KAIST-IBM, 반도체 '숨은 결함' 탐지 능력 1000배 더 끌어 올려
KAIST와 IBM연구소가 지난 2019년 네이처에 발표한 포토-홀 효과 후속 연구가 7년 만에 다시 공개됐다. 이번엔 포토-홀 효과를 기반으로 민감도가 기존 대비 1000배나 뛰어난 전자트랩(숨은결함) 탐지 기법을 발표했다. 연구결과는 국제학술지 사이언스 어드밴시스(Science Advances)에 게재됐다. KAIST는 신소재공학과 신병하 교수와 IBM T. J. 왓슨 연구소 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 내부에서 전기를 방해하는 결함(전자 트랩)과 전자 이동 특성을 동시에 분석할 수 있는 새로운 측정 기법을 개발했다고 8일 밝혔다. 논문 제1저자로 이 연구에 참여한 KAIST 신소재공학과 김채연 박사과정생은 "차세대 태양전지 소재로 주목받는 페로브스카이트에 이 기술을 적용해 기존 방법으로는 검출하기 어려웠던 아주 적은 양의 전자 트랩까지 정밀하게 찾아낼 수 있었다"며 "기존 대비 1,000배 더 민감한 측정 능력을 확보했다"고 말했다. 홀 측정은 전기와 자기장을 이용해 전자 움직임을 분석하는 방법이다. 연구팀은 이 기법에 빛을 비추고 온도를 바꿔가며 측정하는 방식을 더해, 기존에는 확인하기 어려웠던 정보를 얻는 데 성공했다. 빛을 약하게 비추면 새로 생긴 전자들이 먼저 전자 트랩에 붙잡힌다. 반대로 빛 세기를 점점 높이면 트랩이 채워지고, 이후 생성된 전자들은 자유롭게 이동하기 시작한다. 연구팀은 결함이 존재하는 경우 전도도–포토홀 전도도 그래프에서 특징적인 휘어짐(bending)이 나타난다는 점에 주목하고, 이 거동이 쌍곡선(hyperbola) 형태의 수학적 모델로 나타남을 규명했다. 연구팀은 이 기법을 먼저 실리콘 반도체에 적용해 정확성을 검증한 뒤, 실리콘 시료와 할라이드 페로브스카이트 박막 시료에 적용해 유효성을 검증했다. 검증결과 페로브스카이트 박막에서는 기존 정전용량 기반 분석법으로는 검출이 어려웠던 낮은 결함 밀도까지도 분석이 가능했다. 민감도가 1000배 이상 개선됐다는 것이 연구진 설명이다. 김채연 박사과정생은 "이 방법의 가장 큰 장점은 한 번 측정으로 여러 정보를 동시에 얻을 수 있다는 점"이라며 "전자가 얼마나 빠르게 움직이는지, 얼마나 오래 살아남는지, 얼마나 멀리 이동하는지뿐 아니라, 전자의 이동을 방해하는 트랩의 특성까지 함께 파악할 수 있다"고 설명했다. 신병하 교수는 “반도체 안에서 전기 흐름과 이를 방해하는 요인을 하나의 측정으로 동시에 분석할 수 있는 새로운 방법을 제시한 것"이라며 “메모리 반도체와 태양전지 등 다양한 반도체 소자 성능과 신뢰성을 높이는 데 중요한 도구가 될 것”이라고 말했다. 연구는 과학기술정보통신부와 한국연구재단의 지원을 받아 수행됐다.