[AI는 지금] "양보다 질이다"…AI 기업들, 정제 데이터 '버티컬 모델' 베팅
인공지능(AI) 기술이 거대언어모델(LLM)을 중심으로 확산되던 흐름에서 벗어나 산업 맞춤형 '버티컬 AI'로 전환되는 흐름이 빨라지고 있다. AI의 범용성이 오히려 현장 적용을 방해하는 요인으로 지적되면서 특정 산업 문제를 정확히 풀 수 있는 특화형 모델 수요가 높아지는 추세다. 10일 업계에 따르면 국내외 AI 기업들은 최근 범용 모델 대신 산업별 정밀화를 앞세운 버티컬 AI 개발에 집중하고 있다. 의료, 금융, 법률, 커머스 등 도메인 특화형 AI가 실제 계약 체결, 리스크 예측, 비용 절감 등 실질적 성과를 입증하며 LLM을 그대로 쓰는 전략의 한계를 드러내고 있다는 판단에서다. 이같이 버티컬 AI가 주목받는 배경에는 세 가지 축이 자리한다. ▲도메인 최적화로 인한 문제 해결력 ▲데이터 중심의 경량화 전략 ▲정확성 향상을 통한 규제 산업 대응력이다. 이미 LG AI연구원, 코히어 등의 파운데이션 모델 기업들은 기존처럼 모델 파라미터를 키우기보단 양질의 산업 데이터로 성능을 끌어올리는 방식에 주력하고 있다. 범용 AI 빈틈 메우는 버티컬 AI…"정확성·가성비서 차이 난다" 오픈AI '챗GPT', 앤트로픽 '클로드' 등의 범용 LLM은 다양한 주제를 빠르게 학습할 수 있다는 장점이 있다. 다만 각 산업이 요구하는 맥락 이해력·정확성·규제 대응력에서는 취약하다는 지적이 나온다. 특히 문서 구조나 용어가 고정된 법률·세무 분야는 일반 LLM에게는 문맥이 과도하게 추상적이거나 관련성이 낮은 정보를 만들어낼 위험이 높다. '챗GPT'가 사실과 다른 판례를 생성하거나 존재하지 않는 조항을 제시하는 사례는 그 대표적이다. 이러한 한계는 성능 문제가 아니라 학습 데이터의 범용성과 과적합 위험, 도메인에 특화된 개념 계층구조 부족에서 기인한다. 이에 따라 전문가가 직접 구축한 정제된 데이터셋 기반의 산업 특화형 AI가 정확도·신뢰성·업무 호환성에서 실효성을 증명하고 있다. 단순히 답을 생성하는 것을 넘어 특정 산업의 '실제 문서'를 구조적으로 이해하고 '작동 가능한 결정'을 내릴 수 있는 수준까지 도달 중이다. 이 같은 흐름은 지표로도 확인된다. 한국지능정보사회진흥원(NIA)은 최근 보고서에서 글로벌 버티컬 AI 시장이 오는 2032년까지 연평균 27% 성장할 것으로 전망했다. 이미 미국, 이스라엘 등은 규제·보안 산업을 중심으로 시장을 선점하며 독점 생태계를 구축 중이다. 업계 관계자는 "오픈AI 같은 글로벌 기업들도 기술적으로 버티컬 AI에 대응할 수는 있겠지만 이미 너무 많은 영역에 손을 뻗은 상황이라 특정 산업에 깊이 들어가기엔 어려움이 있다"며 "오히려 이같은 방향성이 가격 측면에서 B2B 기업에게는 경쟁력이 될 수 있고 수익 모델로도 충분히 의미가 있다"고 말했다. 리걸AI, 법률 효율성 높인다…"문서 해석에 리스크 관리까지 가능해져" 문서 복잡도와 전문성, 강한 규제 환경으로 생성형 AI 도입이 까다롭던 법률 분야도 기술 변화의 전환점을 맞고 있다. 과거 법무 관련 AI 기술은 단순 검색이나 판례 조회에 머물렀다면 최근에는 법령 해석, 조항 간 논리 구조 분석처럼 문서의 문맥을 이해하고 업무 수행 프로세스에 도움을 주고 있다. 국내에서의 대표적인 사례는 BHSN이다. 비즈니스 리걸AI 솔루션 '앨리비(allibee)'를 운영 중인 이 회사는 법률 분야에 특화된 생성형 AI를 기반으로 기업의 계약, 법무 등 비즈니스에 필요한 서비스를 제공한다. 자체 개발한 법률 특화 거대언어모델인 '리걸 LLM(Legal-LLM)', 검색증강생성(RAG), 특허받은 '리걸 OCR' 기술 등으로 복잡한 법률 문서를 수 초 만에 면밀히 분석하고 정밀한 리스크 감지까지 가능하다. 특히 전문가가 직접 정제한 고품질 법령, 판례, 정책 데이터를 기반으로 범용 LLM보다 높은 정확도와 신뢰도를 확보한 점이 강점으로 꼽힌다. 프론티어 AI 기업의 모델이 사실과 다른 법령이나 판례를 인용해 오류를 일으키는 사례가 잦다는 점에서 산업 현장에서는 이런 특화형 AI에 대한 선호가 점차 높아질 가능성이 높다. 한 변호사 업계 관계자는 "'챗GPT'가 그럴듯한 말투로 실제 존재하지 않는 법령이나 판례를 제시해 곤혹을 겪었다는 사례를 들었다"며 "클라이언트들이 관련 사례를 뉴스 등으로 접하면서 범용 AI를 꺼리는 분위기가 이어지다 보니 클린한 법률 데이터만을 말해주는 서비스가 필요하다는 인식이 있다"고 말했다. 이러한 수요를 파악한 BHSN은 이미 다양한 산업군을 대상으로 레퍼런스를 확보하며 신뢰를 쌓아가고 있다. 현재 CJ제일제당, 애경케미칼, 한화솔루션 등 국내 주요 기업에 '앨리비'를 공급 중이며 연내 제약·유통 등 추가 산업군과의 신규 계약도 추진하고 있다. '앨리비'를 도입한 기업들은 계약서 검토 시간이 67% 이상 단축됐고 반복 검토 항목의 자동화를 통해 조항 누락이나 오류 발생률도 크게 낮췄다. AI 기반 자동화와 정밀 분석 기술로 법무 업무 전반의 생산성과 정확성 역시 향상됐다는 평가다. 고객 의도 읽고 구매까지 이끈다…커머스 특화형 AI의 진화는? 커머스 분야에서도 마찬가지다. 실시간 추천, 구매 유도, 결제 전환까지 온라인 쇼핑 전 과정에서 AI가 '판매 파트너' 역할을 수행하는 시대가 열렸다. 고객의 행동 데이터를 실시간으로 분석하고 구매 여정을 따라가며 맞춤형 응대를 제공하는 이커머스 특화형 AI 솔루션이 떠오르고 있는 것이다. 이같은 흐름 속에서 대화형 에이전트 '젠투(Gentoo)' 개발사인 '와들'이 주목받고 있다. '젠투'는 고객의 관심사와 행동을 실시간으로 분석해 상품을 추천하고 구매 결정을 유도하는 멀티 AI 에이전트 솔루션이다. 고객의 니즈를 능동적으로 파악하는 것은 물론 구매 장벽을 해소하는 구조로 이뤄져 중소형 쇼핑몰을 중심으로 고객 전환율 개선 효과를 나타내고 있다. 최근 와들은 코오롱베니트의 AI 얼라이언스 파트너로 참여해 다양한 커머스 플랫폼에 젠투의 기술을 적용하고 있다. 특히 중소형 브랜드를 중심으로 AI 기반 운영 파트너로서 입지를 강화하고 있으며 이를 통해 온라인 쇼핑몰의 운영 효율성과 고객 만족도를 동시에 향상시키는 데 기여하고 있다. 일례로 국내 월간 활성 사용자 수(MAU)가 70만 명인 한 이커머스 플랫폼은 '젠투' 솔루션 도입 후 상품 클릭률이 6개월 만에 20%로 증가하며 약 2배 이상 높아졌다고 밝혔다. 이같이 고객의 구매 여정 전반을 AI가 실시간으로 지원하는 흐름은 상담 접점에서도 뚜렷하게 나타난다. 올인원 AI 비즈니스 메신저 '채널톡'을 운영하는 채널코퍼레이션은 대화형 버티컬 AI 기능인 '알프(ALF)'를 지난해 11월 정식 출시했다. '알프'는 자연어 기반으로 대화의 맥락을 이해하고 정보를 탐색해 고객 응대 업무를 수행하는 서비스다. 현재 패션·뷰티 업계를 중심으로 1천여 개 기업에서 활용 중이며 올해는 상품 판매와 고객 정보 수집까지 자율적으로 수행할 수 있도록 업데이트될 예정이다. '알프'를 통해 상담을 효율화한 대표 사례로는 애슬레저 브랜드 안다르가 꼽힌다. 안다르는 상담 유형별로 응대 체계를 세분화하고 배송·교환 등 반복되는 단순 문의는 알프가 직접 처리하도록 설정했다. 그 결과 전체 고객 문의의 61%를 상담원 연결 없이 알프가 자체 응대하며 상담 효율성과 응답 속도를 크게 끌어올렸다. 세금·재무도 '사람 없이' 자동화…소상공인, 자영업자를 위한 버티컬 AI 세금과 재무 분야 역시 예외는 아니다. 특히 반복적이고 규제 민감도가 높은 세무·회계 업무는 정확성과 속도 모두를 요구하는 영역으로, AI 자동화 수요가 빠르게 늘고 있다. 사람 손을 타지 않고도 환급 신청, 증빙 처리, 보고서 작성까지 가능한 서비스가 등장하면서 실무 자원이 부족한 사업자들에게 실질적인 '버티컬 AI 비서'로 자리잡고 있다. 일례로 혜움은 소상공인과 자영업자를 위한 버티컬 AI를 개발해 세무·재무 실무 자동화에 나서고 있다. 이 기술은 혜움이 운영 중인 국내 최초 AI 경정청구 서비스 '더낸세금'과 '혜움 레포트 2.0'에 적용돼 사업자 대상 세금 환급, 보고서 생성, 증빙 처리 등 다양한 업무를 수행할 수 있게 한다. 최근에는 소상공인을 위한 버티컬 AI 구축을 위해 IBK기업은행, 네이버와 전략적 오픈 이노베이션을 추진하고 마이크로소프트(MS), 기업은행 등과 금융 AI 서비스 공동 개발을 위한 MOU를 체결하는 등 금융 버티컬 생태계 구축에 더욱 박차를 가하고 있다. 업계 관계자는 "이제 생성형 AI는 산업 내 데이터를 이해하고 업무 성과까지 연결하는 수준으로 진화하고 있다"며 "앞으로 특정 산업에 얼마나 최적화된 형태로 작동하느냐가 기술 경쟁력의 핵심 지표가 될 것"이라고 말했다.