• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
CES2026
스테이블코인
배터리
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'파운데이션모델'통합검색 결과 입니다. (4건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

뇌분야 AI파운데이션 모델 첫 개발…"당장 실용화 가능"

딥러닝 기반 뇌신호 분석에서 한계로 꼽혀 온 '레이블 데이터 부족' 문제를 국내 연구진이 새로운 AI 파운데이션 모델로 해결했다. 기술성숙도(TRL)로는 실용화 수준인 5단계 정도로, 상용화 바로 전단계라는 것이 연구진 설명이다. DGIST는 지능형로봇연구부 안진웅 박사 연구팀이 뇌신호를 스스로 학습하도록 설계, 극도로 적은 양의 레이블만으로도 기존 대비 높은 정확도(최저8~최고20% 향상)를 구현할 수 있는 AI파운데이션 모델을 개발했다고 26일 밝혔다. 이번 연구는 안진웅 박사(지능형로봇연구부 책임연구원, 융합전공 겸무교수)와 정의진 박사후연수연구원(로봇및기계전자공학연구소, 바이오체화형피지컬AI연구단)이 공동 수행했다. 연구팀은 "EEG(뇌파)와 fNIRS(기능적 뇌혈류) 신호를 모두 이해하고 분석할 수 있는 '뇌파–기능뇌혈류 멀티모달 파운데이션 모델'을 세계 최초로 구현했다"고 말했다. 이들은 총 918명으로부터 약 1천250시간에 걸친 초대형 뇌신호 데이터를 확보해, 레이블 없이 비지도 방식으로 모델을 학습시켰다. 이를 통해 EEG와 fNIRS 각각의 고유한 특징뿐 아니라 두 신호가 공유하는 잠재적인 표현까지 동시에 파악할 수 있도록 설계했다. 기존에는 EEG와 fNIRS를 동시에 측정한 데이터 확보가 거의 불가능해 멀티모달 AI 구축에 큰 제약이 있었지만, 이번 연구에서 개발된 모델은 동시계측 데이터 없이도 학습이 가능하도록 설계했다. 소량의 레이블만으로도 높은 정확도를 구현하며 EEG 단독 분석, fNIRS 단독 분석, 두 신호를 결합한 멀티모달 분석까지 하나의 모델로 모두 수행할 수 있어 기존 기술의 구조적 한계를 완전히 넘어섰다. 안진웅 박사는 “멀티모달 뇌신호 분석이 가진 구조적 제약을 뛰어넘은 최초의 프레임워크"라며 "뇌신호 AI 분야에서 근본적인 혁신을 이뤄냈다”고 설명했다. 안 박사는 또 “특히 두 신호 간 공유 정보를 정렬하는 대조 학습 전략이 모델의 표현력을 대폭 확장했고, 이는 뇌창발인공지능(Brain-Inspired AI)과 뇌–컴퓨터 인터페이스(BCI) 등 미래 뇌공학 기술 발전에 중요한 전환점이 될 것”이라고 말했다. 공동 연구자인 정의진 박사후연수연구원은 "실용화가 바로 가능한 수준이다. 안진웅 박사가 대표로 있는 포피엠엑스를 통해 상용화를 추진 중"이라고 덧붙였다. 이 연구는 과학기술정보통신부와 한국연구재단의 지원을 받아 수행됐더. 연구결과는 계산생물학 및 의료정보학 분야 국제 학술지(Computers in Biology and Medicine)에 게재됐다.

2025.11.26 10:20박희범

KETI, 국내 대표 산학연과 '제조 특화 AI 파운데이션 모델' 공동개발 착수

한국전자기술연구원(KETI·원장 신희동)은 14일 경기도 성남 판교에서 서울대·KAIST·포스텍(포항공대)·원프레딕트·인이지와 '제조특화 AI 파운데이션 모델 공동 연구'를 위한 업무협약을 체결하rh 국내 제조업의 AI 전환을 선도하는 산학연 협력체계를 본격 가동한다고 밝혔다. 제조특화 AI 파운데이션 모델(MFM)은 제조 공정에서 발생하는 대규모 데이터를 사전 학습해 제조 도메인 지식을 내재화한 AI 모델로, 제조 현장에서 필요한 고신뢰 AI 기능을 구현하는 데 활용된다. MFM은 설비·센서에서 발생하는 시계열 데이터나 머신비전 기반 이미지 데이터 등 실제 제조 현장에서 생성되는 데이터를 중심으로 학습하기 때문에 대규모 텍스트를 학습하는 범용 언어모델(LLM)과는 본질적으로 다른 구조와 특성을 지닌다. KETI는 이번 협약으로 자율제조연구센터를 중심으로 산업AI 분야 선도 대학인 서울대(안성훈 교수)·KAIST트(이종석 교수)·포스텍(고영명 교수)과 AI 자율제조 전문기업인 원프레딕트(대표 윤병동)·인이지(대표 최재식)와 함께 약 100여 명 규모의 제조 AI 연구진을 구성했다. 연구진은 앞으로 ▲제조특화 AI 파운데이션 모델 공동개발 및 데이터·실증 인프라 공유 ▲기업 기술 고도화를 위한 제조 AI 파운데이션 모델 기술 지원 ▲공동랩 운영 등에서 협력할 계획이다. KETI 자율제조연구센터는 MFM을 바탕으로 제조 현장에서 손쉽게 AI를 사용하고, 이를 통해 공정 최적화를 지원하는 소프트웨어 기반 제조(SDM·Software Defined Manufacturing) 플랫폼 개발도 추진한다. SDM 운영 플랫폼은 AI 에이전트 플랫폼으로 소프트웨어로 제조 운영 기능을 유연하게 변경하고 대화형 인터페이스로 현장 맞춤형 AI 모델을 직접 생성·자동 실행할 수 있도록 지원한다. 플랫폼에는 디지털트윈 기반 공정 구성 및 최적화, 엣지 기반 설비 데이터 수집, 보안 사고 예방 등 다양한 핵심 기술이 포함된다. MFM 및 SDM 운영 플랫폼은 국내 대표 산업인 자동차, 정유·석유화학, 반도체 장비의 핵심 공정에 적용돼 현장 테스트베드에서 성능과 실효성을 검증할 계획이다. MFM은 산업부 AI 팩토리 선도 프로젝트에서 축적된 제조 데이터를 활용해 성능을 지속해서 고도화하며, 개발 완료 후에는 참여 기업에 제공된다. 한편, KETI는 지난 8월부터 대규모 제조 데이터의 AI 학습 및 제조 전용 AI 솔루션의 개발을 지원하는 '제조 AI 솔루션 개발지원센터'를 구축 중이다. 성남시 경기기업성장센터 안에 조성되는 센터는 전용 AI 인프라를 통해 제조특화 AI 모델 학습, AI 솔루션 검증, 기업 맞춤형 AI 도입 등을 상시 지원할 예정이다. 송병훈 KETI 자율제조연구센터장은 “국내 제조업의 위기를 극복하고 미래 경쟁력을 확보하기 위해서는 제조 AI 기술의 활용이 필수적”이라며 “센터는 제조특화 파운데이션 모델의 성공적 개발과 산업 확산을 통해 국내 제조업의 새로운 도약을 이끌어 가겠다”고 밝혔다.

2025.10.14 10:58주문정

AI 개발 하루에 GPU 1억…SKT 김태윤 담당 "그룹 전폭 지원에 감사"

"고생 끝에 고생 시작이구나 싶습니다. 막상 만들어 보면 굉장한 압박감이 있거든요. 비용만 해도 GPU를 엄청나게 많이 사용하기 때문에 하루에만 1억원씩 투입됩니다. 그럼에도 전폭적으로 지원해주는 그룹에 정말 감사합니다." 지난 6일 서울 중구 페럼타워에서 만난 SKT 김태윤 파운데이션 모델 담당은 정부 주도 독자 AI 파운데이션 모델 개발 프로젝트에 선정된 소감을 이렇게 밝혔다. 그는 막대한 자원과 노력이 투입되는 현장에 상당한 압박감을 느낌과 동시에 SK 그룹의 전폭적인 지원에 깊은 감사를 표했다. 더불어 4개월이라는 짧은 기간 안에 초거대 AI를 구현해야 하는 도전적인 과제지만 SK그룹의 전폭적인 지원과 컨소시엄 역량을 기반으로 속도전과 품질을 동시에 잡겠다는 각오를 밝혔다. SKT, 4개월 내 AI 파운데이션 모델 구현 자신 독자 AI 파운데이션 프로젝트에 선정된 SKT 컨소시엄은 크래프톤, 포티투닷, 리벨리온, 라이너, 셀렉트스타 등 다양한 분야를 아우르는 선도기업들이 참여한 220여 명 규모로 이 중 석·박사급 연구원이 170명 이상(80% 이상)을 차지한다. 제안서에서 요구된 기술 혁신성과 구체적인 모델 구현 계획을 모두 갖춘 상태다. 이번 프로젝트에서 SK텔레콤은 기존 국내 대규모 언어모델(LLM)의 규모를 뛰어넘는 초거대 AI를 개발한다. 텍스트뿐만 아니라 이미지·음성·비디오를 아우르는 '옴니모달(Omni-Modal)' 기술을 적용해 다양한 형태의 데이터를 통합 처리할 수 있는 기반을 마련할 계획이다. 또한 최종 선정된 기업들은 향후 6개월 단위의 경쟁형 단계평가를 통해 오는 2027년까지 단 2개의 최종 팀으로 압축되는 서바이벌 경쟁을 다시 한번 치르게 된다. 그만큼 정부 과제 일정도 빡빡하다. 준비 과정 등을 제외한 약 4개월 안에 프롬 스크래치 설계, 대규모 학습, 초기 실증까지 마쳐야 하는 셈이다. 하지만 SKT는 이미 모델 크기·구조·학습 계획·데이터 활용 방안을 확정했고, 컨소시엄 참여사별 역할까지 세밀히 분담했다. 김태윤 담당은 "모델 개발 전 주어진 시간과 자원으로 만들 수 있는 모델의 규모와 성능을 미리 산정했고, 그 결과를 제안서에 반영했다"며 "제한된 조건에서도 계획대로 완성된다면 기존과는 다른 능력을 가진 모델로 더 큰 영향을 줄 것"이라고 말했다. 이어 "최종 2개사 안에 들고 그 안에서도 최고의 결과를 낼 수 있도록 주력하고 있다"라며 "평가 기간이 짧은 만큼 초반부터 전력 질주하겠다"고 각오를 밝혔다. SKT는 오픈소스 기반 모델과 완전 자체 설계·구현하는 프롬 스크래치 모델을 병행하는 '투트랙 전략'을 이어왔다. KoGPT, 에이닷 등 기존 AI서비스에 자체 개발 모델을 적용하며 축적한 경험이 이번 사업의 경쟁력으로 작용한다. 덕분에 구조 설계, 파라미터 설정, 학습 방식에 대한 독자 노하우를 보유하고 있으며 전문가 혼합(MoE) 등 최신 기법을 적용해 성능을 높이고 개발 속도를 단축할 수 있는 역량을 갖췄다. AI 개발에는 대규모 GPU 인프라가 필수지만 이번 사업은 초기 지원이 제한된다. SKT는 이를 자체 GPU 클러스터와 SK그룹 내 인프라로 보완한다. 슈퍼컴퓨터 '타이탄', 정부·민간 GPU, 리벨리온 NPU 등 하드웨어 자원과 함께 셀렉트스타·공공 데이터셋 등 정제된 대규모 한국어·멀티모달 데이터도 이미 확보한 상태다. 김태윤 담당은 "현재 가장 중점을 두는 부분은 데이터로 연말 정부 평가를 앞두고 컨소시엄 내 5개 기업과 함께 평가 기준에 맞는 고품질 데이터를 정제해 투입하는 데 집중하고 있다"며 "제한된 시간과 모델 크기 안에서 최대한 효율적으로 학습할 수 있도록 준비 중이며 학습 스케줄도 촉박한 만큼 이를 철저히 맞춰 성능 목표를 달성하려 한다"고 밝혔다. 국민이 체감하는 한국형 파운데이션 모델 구현 김태윤 담당은 "우리가 만드는 모델은 모든 국민이 실생활에서 더 편리하고 안전하게 AI를 쓰게 하는 것" 이라고 AI 개발 목포를 밝혔다. 특히 SKT는 글로벌 모델 대비 한국어 이해·표현 능력에서 월등한 AI를 목표로 한다. GPT-5 같은 글로벌 빅테크 모델이 영어 중심 데이터에 기반한 범용성을 지향한다면, SKT는 데이터 수집부터 전처리까지 국내 문화·관습·문맥에 맞춘 '한국형 학습 코퍼스'를 구축한다. 공공 데이터, 국내 산업 문서, 일상 대화 등 한국어 특화 데이터가 핵심이며, 이는 단순 번역이 아닌 실제 산업과 생활 현장에서 쓰이는 '한국화된 기술 용어'까지 반영한다. 김태윤 담당은 "산업 현장에 적용된 AI서비스를 보면 외국 대규모 언어모델(LLM)의 경우 한국화된 기술 용어를 제대로 인식하지 못하는 경우가 상당 수"라며 "제조를 비롯해 모든 산업 현장이나 일상에서 AI를 사용하는데 불편이 없도록 한국에 최적화된 AI파운데이션 모델을 제공하려 한다"고 밝혔다. 또한 이미지·음성·영상 등 다양한 데이터 형태를 처리하는 멀티모달 기능도 기본 탑재한다. 김 담당은 "산업 현장에서 발생하는 데이터는 텍스트만 있는 것이 아니라 설비 영상, 센서 이미지, 작업자의 음성 지시 등 다양한 형태로 존재한다"며 "멀티모달 AI는 이런 데이터를 한 번에 통합 분석해 더 정확한 의사결정을 가능하게 한다"고 설명했다. 멀티모달은 기업 현장뿐 아니라 국민 생활에서도 직접적인 혜택을 제공할 것으로 기대된다. 시각장애인은 영상 속 내용을 음성으로 안내받고, 청각장애인은 음성 안내를 문자·이미지로 변환해 볼 수 있다. 고령층이나 기술 접근성이 낮은 계층도 직관적인 대화·영상 기반 AI 서비스를 쉽게 활용할 수 있게 된다. 김태윤 담당은 "지금 당장 정부에서도 GPT-5와 경쟁할 수 있는 수준의 모델을 원하는 것은 아니라고 생각한다"라며 "국민들과 기업이 바로 쓸 수 있는 실용적인 모델을 만드는 게 목표"라고 강조했다. 이를 위해 기술 개발의 혜택이 모든 국민에게 고르게 돌아가길 바란다. 지역·연령·기술 수준에 관계없이 누구나 접근 가능한 AI 서비스를 제공해 디지털 격차 해소를 지원하고 멀티모달 기능은 장애인·고령층 등 정보 접근이 어려운 계층에도 직접적인 도움을 줄 수 있는 방안을 고려 중이다. 김 담당은 "특정 산업이나 고객 요구에 맞춰 구조와 파라미터를 유연하게 바꿀 수 있고, 데이터 보안도 훨씬 강하게 지킬 수 있다"고 설명했다. 더불어 이번 모델의 또 다른 차별점은 데이터 주권과 개인정보 보호다. 이번 SKT 독자 AI 파운데이션 모델은 개발 초기 설계 단계부터 '데이터 주권'과 '개인정보 보호'를 핵심 원칙으로 삼았다. 모든 데이터는 국내 인프라에서만 수집·저장·처리되며, 해외 서버를 거치지 않는다. 이로써 공공기관, 금융사, 의료기관 등 민감한 영역에서도 법적 규제와 보안 요건을 준수하며 안심하고 AI를 활용할 수 있다. 김태윤 담당은 "민감한 데이터가 국외로 반출되지 않는다는 점이 가장 큰 차별화 포인트"라며 "특정 산업이나 고객 요구에 맞춰 모델 구조와 파라미터를 유연하게 바꾸는 동시에, 데이터 보안을 글로벌 수준 이상으로 강화할 수 있다"고 강조했다. 또한 SKT는 산업별 특화 AI 서비스 구축 시, 해당 산업의 데이터 특성과 규제 환경을 반영한 '온프레미스 학습·운영 체계'를 제공한다. 이를 통해 기업 고객은 자체 데이터센터나 보안망 내부에서 AI를 운용하는 등 국가 안보와 산업 기밀 보호에 지원한다. SKT, 독자 AI 파운데이션 모델로 국내 넘어 글로벌 무대 겨냥 SKT는 이번 프로젝트에서 확보한 기술과 서비스 역량을 기반으로 글로벌 시장 진출까지 장기 목표로 설정했다. 제안서에도 글로벌 서비스 확장 계획이 명시됐으며 컨소시엄 내 주요 파트너사들은 이미 해외에서 검증된 경험과 네트워크를 갖추고 있다. SKT 역시 이미 글로벌 서비스에 대한 충분한 경험을 보유하고 있다. 에이닷은 국내외 1천만 명 이상의 사용자를 확보하고 있으며 라이너는 글로벌 생성형AI 최고 제품(Top Product)으로 선정되는 등 미국에서 더 인지도가 높다. 김태윤 담당은 "그룹사 안에서 통신, 미디어, 모빌리티, 보안 등 여러 분야에서 이미 다양한 서비스에 AI 모델을 적용해 운영하고 있다"며 "이런 경험을 바탕으로 글로벌 확대 계획까지 염두에 두고 있다"라고 밝혔다. 먼저 한국어 특화 AI에서 출발해, 아시아 주요 언어와 문화권 데이터셋을 확대 학습시켜 동아시아·동남아 시장을 우선 공략할 계획이다. 특히 제조, 모빌리티, 게임 등 산업별 특화형 모델을 통해 각 국가 산업 현장에 바로 투입할 수 있는 맞춤형 AI 솔루션을 선보일 방침이다. 또한 기존 글로벌 LLM들이 주로 영어·유럽권 언어에 최적화된 반면, SKT 모델은 다국어 지원을 강화해 현지 특화된 멀티모달 AI 경험을 제공한다. 예를 들어, 음성·이미지·영상 인식을 결합한 산업 안전 모니터링, 현지 언어 기반 고객 응대, 국가별 규제에 맞춘 데이터 보안 체계를 갖춘 서비스를 구상하고 있다. 김 담당은 "일부 서비스는 해외 법인에서 테스트를 진행했고 결과가 긍정적이었다"며 "에이닷이나 미디어 콘텐츠 추천, 고객 상담 자동화 같은 서비스는 현지 환경에 맞게 조금만 조정하면 바로 적용할 수 있는 준비가 됐다고 판단하고 있다"고 밝혔다. 이어 "AI는 앞으로 인터넷처럼 일상 필수 도구가 될 것"이라며 "SKT는 국민 누구나 손쉽게 접근하고 삶을 발전시킬 수 있는 AI를 제공하겠다"며 AI 비전을 제시했다. 이러한 글로벌 적용 가능성을 확인한 SKT는, 모델의 완성도를 높이고 확장 속도를 끌어올리기 위해 내부 역량을 총동원하고 있다. 특히 학습 데이터와 알고리즘 최적화를 가속화하기 위해 대규모 연산 인프라 투입에도 투자를 아끼고 있지 않다. 김태윤 담당은 "현재 모델 학습을 위해 GPU에만 하루 약 1억 원 규모의 비용을 투입하고 있다"며 "모두 그룹에서 AI에 대한 높은 관심과 전폭적인 지원이 있었기에 가능한 일이라 정말 감사하게 생각한다"고 말했다. 이어 "이 프로젝트는 엔지니어로서도 평생 한 번 오기 힘든 기회"라며 "그 기대에 부응해 국민들에게 실질적으로 도움이 되는 AI 파운데이션 모델을 개발할 수 있도록 최선을 다하겠습니다"라고 각오를 밝혔다.

2025.08.10 09:01남혁우

텔레픽스 지구관측 AI 실력 "NASA-ESA도 인정"

우주 AI 토탈 솔루션 기업 텔레픽스(대표 조성익)가 미국항공우주국(NASA)과 유럽우주국(ESA)이 공동 주최한 '지구 관측 분야 인공지능(AI) 파운데이션 모델 국제 워크숍(EO)'에서 한국 기업으로는 유일하게 연구성과를 공개했다고 9일 밝혔다. 이 행사에서 텔레픽스가 공개한 연구성과는 모두 6건이다. 이 성과는 주최 측이 지원자의 기술 혁신성과 상업용 제품 및 서비스에서의 실제 적용 가능성 등을 공개경쟁, 평가해 최종 선정했다. 'EO'는 위성 영상 분야 최신 기술개발 성과와 개발 동향 등을 논의하는 자리다. 올해 처음 NASA와 ESA가 마련했다. '파운데이션 모델'은 딥러닝에 이은 AI 분야 최대 관심사다. 방대한 비정형 데이터를 사전 학습해 복잡한 패턴과 숨은 정보를 스스로 파악한다. 모델이 만들어지면, 이후에는 비교적 적은 양의 데이터로도 분석 정확도를 높일 수 있다. 이 때문에 대규모 라벨링된 학습 데이터를 확보하기 어려운 지구 관측 분야에서 특히, 주목받고 있다. 이번 워크숍은 전 세계 지구 관측 및 AI 전문가들이 모여 지구 관측 분야의 이질적인 데이터를 다루는 효과적인 방법과 파운데이션 모델 활용 방안 등에 대해 논의했다. 조성익 대표는 "미국과 유럽 대표 우주 기관이 공동으로 지구 관측 AI 파운데이션 모델을 주제로 국제 행사를 개최하는 것은 이번이 처음"이라고 의미를 부여했다. 이탈리아에서 열린 이 행사에서 텔레픽스는 구두 발표 세션에서 멀티 에이전트(상호작용하는 여러 AI 에이전트)를 적용한 대형언어모델(LLM) 기반의 지구 관측 및 위성 영상 활용 분야 챗봇 '샛챗'을 소개했다. '샛챗'은 텔레픽스가 개발한 위성 정보 특화 AI 챗봇이다., 비전문가도 쉽게 위성 영상 및 관련 정보를 쉽게 검색할 수 있도록 유저 인터페이스와 도구 확장성을 고려해 설계된 LLM 기반 시스템이다. 포스터 세션에서는 ▲제한된 데이터만으로 위성영상으로부터의 원자재 분류 정확도를 높이는 방법에 대한 연구 ▲최첨단 LLM 에이전트 기술로 새로운 위성 데이터에 대한 파운데이션 모델의 효율적인 적응을 보장하는 방법론 등 텔레픽스 우주 AI 연구진의 혁신적이고 실용적인 최신 연구실적 5건을 발표했다. 권다롱새 텔레픽스 데이터사이언스부문장은 “연구 성과는 '샛챗'과 '메탈스코프' 등 AI 기술을 기반으로 하는 텔레픽스의 위성활용 솔루션에 적용돼 고객이 원하는 정보를 보다 정확하고 효율적으로 얻을 수 있도록 기여할 것”이라고 전했다. 한편 텔레픽스는 인공지능 분야 국제 학술대회인 '표현 학습 국제 학회(ICLR)'에서 최고학술논문상을 수상한 바 있다. 또 위성정보 기반 원자재 물동량 분석 서비스 '메탈스코프'는 한국 기업 최초로 세계경제포럼(WEF) 인공위성 기반 지구 관측 활용사례로 선정됐다.

2025.05.09 10:18박희범

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

눈앞으로 다가온 '피지컬 AI'…CES 2026이 증명했다

페이커 소속 '팀 리드', 2026 LCK 시즌 오프닝 2년 연속 우승

인텔, 아크 B390 성능 공개 "노트북용 별도 GPU 필요없다"

[르포] 폭설에 얼어붙는 도시…전기차 보기 힘든 홋카이도 가다

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.