정부 업무에 챗GPT를?…美 앨라바마주 생성형 AI 도입
생성형 AI 현황 조사 결과: 74.8%의 정부 기관은 아직 AI 도입 전 단계 앨라바마주 정부가 생성형 인공지능(생성형 AI) 도입을 위한 종합 가이드라인을 마련했다. 태스크포스가 실시한 종합적인 생성형 AI 활용 현황 조사에서 주목할 만한 통계 과에 따르면, 총 139개 응답 기관 중 74.8%에 해당하는 104개 기관은 생성형 AI를 전혀 사용하지 않는다고 응답했으며, 26개 기관(18.7%)만이 어떤 형태로든 생성형 AI를 활용 중이라고 답했다. 9개 기관(6.5%)은 응답을 제공하지 않았다. 생성형 AI 제품 공급업체 현황을 살펴보면, 마이크로소프트(Microsoft)가 가장 큰 점유율을 보였으며, 그 뒤를 이어 어도비(Adobe), 오픈AI(OpenAI), 구글(Google), 미스트랄(Mistral), 그래머리(Grammarly) 순으로 나타났다. 그러나 기타(Others) 카테고리가 가장 큰 비중을 차지해, 다양한 공급업체의 제품이 활용되고 있음을 보여준다. 생성형 AI 시스템이 구동되는 플랫폼으로는 55개가 기타 클라우드 제공업체를 이용하고 있으며, 30개는 마이크로소프트 애저(Microsoft Azure), 19개는 온프레미스(On-premises) 환경, 16개는 아마존 웹 서비스(AWS), 6개는 구글 클라우드 플랫폼(GCP)을 사용하고 있는 것으로 조사됐다. 텍스트 생성, 문제 해결, 대화형 에이전트가 주요 활용 영역... 안전을 위한 교육이 최우선 앨라바마주 행정기관들이 현재 사용 중인 생성형 AI의 주요 기능으로는 텍스트 생성(67건)이 가장 많았고, 다음으로 문제 해결(52건), 대화형 에이전트(46건), 코드 생성(35건), 언어 번역(32건) 순으로 나타났다. 이는 생성형 AI가 다양한 행정 업무에서 텍스트 기반 작업을 지원하는 데 주로 활용되고 있음을 보여준다. 안전 조치 측면에서는 교육 및 인식 제고(57건)가 가장 많이 적용된 안전 단계로 나타났으며, 보안 조치(50건), 지속적 모니터링(43건), 사용자 동의(31건), 법적 준수(23건) 순으로 조사됐다. 이는 앨라바마주 정부가 생성형 AI 도입에 있어 교육과 보안을 최우선으로 고려하고 있음을 보여준다. 비즈니스 활용 측면에서는 워드 클라우드 형태로 제시된 데이터에 따르면 '생성형(Generative)', '현재 목적(purpose currently)', '대규모 언어 모델(LLM)', '네트워크(network)', '다중(multi)', '기존(Existing)' 등의 키워드가 두드러지게 나타났다. 이는 현재 행정기관들이 주로 텍스트 생성, 콘텐츠 개발, 고객 경험 개선 등의 목적으로 생성형 AI를 활용하고 있음을 시사한다. 패턴 인식에서 창작까지: 생성형 AI가 전통적 AI와 다른 결정적 차이점 태스크포스가 발표한 최종 보고서에 따르면 생성형 AI와 전통적 AI는 응용 분야와 기능 면에서 큰 차이가 있다. 전통적 AI는 주로 패턴 인식, 의사결정, 사전 정의된 규칙과 데이터 분석을 기반으로 한 작업 자동화에 중점을 둔다. 이는 사기 탐지, 추천 시스템, 예측 분석과 같은 응용 분야에서 뛰어난 성능을 발휘한다. 반면 생성형 AI는 새로운 콘텐츠를 만들고 원본 출력물을 생성하도록 설계됐다. 학습한 데이터를 기반으로 텍스트, 이미지, 음악 등을 생성할 수 있어 콘텐츠 제작, 디자인, 엔터테인먼트와 같은 창의적 분야에서 특히 유용하다. 생성형 AI는 기사 작성, 사실적 이미지 생성, 음악 작곡, 가상 세계 생성 등이 가능하며, 챗봇과 가상 비서에서 보다 인간다운 응답을 제공해 고객 상호작용을 향상시킬 수 있다. 또한 마케팅 캠페인 개발이나 새로운 제품 디자인과 같이 창의성과 혁신이 요구되는 작업을 지원할 수 있다. 정리하자면, 전통적 AI가 데이터 분석과 의사결정에 중점을 두는 반면, 생성형 AI는 새롭고 창의적인 콘텐츠를 생성하는 능력이 특징이며 이는 정부를 포함한 다양한 산업 분야에서 광범위한 응용 가능성을 열어준다. 편향과 개인정보 침해 위험: 생성형 AI 도입 전 고려해야 할 양면성 생성형 AI 기술은 많은 이점을 제공하지만, 개인과 사회 모두에게 위험을 초래할 수 있다. 태스크포스는 책임감 있고 윤리적인 방식으로 해결해야 할 여러 위험 요소를 지적했다. 개인적 위험으로는 개인정보 침해가 큰 문제로, 생성형 AI는 개인 데이터를 기반으로 콘텐츠를 생성할 수 있어 적절하게 관리되지 않으면 개인정보 문제로 이어질 수 있다. 또한 생성형 AI는 현실적이지만 거짓된 정보를 창출하여 개인을 오도할 수 있으며, 저작권이 있거나 보호된 콘텐츠를 기반으로 콘텐츠를 생성하고 작성할 수 있어 법적 문제를 야기할 가능성도 있다. 공유적 위험으로는 보안 위협이 심각한데, 생성형 AI는 정교한 피싱 공격이나 딥페이크를 생성하는 데 사용될 수 있어 조직과 사회에 중대한 보안 위험을 초래할 수 있다. 또한 생성형 AI에 의한 창의적 작업의 자동화는 특정 산업에서 일자리 대체로 이어져 많은 사람들의 생계에 영향을 미칠 수 있다. 의료나 법 집행과 같은 민감한 영역에서 생성형 AI 사용은 책임과 의사결정에 관한 윤리적 질문을 제기하며, 생성형 AI 모델은 훈련 데이터에 존재하는 편향을 의도치 않게 영속화하여 개인에 대한 불공정한 대우로 이어질 수 있다. 이러한 위험을 완화하기 위해 강력한 개인정보 보호와 보안 조치 구현, 정기적인 편향성 평가 실시, 생성형 AI 응용 프로그램의 투명성과 책임성 확보가 중요하다. 태스크포스는 책임감 있는 생성형 AI 관행이 윤리적 사용을 위한 지침이 될 수 있다고 강조했다. 정책 지원부터 환경 모니터링까지: 앨라바마주가 계획하는 생성형 AI 활용 영역 태스크포스의 조사에 따르면 앨라바마주 정부는 현재 총 108개의 생성형 AI 제품을 사용 중이며, 72개의 고유 공급업체와 협력하고 있다. 또한 106개의 생성형 AI 시스템이 이미 배포되어 운영 중인 것으로 나타났다. 정책 및 거버넌스 영역에서는 생성형 AI가 정책, 규제, 입법 문서 초안 작성을 지원할 수 있다. 방대한 양의 데이터를 분석하여 통찰력과 권장 사항을 제공함으로써 정책 입안자들이 정보에 입각한 결정을 내리는 데 도움을 줄 수 있다. 법 집행 및 공공 안전 분야에서는 생성형 AI가 범죄 데이터 분석, 범죄 핫스팟 예측, 수사 지원 등을 통해 법 집행 기관을 지원할 수 있다. 또한 비상 대응 및 재해 복구 노력을 관리하는 데도 도움을 줄 수 있다. 시민 서비스 측면에서는 생성형 AI가 개인화되고 효율적인 서비스를 제공함으로써 시민 참여를 향상시킬 수 있다. 예를 들어, 시민들의 문의, 신청 및 정부 서비스 접근을 돕는 챗봇 개발에 사용될 수 있다. 의료 분야에서는 생성형 AI가 환자 데이터 분석, 질병 발생 예측, 의학 연구 지원에 활용될 수 있다. 또한 의료 자원 관리 및 환자 치료 개선을 지원할 수 있다. 교육 및 훈련 분야에서는 생성형 AI가 개인화된 학습 경험 개발, 교육 콘텐츠 생성, 교사 훈련 지원을 통해 교육 프로그램을 향상시킬 수 있다. 또한 교육 결과를 개선하기 위해 교육 데이터를 분석하는 데 사용될 수 있다. 인프라 및 교통 분야에서는 생성형 AI가 교통 패턴, 대중교통 이용, 인프라 상태에 대한 데이터를 분석하여 인프라 계획 및 관리를 최적화할 수 있다. 또한 스마트 시티 개발 및 도시 계획 개선을 지원할 수 있다. 환경 모니터링에서는 생성형 AI가 대기질, 수자원, 기후 변화에 대한 데이터를 분석하여 환경 자원의 모니터링 및 관리를 지원할 수 있다. 또한 보존 노력과 재난 관리를 지원할 수 있다. 윤리적 데이터 활용이 핵심: 앨라바마주의 생성형 AI 데이터 관리 전략 생성형 AI 시스템에서 데이터의 책임감 있는 사용을 보장하는 것은 데이터 보안뿐만 아니라 윤리적인 배포와 대중 신뢰 유지에 관한 것이다. 태스크포스는 이와 관련해 몇 가지 중요한 원칙을 제시했다. 윤리적 데이터 사용 및 편향 완화를 위해 생성형 AI 시스템은 사용자 개인정보를 존중하고 편향된 결과를 방지하는 방식으로 설계 및 배포되어야 한다. 기관들은 AI 모델이 의사결정 과정에서 투명하고, 모든 데이터가 윤리적으로 수집 및 처리되도록 해야 한다. 데이터나 모델 출력물에서 의도하지 않은 편향을 탐지하고 완화하기 위한 정기적인 점검이 있어야 한다. 오픈소스 생성형 AI 모델을 사용할 때는 생성형 AI 시스템의 무결성과 공정성을 보장하기 위해 데이터 처리 및 편향 탐지에 대한 엄격한 기준을 유지하는 것이 중요하다. 공공 신뢰 및 시민 참여 측면에서는 생성형 AI의 책임 있는 사용과 데이터 프라이버시에 미치는 영향에 대해 시민과 정부 직원을 교육하는 것이 중요하다. 주 기반 생성형 AI 시스템의 시민들과 사용자들에게 개인 데이터가 어떻게 사용되고 있는지, 그리고 주 기관들이 이 데이터를 어떻게 보호하고 있는지 명확해야 한다. 이러한 투명성은 생성형 AI 사용에 대한 대중의 신뢰와 자신감을 키운다. AI 시스템 책임성 및 모니터링을 위해서는 생성형 AI 시스템 출력에 대한 명확한 책임을 설정해야 한다. 부정확성, 예상치 못한 결과 또는 데이터 오용을 감지하기 위해 생성형 AI 시스템을 지속적으로 모니터링해야 한다. 여기에는 투명성을 제공하고 감사나 조사를 지원하기 위해 생성형 AI 결정에 대한 상세한 로그와 기록을 유지하는 것이 포함된다. 성능 추적 및 오류 감지를 위한 자동화된 도구는 시스템 무결성을 유지하는 데 도움이 될 수 있다. 태스크포스는 이러한 책임 있는 사용 지침을 도입함으로써 생성형 AI 시스템 도입이 시민 데이터를 보호하고 윤리적 기준을 유지하면서 대중에게 혜택을 줄 수 있다고 강조했다. FAQ Q: 생성형 AI와 전통적 AI의 주요 차이점은 무엇인가요? A: 전통적 AI는 주로 패턴 인식, 의사결정, 작업 자동화에 중점을 두는 반면, 생성형 AI는 텍스트, 이미지, 음악 등 새로운 콘텐츠를 만들고 원본 출력물을 생성하는 능력이 특징입니다. 전통적 AI가 주로 분석적이라면, 생성형 AI는 창의적인 결과물을 만들어낼 수 있습니다. Q: 앨라바마주 정부는 생성형 AI의 안전한 사용을 위해 어떤 조치를 취하고 있나요? A: 앨라바마주 정부는 생성형 AI 태스크포스를 구성하여 책임 있는 사용 지침을 개발하고, 데이터 보안 및 개인정보 보호 정책을 강화하며, 정부 직원들을 위한 교육 프로그램을 마련하고 있습니다. 조사 결과에 따르면 현재 교육 및 인식 제고, 보안 조치, 지속적 모니터링, 사용자 동의 확보, 법적 준수가 주요 안전 조치로 적용되고 있습니다. Q: 일반 시민들에게 생성형 AI 도입은 어떤 영향을 미칠 수 있나요? A: 생성형 AI 도입은 시민들에게 더 개인화되고 효율적인 정부 서비스 접근을 제공할 수 있습니다. 예를 들어 챗봇을 통한 24시간 문의 응대, 보다 효율적인 의료 서비스, 맞춤형 교육 콘텐츠 등이 가능해집니다. 그러나 개인정보 보호, 편향 및 차별 문제가 발생할 수 있어 책임 있는 구현이 중요합니다. ■ 이 기사는 AI 전문 매체 'AI 매터스'와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)