기업과 국내 대기업 출신의 우수 인력도 합류했다. 개발자 대상 기업 인지도가 높아지며 우수한 프로그래밍 인재들의 관심도 높아지고 있다. 지난 7월 엘리스그룹이 개발 문화 활성화를 위해 개최한 '알고리즘 코드 챌린지'에는 예선 참가자 모집부터 3천600명 이상이 지원하며 관심을 모았다. 특히 뛰어난 프로그래밍 역량을 가진 이들이 오프라인 본선 현장에서 두각을 드러냈다. 본선 결과, 대상은 서울대 컴퓨터공학부를 졸업하고 현재 미국 스타트업에서 백엔드 개발자로 재직 중인 윤지학 씨와 서울대 컴퓨터공학부 졸업 후 개발자로 재직 중인 박성관 씨가 공동 수상했다. 최우수상은 서울대 졸업 후 미국 조지아텍 진학을 앞둔 조승현 씨가, 장려상은 서울대 컴퓨터공학부 재학 중인 김세빈 씨가 차지했다. 윤지학 씨와 조승현 씨는 학부생 시절 세계 최대 규모 '국제 대학생 프로그래밍 경시대회(ICPC 월드파이널)'에서 금메달을 수상한 프로그래밍 실력자로 개발에 관심 있는 이들에게는 익히 알려져 있다. 두 수상자를 포함해 이번 알고리즘 코드 챌린지의 수상자 전원은 ICPC 메달리스트 출신으로 나타났다. 뛰어난 역량의 참가자들이 한자리에 모인 만큼 수준급의 대회가 펼쳐졌고, 수상자들 역시 기존 대회에서 만났던 실력자들을 만나 의욕을 높일 수 있었던 오프라인 대회였다는 소감을 전했다. 김재원 엘리스그룹 대표는 "AI 모델 개발 전반에 최적화한 AI 솔루션을 위해서는 우수한 개발자 영입이 가장 중요하다고 생각해 개발자 중심의 다양한 행사를 직접 운영하거나 참여하는 식으로 개발자 접점을 확대하고 있다"며 "국내외에서 우수 개발자들이 찾아오는 만큼 이들이 자신의 잠재력을 발휘해 한층 더 성장할 수 있도록 지원하겠다. 이들과 함께 국내외 AI 전환을 성공적으로 이끌어 글로벌 AI 기업으로 나아가겠다"고 말했다.

2024.08.23 09:17백봉삼

삼성전자 SAIT, 미래 반도체 기술 'AI·CE 챌린지 2024' 개최

삼성전자가 AI 기술을 활용한 미래 반도체 연구 생태계 강화를 위해 인공지능(AI)과 컴퓨터 공학(이하 CE) 분야 국내 우수 인력 발굴에 나선다. 삼성전자 SAIT(옛 삼성종합기술원)는 다음달 1일부터 9월 13일까지 약 6주 간 국내 대학 학부생과 대학원생을 대상으로 '삼성 AI/CE 챌린지 2024'를 개최한다고 29일 밝혔다. 참여를 원하는 학생들은 SAIT 홈페이지에서 접수 가능하며 결과는 10월초 발표된다. 공모 부문별 최우수상을 포함해 총 12개팀을 선발하며, 부문별 최우수 1개팀은 1천만원, 우수 1개팀은 500만원, 장려 2개팀은 각 300만원이 수여된다. 시상식은 11월 개최되는 '삼성 AI 포럼'에서 진행될 예정이다. 수상자 전원에게는 삼성전자 SAIT에서 주관하는 'AI/CE 챌린지 캠프'에 참여해 수상팀들간 네트워킹과 SAIT AI/CE 연구 리더들부터 멘토링을 받을 수 있는 기회가 주어진다. 2021년부터 시작해 올해로 4회를 맞는 '삼성 AI/CE 챌린지'는 과학기술 인재 발굴과 지원을 위한 아이디어 공모전으로, AI와 CE 분야에서 총 3개 주제로 진행된다. 올해 챌린지의 공모 주제는 AI 분야에서 ▲모델 기반 Black-box 최적화 알고리즘 개발 ▲정밀하고 신뢰성 높은 반도체 소재 시뮬레이션용 머신러닝 모델 개발, CE 분야에서 ▲온디바이스 시스템에서 LLM(거대언어모델)의 추론 최적화 등 총 3개이다. 참여 학생들은 AI 분야에서는 주어진 문제와 데이터셋을 활용해 최적의 AI 알고리즘을 개발하고, CE 분야에서 제한된 하드웨어 리소스를 활용해 거대언어 모델(LLM)의 추론 시간을 최소화하고 정확도를 개선하기 위한 방안을 도출하게 된다. SAIT는 인공지능을 이용한 반도체 소자와 공정 개발 검증 용 머신 러닝 알고리즘 개발에 대한 아이디어를 찾고, 이를 통해 국내 차세대 반도체 연구 개발 경쟁력을 강화한다는 계획이다. 경계현 삼성전자 SAIT 사장은 "AI 기술은 반도체 업계 내에서도 활용 범위를 빠르게 넓혀가는 중으로 SAIT는 새로운 기술 연구에 앞장서며 한계 극복을 위해 노력 중" 이라며 "AI/CE 챌린지를 통해 미래 기술의 한계를 뛰어넘을 수 있는 새로운 아이디어를 얻을 수 있도록 우수한 학생들의 많은 참여를 기대한다"고 밝혔다. 지난 챌린지 최우수상 수상자인 서울과학기술대학교 전예지씨는 "AI/CE 기술을 반도체 산업에 어떻게 적용할지 직접 고민해 볼 수 있는 흔치 않은 기회였고, AI 분야를 계속 연구해갈 학생들에게는 챌린지 수상을 통해 만난 동료·멘토들이 든든한 도움이 될 거라 생각한다"고 말했다.

2024.07.29 08:31장경윤

AI 디지털교과서, 개발 로드맵 적신호…"알고리즘 역량 우려"

내년 3월 전국 초·중·고에 들어갈 '인공지능(AI) 디지털교과서' 기능이 우려스럽다는 목소리가 나오고 있다. 전문가들은 학생 개별 학습을 돕는 알고리즘이 충분한 테스트 없이 교과서에 적용된다는 점을 문제 삼았다. 23일 업계에 따르면 AI 디지털교과서 내 알고리즘 성능 확인 필요성이 제기됐다. 알고리즘이 교과서에서 핵심 역할을 하는 만큼 기능 테스트가 필요한데, 이를 위한 충분한 시간이나 방안이 없다는 의견이다. AI 디지털교과서는 일반 디지털 교과서와 다르다. 디지털 교과서는 말 그대로 서책 교과서를 디지털 플랫폼으로 변형해 온라인으로 수업하는 형태다. 반면 AI 디지털교과서는 각 교과목에 AI를 적용해 학생 개인별 수준에 맞게 교육을 제공한다. 이때 알고리즘이 학생 데이터를 학습해 수준별 콘텐츠를 공급한다. 김봉제 서울교대 AI가치판단디자인센터장은 "AI 디지털교과서의 궁극적 목표는 학생 학습 수준, 이해도, 약점 등 방대한 데이터 기반으로 개인 맞춤형 학습을 제공하는 것"이라며 "이를 처리하는 알고리즘이 제대로 작동할 수 있을지부터 의문이다"고 본지에 밝혔다. 현재 개발 로드맵에 따르면 올해 8월까지 AI 디지털교과서가 완성되고, 11월 검정 작업이 끝난다. 내년 새 학기에 맞춰 이를 적용할 경우, 교사나 개발사들이 교과서 완성본이나 알고리즘 기능을 테스트할 수 있는 시간은 넉 달이다. 해당 기간 내에 AI 디지털교과서가 개별 학습 플랫폼 역할을 할 수 있을지 명확지 않다는 것이다. 김봉제 교수는 "보통 서책형 교과서를 개발하려면 심사 교과서 제출과 검정 작업, 재택 검수, 집중 검토, 결과 발표, 이의 제기, 수정·보완 등의 절차로 진행된다"며 "서책형 개발 과정과 비교한다면 AI 디지털교과서 로드맵은 지나치게 짧다"고 지적했다. 현재 AI 디지털교과서를 제작 중인 IT 업계 관계자도 "현재 AI 기술과 알고리즘이 학생들에게 맞춤형 교육을 즉시 제공할 만큼 충분한지 돌아볼 필요가 있다"며 "사실상 이 로드맵으로는 기술·물리적으로 힘들 것"이라고 설명했다. 현재 개발 인력이 기술과 교육 전문가들로 충분히 구성됐는지 확인해야 한다는 의견도 나왔다. 국내에서 AI를 연구하는 대학교수는 "AI 기법을 각 과목에 적용할 수 있는 융합 전문가가 들어가야 한다"고 강조했다. AI 기술을 교육 콘텐츠에 맞게 배치할 수 있는 인력이 필요하다는 의미다. 그는 "AI 디지털교과서 도입 목적은 각 교과 교육에 AI 기법을 적용함으로써 학생들에게 눈높이 교육을 실현하는 것"이라며 "과목별 들어가는 AI 기술과 방향성도 상이할 수 있다"고 덧붙였다.

2024.07.23 16:38김미정

노르마, 양자컴 생성형 AI알고리즘 활용 결과 26일 공개

양자 보안과 양자 컴퓨팅 전문 기업 노르마(대표 정현철, www.norma.co.kr)는 오는 25일부터 27일까지 킨텍스에서 열리는 '퀀텀코리아 2024'에 참가한다고 19일 밝혔다. 노르마는 이번 행사에서 국내 최초이자 유일한 양자 프로그램 개발‧실행 지원 환경인 'Q 플랫폼(Q Platform)' 활용 결과를 집중 소개할 계획이다. 'Q 플랫폼'은 양자 컴퓨팅 알고리즘 개발과 시뮬레이션을 지원하는 플랫폼이다. 실제 사용자가 양자 하드웨어에 접근하지 않고도 다양한 알고리즘을 설계하고 시험할 수 있는 효율적인 환경을 제공한다. 노르마 전시 부스에서 Q 플랫폼을 직접 시연하며 핵심 기능이자 양자 컴퓨터 상용화를 위한 필수 기능인 컴퓨트 리소스, 작업 관리, 시뮬레이션 결과 등을 상세히 소개한다. 둘째날인 26일 전시 기업 포럼에서는 정현철 대표가 발표자로 나서 'Q 플랫폼 활용으로 본 양자 알고리즘'을 주제로 제품 소개와 진행 프로젝트, 글로벌 비즈니스 등을 공유한다. 정현철 대표는 "노르마가 자체 개발한 양자 컴퓨터 생성형 AI 알고리즘으로 신약 개발, 금융 등의 분야에서 양자 이득을 확인한 프로젝트 결과를 공개할 예정"이라고 말했다. 한편 노르마는 퀀텀코리아 행사 기간 글로벌 리딩 양자 기업과 교류하며 협력 방안을 적극 모색할 계획이다.

2024.06.19 16:37박희범

"미래 AI 핵심, GPU 대체"...韓, 뉴로모픽 선도 개발 나섰다

"현재 뉴로모픽 반도체는 미국과 유럽 등을 중심으로 개발이 진행되고 있습니다. 대표적으로 인텔이 자체 뉴로모픽 프로세서와 이를 기반으로 한 시스템을 지속 개발하고 있죠. 한양대학교도 '네오2(Neo v2)' 칩을 개발하는 등 성과를 내고 있습니다." 27일 정두석 한양대학교 신소재공학부 교수는 서울 양재 엘타워에서 열린 '2024 뉴로모픽 반도체 워크샵'에서 뉴로모픽 반도체 연구동향에 대해 이같이 밝혔다. 뉴로모픽 반도체는 인간 뇌의 구조와 기능을 모방해 설계된 반도체다. 신경 세포를 뜻하는 뉴런(neuron)과 형태(morphic)라는 단어가 결합됐다. 병렬 연산으로 방대한 양의 데이터를 빠르게 처리하며, 저전력 특성을 갖춰 AI 산업에 특화된 점이 가장 큰 특징이다. 김형준 차세대지능형반도체사업단 단장은 "현재는 엔비디아의 GPU(그래픽처리장치)가 AI 산업에서 강세를 보이고 있으나, GPU의 시대가 지속가능하지는 않을 것으로 본다"며 "AI 데이터센터에 필요한 전력이 향후 급증하기 때문"이라고 밝혔다. 김 단장의 설명에 따르면, 데이터센터의 전력소모량은 2020년 260TW/h(테라와트시)에서 2022년 460TW/h로, 2027년에는 1060TW/h까지 증가할 것으로 예상된다. 국내 원전의 전력 생산량이 약 8TW/h라는 점을 고려하면 매우 막대한 양이다. 때문에 국내 반도체 학계는 기존 GPU나 대안격인 NPU(신경망처리장치) 대비, 전력을 더 적게 쓰는 뉴로모픽 반도체가 미래 AI 시대를 주도할 것으로 전망하고 있다. 유회준 반도체공학회 회장은 "인간의 뇌가 가장 적은 에너지를 소비하면서 가장 앞선 지능을 보여주기 때문에, 이를 모방하는 뉴로모픽 반도체로 나아가야 한다"며 "특히 정부에서도 뉴로모픽 반도체를 과감하게 사업화하겠다고 선언하고 지원하고 있어, 우리나라가 확실히 선두에 설 수 있을 것"이라고 강조했다. 정두석 한양대학교 교수는 디지털 뉴로모픽 반도체의 연구동향에 대해 발표했다. 현재 뉴로모픽 반도체를 개발하는 주요 국가로는 미국, 유럽이 있다. 미국에서는 주요 반도체 기업인 인텔이 '로이히(Loihi)'라는 이름의 프로세서를 개발하고 있다. 지난 2018년 1세대 칩이, 2022년 2세대 칩이 공개됐다. 정 교수는 "인텔은 로이히 프로세서와 더불어 뉴로모픽 반도체용 소프트웨어 및 시스템 개발을 지속 개발하고 있다"며 "이외에도 미국 스탠포드대학교와 샌디아국립연구소가 관련 칩을 개발 중이고, 유럽 신센스(SynSense) 등이 뉴로모픽 프로세서 상용화에 성공했다"고 설명했다. 국내에서는 한양대학교 연구진이 스파이킹신경망(SNN)-합성곱신경망(CNN) 전용의 32코어 칩인 '네오2'를 개발했다. SNN, CNN은 각각 딥러닝 알고리즘의 한 종류다. 정 교수는 "28나노미터(nm) 기반의 네오2는 네트워크 재구성도가 매우 높고, 데이터 처리 효율성을 극대화한 것이 특징"이라며 "현재 컴파일러(프로그래밍 언어를 기계어로 바꿔주는 프로그램)를 만들어 성능 테스트를 진행하고 있는 상황"이라고 말했다.

2024.05.27 14:04장경윤

"하나로 다 된다” 오라클 데이터베이스 23ai 정식 출시

“오라클의 컨버지드 데이터베이스(DB) 접근법은 오라클을 경쟁사와 차별화하는 요소다. '오라클 데이터베이스 23ai'를 이용하면 여러 DB를 통합하지 않아도 되고, 보안이나 가용성 기능의 부족을 참아가며 사용하지 않아도 된다. 앱 개발 관점에서 별도의 JSON 문서 DB를 이용하지 않아도 되고, 미션크리티컬 앱 운영 관점에서 레디스 같은 별도 캐시도 필요없어진다. 생성형 AI 관련해서 별도의 벡터 DB 도 필요없다.” 제니 차이 스미스 오라클 제품 관리 부문 부사장은 9일 열린 한국 언론사 대상 온라인 브리핑에서 이같이 밝혔다. 오라클은 엔터프라이즈 기업의 생성형 인공지능(AI) 기반 애플리케이션 개발과 데이터 운영에 최적화된 '오라클 데이터베이스 23ai' 버전을 정식 출시한다고 9일 밝혔다. 정식 출시된 오라클 데이터베이스 23ai는 오라클클라우드인프라스트럭처(OCI) 에디션이며, 다양한 클라우드 서비스에서 사용 가능하다. 오라클 데이터베이스 19c 버전 이후 최신 장기 지원 버전으로 5년의 프리미어 기술지원과 3년의 확장 기술지원을 제공한다. 오라클 데이터베이스 23ai는 데이터베이스 AI 기능 사용 간소화, 앱 개발 가속화, 미션 크리티컬 워크로드 실행 등에 초점을 맞춰 개발됐다. 오라클 AI 벡터 검색를 비롯해 기타 300개 이상의 신기능과 수천개 이상의 개선사항을 포함한다 오라클 데이터베이스 23ai는 작년 가을 출시될 당시 이름인 '오라클 데이터베이스 23c'에서 이름을 변경했다. 항상 버전명에 당대 주요 트렌드 기술을 의미하는 약어를 붙였던 전통에 따라 현재 트렌드인 AI 기술을 지원한다는 뜻에서 'ai'를 달았다. 제니 차이 스미스 부사장은 “이름만 바꾼 게 아니라 작년 9월부터 지난 8개월 간 많은 기능을 추가해 기업에서 AI 를 활용한 앱을 훨씬 더 쉽게 개발하게 하도록 한다”며 “고객이 AI앱을 위한 데이터 사용을 수월하게 만들겠다는 의지를 담았다”고 설명했다. 여러 새로운 기능은 모든 유형의 데이터와 모델, 워크로드, 개발 환경 등을 단일 DB 엔진에서 지원하는데 초점을 맞춘다. 스미스 부사장은 “먼저 앱 개발자의 데이터 중심 앱 개발을 훨씬 더 단순화하고, 미션크리티컬 데이터와 워크로드에 대한 지원을 더 강화하며, AI 앱에 사용자의 데이터 사용을 더 단순하게 만드는 것”이라고 강조했다. 먼저 앱 개발 측면에서 중요한 신기능은 'JSON-관계형 듀얼리티 뷰' 기능이다. JSON 문서를 관계형 데이터 모델과 통합하는 기능이다. 비정형 데이터인 JSON 문서를 SQL과 관계형 테이블로 따로 가져오지 않고, 오라클 데이터베이스 23ai 내 단일 테이블에서 JSON 문서를 관계형 테이블과 함께 처리할 수 있게 한다. 스미스 부사장은 “오랫동안 앱 개발자가 어려워한 부분이 관계형 데이터 모델로 문서 데이터를 가져오는 것이었다”며 “개발자는 앱 오브젝트 안에 고객 주문 건이나 제품 정보 등의 데이터를 포함하는 걸 선호하는데, 이 오브젝트는 관계형 DB에 저장되는 방식과 상이해 ORM이란 별도 기술로 JSON문서와 관계형 데이터 모델을 통합시켜야 했다”고 설명했다. 그는 “ORM 기술을 적용할 때 앱과 데이터 저장 양쪽 가운데에 추가 계층이 생겨 효율성이 떨어지는데, 23ai의 JSON 관계형 듀얼리티 뷰 기능을 이용하면 추가로 존재했던 계층 하나를 없앨 수 있다”고 말했다. 그는 “개발자는 관계형 DB 테이블에서 선호하는 문서 유형을 듀얼리티 뷰로 함께 사용할 수 있다”며 “그 결과 이중으로 데이터를 가져가지 않아도 되고, 분석 쿼리나 분석 조인을 수행하기 매우 수월해졌다”고 강조했다. 그는 듀얼리티 뷰 기능을 JSON 문서뿐 아니라 그래프 분석에서도 유사하게 이용할 수 있는 '그래프 관계형 듀얼리티 뷰'도 함께 소개했다. 운영 DB에서 추가적으로 네오4J같은 그래프 DB를 이용하지 않고도 바로 그래프 분석을 수행하게 해준다. 미션크리티컬 데이터에 대한 부분에선 'RAFT 릴레이셔널 포 글로벌리 분산 데이터베이스' 기능을 소개했다. 합의 기반 복제를 가능하게 하는 기능이다. 글로벌리 분산 데이터베이스는 옛 '오라클 샤딩' 기능의 새 이름이다. 여러 지역에 오라클 데이터베이스를 분산하면서도 이를 가상의 단일 데이터베이스로 관리할 수 있다. 스미스 부사장은 “고가용성, 고확장성, 데이터 주권 등의 사례에서 유용한 기능”이라며 “새 버전에서 오라클 데이터가드와 골든게이트를 별도로 구성, 설치하는 과정을 거치지 않아도 되며, 이 기능을 활용해 5초 미만의 페일오버를 쉽게 누릴 수 있다”고 말했다. 그와 함께 '트루캐시'란 기능을 강조했다. 트루캐시는 쿼리의 일부를 캐시 영역으로 분산하는 기능이다. 그는 “그동안 중간의 캐시 계층에서 래디스가 많이 쓰였는데, 이는 개발자 스스로 캐시를 수작업으로 입력하고 정보를 매뉴얼하게 넣어야 하며, 유지보수와 관리를 추가로 해야 하는 불편을 야기했다”며 “트루캐시 안에선 보이지 않으나 인메모리로 프라이머리DB를 복제하는 오라클 데이터가드 기술을 적용해 자동으로 캐시를 구성하므로 개발자 스스로 해야 할 것도 없고 별도 캐시 제품도 구매하지 않아도 된다”고 밝혔다. 또 하나의 기능으로 '인 데이터베이스 SQL 파이어월'을 소개했다. 오라클 데이터베이스 23ai의 DB 커널 자체에 SQL 방화벽을 탑재한 것이다. 스미스 부사장은 “추가적인 외부 제품이나 기술을 구매하지 않아도 DB를 SQL인젝션 공격으로부터 보호할 수 있다”며 “정의되지 않고, 인증되지 않은 IP 플랜이 들어와 데이터를 공격하는 것을 막아준다”고 설명했다. AI 개발 관련해선 오라클 데이터베이스에 내장된 머신러닝과 AI 지원 기능을 언급했다. 오라클 데이터베이스 자체적으로 머신러닝 알고리즘을 내장했으며, 이 알고리즘으로 사기탐지, 분류, 시계열 분석 등의 업무를 수행할 수 있다. 머신러닝 알고리즘 운영이나 적용을 위해 데이터를 추출해 다른곳으로 이동시키지 않아도 된다. 오토ML을 지원해 머신러닝 개발에 익숙하지 않은 사용자도 쉽게 머신러닝 알고리즘을 활용할 수 있다. 생성형 AI를 지원하기 위한 핵심 신기능은 'AI 벡터 검색' 기능이다. 오라클 데이터베이스 23ai는 단일 테이블에 벡터 정보를 담을 수 있고, 대규모언어모델(LLM)의 기업 내부 정보 접근을 위한 '검색증강생성(RAG)' 관련 별도의 벡터 DB를 구축하지 않아도 된다. AI 벡터 검색 기능은 고객의 문서, 이미지 및 기타 비정형 데이터 검색과 프라이빗 비즈니스 데이터 검색을 안전하게 결합시키고, 그 과정에서 데이터를 별도의 장소로 이동하거나 복제하지 않는다. 오라클 데이터베이스 23ai는 AI 알고리즘 적용을 위해 데이터를 별도의 장소로 이동시키는 대신, 데이터가 저장된 장소에서 바로 AI 알고리즘을 실행한다. 결과적으로 오라클 데이터베이스 내에서 AI 알고리즘이 실시간으로 실행되며 효과, 효율성, 보안성이 크게 향상된다. 스미스 부사장은 “AI 벡터 검색은 이미지, 비디오, PDF 같은 비정형 콘텐츠의 벡터 정보를 컬럼으로 저장하고 LLM의 유사성 검색을 지원한다”며 “단일 SQL 쿼리를 이용해 정형화된 비즈니스 데이터와 비정형 데이터 콘텐츠를 동시에 검색할 수 있다”고 말했다. 그는 “일부 벤더는 벡터 DB를 제품화해 판매하며 벡터 기능만 수행할 수 있게 만들지만, 오라클은 단일 DB 엔진에서 정형화된 비즈니스 데이터와 비정형 콘텐츠를 동시 사용하게 하는게 해법이라 생각한다”고 강조했다. 그밖에 AI 벡터 인덱싱 기능, 생성형 AI 성능을 높이기 위한 엑사데이터 시스템 소프트웨어 업그레이드도 소개됐다. 오라클 골든게이트 최신 버전은 오라클 데이터베이스23ai에 저장된 벡터 컬럼을 분산해 복제하도록 업데이트됐다. 랭체인이나 라마 인덱스와 같이 개발자가 선호하는 툴과 벡터 검색 기술을 통합 사용할 수 있게 했다. 그는 “오라클은 가장 높은 수준의 미션크리티컬한 워크로드를 일관성, 확장성, 가용성과 보안을 갖고 지원할 수 있다”며 “OCI의 생성형 AI 서비스와 통합 빌트인돼 오라클 데이터베이스23ai 사용자는 OCI의 AI 포트폴리오 전체를 쉽게 사용할 수 있으며, 어떤 형태의 배포 환경에서도 동일하게 사용할 수 있다”고 말했다. 오라클 데이터베이스 23ai는 오라클 엑사데이터 데이터베이스 서비스, 오라클 엑사데이터 클라우드앳커스터머, 오라클 기본 데이터베이스 서비스, 오라클 데이터베이스앳애저 상의 오라클 클라우드 인프라스트럭처(OCI) 서비스 사용자에게 제공된다. 온프레미스용 오라클 데이터베이스 23ai의 정식 출시일정은 다음달 중 발표된다.

2024.05.09 14:29김우용

사람인, 'Ai 공고 코칭 서비스' 출시

HR 분야에 AI가 도입되면서 채용 효율을 높이고, 인사담당자의 업무 과중을 해소해 주는 해결사 역할을 하고 있다. 사람인(대표 김용환)은 기업 인사담당자의 채용 진행과정을 수월하게 하고, 불필요한 업무를 줄여주기 위해 'Ai 공고 코칭' 서비스를 출시했다고 23일 밝혔다. Ai 공고 코칭은 챗GPT와 사람인 AI LAB이 보유한 AI 추천 알고리즘이 적용된 서비스로, 채용 공고 작성 시 직무 맞춤형으로 공고 내용에 대한 피드백을 해준다. 채용 공고를 작성할 때, 동일 직군 공고 중 지원자에게 인기가 많은 공고에 사용되는 키워드를 AI가 추천해주며, 반복되는 문구는 자동으로 작성해준다. 또 인사담당자가 본문 작성을 완료했을 때, AI가 본문 내용을 검토하고 사람인 AI 알고리즘을 통해 공고에 가장 적합한 문구, 이미지, 제목 등을 추천해준다. 작성한 공고에 대한 분석은 평균 10초 내외로, 신속한 피드백을 받을 수 있다. 완성된 공고 결과를 바탕으로 AI가 코칭 점수를 분석해 보여주기도 한다. 이는 공고 완성도를 판별하기 위한 것으로 인사담당자가 기입 항목을 놓치거나, 상세 내용이 필요한 부분을 누락하지 않도록 도와준다. 또 코칭 이유를 명확하게 제공하는 설명 가능한 AI(XAI)를 구현했다. 챗GPT 기반의 생성형 AI를 자기소개서, 채팅 등의 서비스에 활용해 구직자의 취업 준비 과정을 효율화한 사람인은 향후 기업의 채용 과정에도 AI를 적극 활용해 기업 인사담당자의 업무 효율을 더 높일 계획이다.

2024.02.23 09:01백봉삼

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

"요금 올리거나, 무료 풀거나"…OTT, 전략 분화

"책 대신 '아이패드'로 수업을"…디지털이 바꾼 교실 풍경은

과학자들, 납으로 금 만들었다…'연금술사의 꿈' 실현되나

[ZD브리핑] 아시아 IT 박람회 컴퓨텍스 개최...21대 대선 후보 첫 토론회

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현