• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
인공지능
스테이블코인
배터리
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'AI자율제조'통합검색 결과 입니다. (3건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

제조현장 AI 도입률 3.9% 그쳐…정보통신 분야 25.7%에 비해 낮아

생성형 인공지능(AI)은 빠르게 확산하고 있지만 제조 현장의 AI 도입은 아직 부족한 상황이어서 산업 전반에 AI 도입을 가속해야 한다는 주장이 나왔다. 산업통상자원부가 17일 개최한 '산업 AI 전략(M.A.P·Manufacturing AI Policy) 세미나'에서 송단비 산업연구원 연구위원은 '산업 AI 기업 활용현황' 조사 결과, 기업의 AI 활용비율은 2017년 1.4%에서 2023년 6.4%까지 증가했지만, 여전히 낮은 것으로 나타났다고 발표했다. 산업별 AI 도입률은 정보통신과 금융·보험은 25.7%와 15.3%지만 제조업은 3.9% 수준에 그친 것으로 나타났다. 기업 규모별로는 250명 이상이 종사하는 기업의 경우 AI 도입률이 2017년 3.1%에서 2022년 9.3%로 상승했으나 50~250명이 종사하는 기업은 2017년 0.9%에서 2022년 3.1%로 늘어나는 데 그쳤다. 박일준 대한상의 부회장은 “AI 범위가 너무 넓어 모든 분야에서 잘하겠다고 하는 생각은 위험할 수 있다”며 “선택과 집중 전략이 필요한 상황에서 산업계는 산업 AI에 집중해야 한다”고 말했다. 박 부회장은 “제조분야 AI 주도권을 다른 국가에 내주지 않도록 민관이 힘을 모아 산업 AI를 확산하기 위해 총력을 다해야 한다”고 강조했다. 장영재 KAIST 산업 및 시스템공학과 교수(다임리서치 대표)는 “AI는 늦었지만, 산업 AI, 제조 AI에는 아직 기회가 있다”며 “자율제조의 핵심기술은 AI·로봇·디지털트윈이며 특히, AI 기술이 급격히 고도화되는 상황”이라고 말했다. 장 교수는 “기존에는 로봇의 운영 경로를 사람이 일일이 설정했지만, 지금은 AI가 스스로 최적 경로를 학습하고 조정하는 수준까지 발전했다”며 “이러한 상황에서 우리나라가 산업의 경쟁우위를 확보하려면 우리 제조 현장을 AI 활용의 대규모 테스트베드로 활용해야 한다”고 강조했다. 이어 “기술·투자 역량이 있는 대기업과 달리 중견·중소기업에는 AI 도입에 필요한 인프라·기술 등 정부 지원이 필요하다”고 덧붙였다. 허영신 마키나락스 부사장은 “범용 AI 관련 기술이 빠르게 발전하고 있으나 이 기술만으로는 현장의 문제를 해결할 수 없고, 이러한 범용 기술을 어떻게 산업 특화 솔루션으로 빠르고 비용 효율적으로 전환하는지가 중요하다”고 말했다. 허 부사장은 “AI 산업 활성화하는 데 중요한 것은 실제 활용도를 높이는 것”이라며 “정부 차원에서 다수 기업이 활용할 수 있는 산업 특화 AI 상용화 지원이 필요하다”고 강조했다. 엄재홍 DN솔루션즈 상무는 “기계·장비의 경우 기존 거대언어모델(LLM)을 곧바로 활용하기는 어렵고, 운용 생산성·가공 생산성·종합 생산성·비용 효율성을 모두 만족하는 특화 모델인 LDM(Large Domain model)이 필요하다”고 말했다. 이어 “산업에 AI를 적용하려면 산업 인프라·생태계 전반에 변화가 동반돼야 하지만 산업데이터는 지식재산권과 직결돼 공유가 어렵고, AI 등 기술역량을 보유한 인력이 부족하다”고 지적했다. 엄 상무는 “산업 AI의 시너지는 산업데이터의 상호 운용성을 바탕으로 하기 때문에 국가 거버넌스 중심의 표준화와 활용 가이드라인이 필요하다”며 “구체적인 산업데이터 활용 가이드라인으로 산업계 참여를 유도하고, 산업 AI 협업 생태계를 구축해 나갈 필요가 있다”고 덧붙였다. 산업부는 AI를 통해 산업 현장의 구체적 문제를 해결해야 하는 만큼, 선도 프로젝트를 발굴해 성공사례를 산업 전반으로 확산하고 산업데이터 생성·활용과 산업 현장에 익숙한 AI 인재 양성, 제조기업과 AI 기업이 함께하는 생태계 구축 등을 위해 범용 AI와는 차별화한 전략을 세운다는 계획이다. 산업부는 우선 AI 접목을 통해 제조공정과 제품의 혁신을 가져올 자율제조 선도프로젝트를 올해 30여 개 추가로 선정하고 디자인·유통·에너지 등 생산활동 지원을 위한 제조지원 선도프로젝트도 추진한다. 또 AI 모델 구축에 필수적인 산업데이터 생성·가공·활용을 촉진하기 위해 산업데이터 전처리·표준화 기술개발과 공유플랫폼(데이터 스페이스) 구축을 지원할 계획이다. 산업 AI 수요기업과 공급기업이 협업해 업종별 특성에 맞는 산업 AI 모델을 개발하고 현장에 실제 적용할 수 있도록 업종·지역 단위 산업 AI 혁신 인프라도 조성한다. 제조 분야 지식·노하우와 AI 역량을 모두 보유한 현장 맞춤형 AI 전문가를 육성하기 위해 산업 AI 석·박사 과정을 강화하고 주력·첨단산업 분야 재직자에 AI 활용 교육을 집중한다. 시장예측, 공급망·구매, 공정 최적화, 생산설계, 예지보전 등 산업현장 문제를 해결하기 위한 산업 AI 에이전트도 개발한다. 물리세계와 상호 작용하는 피지컬 AI 구현을 위해 K-휴머노이드 연합을 중심으로 휴머노이드 로봇 개발을 본격화하고 자율주행 자동차·선박·드론 등 모빌리티에 AI 도입을 지원한다. 수요-공급기업 간 매칭을 통해 산업 AI 도입 성공 우수사례를 널리 확산하고 선도사례를 전수할 수 있도록, 산업 AI 성공사례 인벤토리를 고도화하고 제1회 산업 AI 엑스포를 개최할 계획이다. 이승열 산업부 산업정책실장은 “우리 산업이 직면한 생산가능인구 감소, 생산성 정체 문제와 함께 최근 관세전쟁으로 인해 글로벌 공급망이 더욱 불안정해진 상황에서 산업부는 산업 경쟁력을 획기적으로 높일 수 있는 해법으로 '산업 AI 전략'에 주목하고 있다”고 밝혔다. 이 실장은 이어 “초기 원천기술 개발에서는 뒤처지더라도 창조적 응용·수요자 맞춤형 최적화에 강한 우리 산업계의 실력을 발휘할 때”라며 “기업이 실제 필요로 하는 산업 특화 AI 모델과 산업 AI 에이전트를 구축해 산업 현장을 지능화·자율화하는 것이 중요하다”고 강조했다.

2025.04.17 15:44주문정

중소기업 DX도입률 10% 미만...'허브센터' 구축 절실

디지털 전환(DX)이 기계산업의 혁신을 가속화하고 있다. 미국의 GE나 독일 지멘스 등이 대표적이다. 이들은 스마트 공장이나 AI 기반 품질 검사, 디지털 트윈을 활용한 설계 최적화 등으로 기업 경쟁력을 강화하며 글로벌 시장을 선도하고 있다. 지디넷코리아는 총 3회에 걸쳐 스마트팩토리와 AI 등 두뇌를 장착 중인 기계 산업의 변신을 한국기계연구원 DX전략 전문가 분석을 통해 짚어봤다.(편집자 주) # 2035년, 배터리 셀 제조 현장. 사람이 거의 없다. 100여 대의 자율주행 로봇과 협동로봇들만 라인을 따라 부품을 조립하고 운반한다. 생산 계획과 품질 관리, 장비 유지보수까지 모든 의사결정은 인공지능(AI)이 실시간 판단하며 수행한다. 공정 중단 없이 자율적으로 일정 조정과 에너지 절감이 이뤄지고, 인간은 운영 대시보드를 통해 공정 상태를 모니터링하고, AI가 보내는 알림을 통해 중요한 결정만을 내릴 뿐이다. 과거 수십 명이 필요했던 제조라인은 이제 AI 통제 아래 저절로 돌아간다. 이는 10년 뒤 예상하는 대한민국 자율제조 공장 모습입니다. 그리 될 것으로 예상합니다. 기계산업의 디지털 전환은 제조업에서 AI 자율제조라는 형태로 구현되며, 미래 산업에 혁신을 가져올 것입니다. AI 자율제조 기술은 제품 제조 과정에서 발생할 수 있는 다양한 문제를 해결하는 과정에서 기존의 인간 전문가 개입을 점진적으로 인공지능이 대체하는 것을 의미합니다. 공장은 점차 로봇과 첨단 기계설비를 통해 완전 자동화를 향해 발전하며, 공정 운영과 의사결정 과정에서도 AI가 핵심적인 역할을 수행하게 될 것입니다. 즉, 생산성 향상과 원가 절감을 위해 AI를 제조업의 두뇌로 활용하여, 생산관리, 공정 최적화 및 자동화, 고장 예측 및 유지보수 등을 완전 자율화하는 것이 AI 자율제조의 본질입니다. 이처럼 미래 제조업이 완전 자율화된 모습을 세 가지 관점에서 살펴볼 수 있습니다. 자율제조 미래는 "모든 걸 AI가 관리/감독/수행" 첫째, AI 자율제조를 구성하는 핵심 기술별 시각입니다. 공장, 시설 또는 장비에서 데이터를 수집하는 기술과 이를 효율적으로 전처리하는 기술, 인공지능 모델링하는 기술, 이를 디지털트윈에 심어서 다시 실제 시스템에 최적화/예지보전/불량탐지 등에 적용하는 기술입니다. AI 자율제조의 미래상은 이 모든 기술을 인공지능이 관리/감독/수행하는 것입니다. 즉, 데이터 수집도 인공지능이 최적으로 명령하여 진행하고, 전처리도 인공지능이 하며, 인공지능 모델링 종류 및 모델링 구조 선정도 인공지능이 합니다. 최적 모델링의 적용도 인공지능이 수행하여 완전 자동화를 넘어 완전 자율화 되는 제조가 되는 것입니다. 둘째, 기술 개발의 시간적 흐름을 따라 단계별 발전 과정을 조망해보면 이렇습니다. AI 자율제조 기술에 이르기 위해서는 데이터 모니터링, 데이터 분석/진단, 예측/최적화, 자율 의사결정, 완전 자율화 단계의 다섯 단계를 거쳐 기술 개발이 완성될 수 있습니다. 이때 필요한 기능과 기술을 보면, 처음에는 데이터 파이프라인을 구축하고, 수집하여 전처리하고, 모니터링합니다. 2단계에서는 모은 데이터를 인공지능 모델링하고, 3단계에서는 모델링을 사용하여 최적화/예지보전/이상탐지 등을 수행할 것입니다. 4단계에서는 부분적인 강화학습을 통해 자율 의사결정을 수행하여 5단계인 자율화로 나아갈 것입니다. 셋째, 기술 적용 범위의 확장성을 기준으로 살펴보면 단위 공정 모듈 수준의 인공지능 모델링에서 출발해 여러 공정 모듈이 더해진 제조 장비 수준으로 확장됩니다. 이러한 여러 장비와 로봇 또는 이송계로 구성된 하나의 제조 라인 수준으로 확대되어 나중에는 제조 공장 레벨, 회사 레벨로 확장되어 나갈 것입니다. AI 자율제조 기술이 성공적으로 정착되기 위해서는 국가 차원의 디지털 전환 정책이 필수적입니다. 한국은 제조업, 특히 기계산업을 중심으로 생산성 향상과 글로벌 경쟁력 강화를 목표로 포괄적인 전략을 마련하고 있으며, 정부는 산업 데이터와 AI, 클라우드 등 첨단 기술을 기반으로 제조업의 혁신을 가속화하고 있으며, 데이터 표준화를 통해 기업 간 협업을 촉진해 디지털화된 제조 혁신 생태계를 구축하고 있습니다. 미국이나 중국, 일본, 독일도 제조공정 디지털화 전환에 속도를 내고 있습니다. 그럼 우리나라는 어떻게 해야할까요. TRL 7~8 수준 실증 상용화 위해선 DX 전문 공간 필요 우선 AI 자율제조를 가속화 하기 위해 국내에서도 디지털전환 허브 센터(DX 허브) 구축이 필요합니다. 현재 국내 기계산업의 AI/DX 지원을 위한 인프라가 부족해 중소기업의 DX 도입률이 10% 미만(중소기업연구원, 2023)에 불과한 상황입니다. AI/DX 기술을 활용할 수 있는 인재 부족으로 인해 기업들이 디지털 전환을 적극적으로 추진하지 못하고 있습니다. DX 허브는 디지털 트윈과 실제 제조 환경을 연결하는 실증 공간, AI/DX 교육 및 기술 검증을 수행하는 전문 기관, 산업현장에서 기술 이전과 확산을 촉진하는 협력 거점으로 기능해야 합니다. 기존 분산된 공간에서는 기술성숙도(TRL) 5~6 수준까지만 실현 가능하지만, TRL 7~8 수준의 실증 및 상용화를 위해서는 DX 전문 공간이 필요합니다. 이를 통해 제품 개발 비용 절감, 품질 개선, 외산 소프트웨어 대체 등 실질적인 산업적 효과를 창출할 수 있을 것입니다. AI 자율제조는 기계산업의 디지털전환을 통해 필연적으로 나아가야 할 방향입니다. 한국이 글로벌 제조업 경쟁에서 앞서 나가기 위해서는 디지털 전환 인프라 구축, 디지털 인재 양성, 제조업의 AI/DX 적용 확대, 디지털 트윈 기반의 실증 및 기술 확산이 절실합니다. DX 허브 센터를 중심으로 제조업 전반의 디지털 혁신이 가속화된다면, 한국은 글로벌 제조 패러다임 변화 속에서 주도적인 위치를 확보할 수 있을 것입니다.

2025.04.01 15:25이택민

산업 AI가 이끄는 스마트공장의 진화…미래 제조 혁신 주도

산업 인공지능(AI) 시대를 선도할 미래 제조 혁신 대표기술을 한자리에서 만나볼 수 있는 '2025 스마트공장‧자동화산업전(AW·Automation World 2025)'이 12일 개막했다. AW2025는 코엑스·한국산업지능화협회·한국무역협회 등이 공동 주최하고 산업통상자원부·중소벤처기업부 등이 공동 후원한다. 12일부터 14일까지 사흘간 코엑스 전관에서 열렸다. 올해에는 500개 이상의 국내외 기업이 2천200여 개 부스에서 최신 제품과 솔루션을 선보였다. 1990년 '한국 국제 공장자동화 종합전'으로 시작해 올해 35회를 맞이한 이번 전시회는 '자동화에서 자율화로(Automation to Autonomy)'를 슬로건으로 내세웠다. 미래 제조 현장이 AI·디지털 트윈·로봇·클라우드·엣지 컴퓨팅 기술과 결합하면서 사전에 설정된 알고리즘에 따라 움직이는 기존 '자동화' 중심의 스마트공장을 넘어서서 AI가 스스로 데이터를 분석해 최적의 공정을 운영하는 AI 기반 '자율제조' 공장으로 진화하고 있는 흐름을 반영했다. 전시장에서는 현대 오토에버의 대규모언어모델(LLM) 기반 AI 제조 관리 솔루션, 슈나이더 일렉트릭의 협동로봇(Cobot·Collaborative Robot)과 사물인터넷(IoT)·AI 기반 지능형 전력 시스템, 로크웰 오토메이션의 자율주행 로봇 등 다양한 기업의 기술·제품·솔루션을 확인할 수 있다. 또 제품 전시 뿐만 아니라 ▲AI 기반 자율제조 전문 컨퍼런스 ▲신제품·신기술 공개 세미나 ▲수요-공급 기업 간 비즈니스 매칭 ▲해외바이어 수출상담회 등 다양한 프로그램이 운영된다. 이를 통해 기술 전시를 넘어서서 AI 활용 사례를 직접 체험하고 혁신 기술을 공유하는 중요한 플랫폼으로서 역할을 할 것으로 기대된다. 개막식에는 이승렬 산업부 산업정책실장이 참석해 주요 기업 전시관을 찾아 AI 기반 자율제조 기술과 제품을 확인하고, AI 활용을 통한 기업들의 혁신 노력을 독려했다. 산업부는 지난해 9월 국가AI위원회 출범을 계기로 '산업 AX 확산 방안'을 발표하고, 지난 1월 AI산업정책위원회를 통해 '산업 AI 확산을 위한 10대 과제'를 공개하고 이행을 위한 세부 추진 계획을 마련 중이다. 이승렬 산업부 산업정책실장은 “산업부는 AI를 산업정책의 중심에 두고, 산업 전반의 AI 활용·확산에 주력하고 있다”며 “12대 업종의 AI 자율제조 선도 프로젝트를 선정·지원해 자율 제조공장 확산을 가속화하고, 컴퓨팅 인프라·산업 데이터·산업현장 AI 인재 등 탄탄한 AI 활용 기반을 구축해 기업이 쉽고 안전하게 AI를 도입할 수 있도록 다양한 정책적 지원을 아끼지 않을 것”이라고 밝혔다.

2025.03.12 08:11주문정

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

최태원 "성장할수록 불리...경제형벌 리스크 줄여야"

내수 부진 본격화...中 전기차 '공격' vs '생존' 온도차

웹젠 '드래곤소드' 잘 될까...출시 전 반응보니

4시간 연속 작업 거뜬...손가락까지 사람 닮은 로봇

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.