• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
AI페스타
배터리
양자컴퓨팅
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'한국 AI 모델'통합검색 결과 입니다. (23건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

KAIST, 멀티모달 대형언어모델 '깃허브' 공개…GPT-4V 시각성능 "제꼈다"

국내 연구진이 오픈AI의 GPT-4V와 구글 제미나이-프로(Gemini-Pro)의 시각 성능을 능가하는 멀티모달 대형언어모델을 개발, 오픈소스 커뮤니티 깃허브(Github)에 공개했다. 최근 주목받는 생성형 AI 트랜드가 멀티모달화로 진화 중이어서 귀추가 주목됐다. KAIST는 전기및전자공학부 노용만 교수 연구팀이 GPT-4V 등 비공개 상업 모델의 시각 성능을 넘어서는 공개형 멀티모달 대형언어모델을 선보였다고 20일 밝혔다. 연구팀은 멀티모달 대형언어모델 시각 성능을 개선하기 위해 '콜라보(CoLLaVO)'와 '모아이(MoAI)' 2가지 기술을 자체 개발했다. 이병관 연구원(박사과정,제1저자)은 "GPT-4V나 제미나이-프로 등과 시각성능 만을 비교하면 점수나 정확도 면에서 최대 10% 더 우수하다"고 말했다. 인지추론성도 함께 따져봐야 하지만, 이는 이번 연구 주제에서 벗어나 나중에 생각할 부분이라는 것이 이 연구원 얘기다. 사실 인지추론성도 개별 검토한 결과 오픈AI나 구글 모델 대비 결코 뒤지진 않는다는 것이 이 연구원의 귀뜸이다. 연구팀은 '콜라보'를 개발하기 전 기존 공개형 멀티모달 대형언어모델 성능이 비공개형에 비해 떨어지는 이유를 1차적으로 물체 수준에 대한 이미지 이해 능력 저하에서 찾았다. 연구팀은 이를 개선하기 위해 이미지 내 정보를 배경과 물체 단위로 분할하고 각 배경 및 물체에 대한 정보를 멀티모달 대형언어모델에 직접 넣어주는 '크레용 프롬프트(Crayon Prompt)'라는 시각적 프롬프트를 새로 설계했다. 또 시각적 지시 조정 단계에서 크레용 프롬프트로 학습한 정보를 잃어버리지 않기 위해 물체 수준 이미지 이해 능력과 시각-언어 태스크 처리 능력을 서로 다른 파라미터로 학습시키는 획기적인 학습전략인 '듀얼 큐로라(Dual QLoRA)'를 제안했다. 이병관 연구원은 "이로 인해 이미지 내에서 배경 및 물체를 1차원적으로 구분하는 능력이 크게 향상됐다"고 덧붙였다. 대형언어모델인 모아이(MoAI)'도 개발했다. 인간이 사물을 판단하는 인지과학적 요소(물체 존재나 상태, 상호작용, 배경, 텍스트 등)에서 영감을 얻었다는 것이 연구팀 설명이다. 연구팀은 "기존 멀티모달 대형언어모델은 텍스트에 의미적으로 정렬된 시각 인코더(vision encoder)만을 사용하기 때문에, 이미지 픽셀 수준에서의 상세하고 종합적인 실세계 장면에 대한 이해가 모자란다고 판단했다"고 말했다. 연구팀은 △전체적 분할 △한계가 없는 물체 검출기 △상황 그래프 생성 △글자 인식 등 4가지 컴퓨터 비전 모델을 언어로 변환한 뒤 멀티모달 대형언어모델에 입력했다. 이를 연구팀이 실제 검증한 결과 '콜라보'는 Math Vista(대학수준 수학 및 물리문제)나 MM-벤치(영어 객관식 문제), MMB-CN(중국어 객관식 문제), AI2D(어학문제) 등의 풀이에서 기존 모델 대비 최대 10%까지 점수와 정확도가 우수했다. 또 '모아이'는 기존 공개형 및 비공개형 LLVMs(멀티모달 대형언어)와 비교한 결과 각 질문에 따라 점수가 20포인트 이상 우수하게 답변한 경우도 나타났다. 이병관 연구원은 "3개월전 깃허브에 올려놓은 '콜라보'(https://github.com/ByungKwanLee/CoLLaVO)와 '모아이'(https://github.com/ByungKwanLee/MoAI)에 관심을 가져달라"며 "박사학위가 마무리되면 멀티모달 대형언어를 아이템으로 창업할 생각도 있다"고 말했다. 박사과정 5년차인 이 연구원은 또 "개인적으로 향후 기회가 닿는다면, 핸드폰에 들어가는 사이즈로 현재 성능을 유지하는 멀티모달 대형언어모델을 만들어 볼 것"이라고 덧붙였다. 노용만 교수는 “연구팀에서 개발한 공개형 멀티모달 대형언어모델이 허깅페이스 일간 화제의 논문(Huggingface Daily Papers)에 추천됐다"며 "SNS 등을 통해 전세계에 점차 알려지는 등 관련분야 발전에 기여할 것"으로 기대했다. 연구에는 논문 제1저자 이병관 박사과정 연구원 외에도 박범찬 석박사통합과정, 김채원 박사과정이 공동 저자로 참여했다. 연구결과는 '콜라보'의 경우 자연어 처리(NLP) 분야 국제 학회 'ACL Findings 2024'(5월16일자)에 게재됐다. '모아이(MoAI)'는 컴퓨터 비전 국제 학회인 'ECCV 2024'에 논문을 제출하고 결과를 기다리고 있다. 한편 이 연구는 KAIST 미래국방 인공지능 특화연구센터 및 전기및전자공학부 지원을 받아 수행했다.

2024.06.20 14:26박희범

韓 제외한 스탠퍼드 AI보고서…"모델 선정에 참고한 출처 겨우 2개"

스탠퍼드대 인간중심 인공지능연구소(HAI)가 올해 발표한 '인공지능(AI) 인덱스 리포트 2024'에 한국 AI 모델을 포함하지 않은 이유를 밝혔다. 연구진이 파운데이션 모델을 '생태계 그래프(Ecosystems Graph)'에서, 주목할 만한 모델을 '에포크(Epoch)'에서만 참고한 탓이다. 22일 HAI 네스터 마슬레이 AI인덱스연구책임은 보고서에 네이버의 '하이퍼클로바X' 등 한국 AI 모델이 비교 대상에서 생략된 이유를 이같이 본지에 전했다. 네스터 마슬레이 연구책임은 매년 전 세계 AI 동향을 조사하는 AI 인덱스 보고서 제작을 담당한다. 지난해 글로벌 AI 동향을 정리한 보고서를 이달 15일 공개했다. 마슬레이 책임은 이번 모델 비교에 좁은 데이터 범위를 활용했다고 인정했다. 전 세계 AI 모델을 비교한 것이 아니라 제3자가 만든 특정 소스로만 비교 대상을 잡았다는 의미다. 그는 보고서에 모든 AI 모델을 조사에 포함시키는 건 무리라고 언급한 바 있다. 그는 "파운데이션 모델 데이터는 생태계 그래프에서, 주목할 만한 모델에 대한 데이터는 에포크의 주목할 만한 모델 부문에서 가져왔다"고 설명했다. 두 사이트는 전 세계 AI 모델을 모아둔 사이트다. 오픈소스 모델과 폐쇄형 모두 등록돼 있다. 두 데이터셋에 없는 모델은 이번 HAI 조사 대상에서 제외됐다. HAI는 해당 범위 내에서만 파운데이션 모델 출시 현황을 조사하고, 주목만 한만 모델을 선정한 셈이다. 네이버의 하이퍼클로바X 같은 한국 모델이 낮은 성능을 갖춰서 비교 대상에서 빠진 것이 아니라, 애초 HAI가 활용한 데이터 소스 범위 자체가 좁았다. 마슬레이 책임은 "두 출처에서 가져온 데이터가 한국 같은 비영어권 국가 모델을 포함하지 않았을 수 있다"며 "전 세계 주요 모델을 완전히 포괄하지 못했음을 인정한다"고 했다. 그는 "현재 이를 바로잡기 위해 노력 중"이라며 "데이터 활용 범위를 넓혀서 보고서에 더 많은 비영어권 모델을 포함하겠다"고 했다. 스탠퍼드대는 AI 인덱스 2024 보고서에서 지역별 파운데이션 모델 수를 공개하면서 미국이 109개로 가장 많고, 중국과 영국, 아랍에미리트(UAE)가 각각 20개와 8개, 4개로 집계됐다고 전했다. 이외에 약 10개국이 파운데이션 모델을 갖고 있는 것으로 표기됐지만 보고서에 한국은 없었다. 지역별 주목할 만한 모델 수에도 미국이 61개로 가장 많았고, 중국(15개)과 프랑스(8개), 이스라엘(4개) 등의 순으로 나왔지만 한국은 거론되지 않았다. 이에 국내 AI 모델이 '패싱'당했다는 지적이 이어졌다. 심지어 몇몇 언론에서도 보고서 데이터 출처와 조사 범위를 확인하지 않고 이를 그대로 보도하는 사태까지 벌어졌다. 익명을 요구한 AI 기업 관계자는 "한국 기업이 전혀 거론되지 않은 것 자체부터 이상했다"며 "논문에 활용된 데이터 조사 범위를 신중히 볼 필요가 있다"고 했다.

2024.04.22 00:03김미정

중부발전, 민간기업 공동개발 '풍력발전량 예측 AI 모델' 공유

한국중부발전(대표 김호빈)은 한국데이터산업진흥원(K-DATA)의 '데이터안심구역'을 활용해 제공한 데이터를 바탕으로 민간기업과 공동 연구 개발한 '풍력발전량 예측 AI 모델'을 공유한다고 9일 밝혔다. '데이터안심구역'은 접하기 힘든 미개방 데이터를 누구나 안전하게 분석하고 활용할 수 있는 플랫폼으로, 안심구역에서는 쉽게 접할 수 없는 다양한 분야 공공기관과 민간기업의 미개방 데이터를 안전하게 활용할 수 있다. 중부발전은 물리적 보안과 분석환경이 제공되는 '데이터안심구역'을 활용해 풍력발전 운전정보를 제공하고 민간기업은 새로운 기상예보 보정모델을 적용해 공동으로 '풍력발전량 예측 AI 모델'을 연구 개발했다. 예측 AI 모델은 중부발전이 운영하는 'KOMIPO AI-Hub 데이터쉐어링존'에서 실증과정을 거쳐 예측 정확도를 인정받았다. 중부발전이 민간기업과 공동으로 개발한 '풍력발전량 예측 AI Model'은 풍력 발전단지 기상예보 데이터 보정모델과 풍력발전기 구성 설비 센서 데이터를 활용한 AI 기법으로 복잡한 제주지역의 육상 지형에서도 풍력 발전량을 정확도 높게 예측할 수 있다. 김호빈 중부발전 사장은 “중부발전은 검증된 성과물인 AI 모델을 중부형 신재생에너지 발전량 예측모델 구축에 적극적으로 수용하고 데이터안심구역 공동활용 경험을 토대로 국민이 원하는 다양한 데이터를 민간에 더욱 적극적으로 공개할 예정”이라며 “민간기업이 새로운 사업 모델을 개발하거나 실증할 때 데이터와 개발·분석 환경(KOMIPO AI-HUB 데이터쉐어링존) 제공에 최선을 다하겠다”고 밝혔다.

2024.01.09 18:06주문정

  Prev 1 2 Next  

지금 뜨는 기사

이시각 헤드라인

"국가대표 AI 기업 보러 왔어요"…LG·네이버 등 5대 기업, 한 자리서 기술력 과시

"AI 확산, 이정도 라니"…기술 혁신 보러 북새통

공공 충전기 0.1초면 해킹…추석 연휴 '초이스재킹' 주의

"피지컬AI는 미래 산업 핵심…2030년 중반 이후 성장 궤도 진입"

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.