• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 인터뷰
  • 인사•부음
  • 글로벌뉴스
창간특집
인공지능
배터리
컨퍼런스
칼럼•연재
포토•영상

ZDNet 검색 페이지

'트랜스포머 씨네-마스크'통합검색 결과 입니다. (2건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

"챗GPT 만든 논문, 21세기 최다 인용"…AI는 어떻게 과학계 지배했나

글로벌 테크 기업이 발표한 인공지능(AI) 관련 논문이 21세기 과학계를 사실상 점령한 것으로 나타났다. AI 기술의 구조 활용법을 설명한 논문들이 생명과학, 물리학 등 전통 강세 분야를 누르고 피인용 상위권을 싹쓸이한 가운데 업계에서는 도구 중심 연구가 과학 혁신을 실질적으로 이끈 결과라는 분석이 나온다. 17일 네이처에 따르면 지난 20년간 가장 많이 인용된 논문 대부분이 인공지능(AI) 분야에 집중됐다. 대표적 학술 데이터베이스 다섯 곳을 종합 분석해 선정된 인용 상위 25편 가운데 1위를 차지한 논문은 마이크로소프트(MS)가 지난 2016년 발표한 '딥 레지듀얼 러닝(ResNet)' 관련 연구였다. MS의 논문은 구글 학술 기준으로 약 25만회, 웹오브사이언스 기준 약 10만회 인용되며 '21세기 최다 피인용 논문' 타이틀을 차지했다. 피인용 횟수는 후속 논문에서 얼마나 자주 참조됐는지를 의미하며 논문의 영향력을 가늠하는 핵심 지표로 평가된다. AI 분야의 상위권 독주는 여기서 그치지 않는다. 지난 2012년 제프리 힌튼 토론토대 교수가 발표한 이미지 인식 딥러닝 구조 '알렉스넷' 논문은 8위에 올랐고 지난 2017년 구글이 발표한 자연어처리 기반 구조 '트랜스포머'를 설명한 논문 '어텐션 이즈 올 유 니드'는 7위를 기록했다. 이 논문들은 각각 이미지 분석과 언어 생성 기술의 뿌리를 형성한 연구다. 힌튼 교수의 논문은 이미지넷 대회에서 압도적인 성능을 입증하면서 큰 관심을 끌었다. 이 논문은 힌튼 교수가 구글에 입사하고 AI 개발을 주도하는 발판이 됐다. 트랜스포머 구조는 '챗GPT'를 비롯한 거대언어모델(LLM)의 핵심 구조로 문장 간 관계를 스스로 학습하는 '셀프 어텐션' 메커니즘이 중심이다. 네이처는 AI 논문의 피인용 증가 요인으로 다학제 활용성과 오픈소스 문화를 꼽았다. AI 알고리즘 대부분이 무료로 공개돼 의료, 번역, 로봇 등 다양한 분야에 쉽게 적용됐기 때문이다. 또 사전 공개된 프리프린트 형태 논문이 많아 실질적 인용은 공식 수치보다 더 많을 가능성도 제기된다. AI 외에도 분석 소프트웨어와 실험 도구를 다룬 논문들이 순위에 다수 포함됐다. 2위 논문은 유전자 활성 변화를 정량화하는 공식을 설명한 연구다. 5위에는 X선 산란 패턴을 분석하는 구조화 프로그램 '셸렉스(SHELX)'를 소개한 논문이 이름을 올렸다. 네이처 분석에 참여한 미샤 테플리츠키 미시간대 교수는 "과학자들은 혁신이나 이론을 중요하게 생각한다고 말하지만 실제로는 연구에 직접적인 도움을 주는 도구 논문을 더 자주 인용한다"며 "도구 중심의 연구가 과학 발전을 실질적으로 견인하고 있다는 방증"이라고 말했다.

2025.04.17 11:39조이환

스테이블디퓨전3 미리보기 공개

텍스트-이미지 모델 '스테이블 디퓨전'의 세번째 버전이 초기 미리보기로 공개됐다. 품질 및 철자 기능 향상, 다중 주제 프롬프트 등이 특징이다. 22일(현지시간) 스태빌리티AI는 차세대 텍스트-이미지 모델 '스테이블디퓨전 3' 초기 미리보기를 발표했다. 사용을 원하는 경우 미리보기 대기자명단에 등록해 이용할 수 있다. 접근권한을 얻게 되면 디스코드 서버 초대 메일을 받게 된다. 스테이블디퓨전은 2022년 2.0 버전 공개로 이미지 생성 AI 모델의 획기적 진보를 보여줬다. 세번째 버전은 기존 아키텍처와 달리 디퓨전 트랜스포머 아키텍처와 플로우 매칭을 결합했다. 디퓨전 트랜스포머 아키텍처는 일반적으로 사용되는 U-Net 백본을 트랜스포머로 대체해 이미지 디퓨전 모델을 훈련한다. 이 방식은 효율적으로 확장하고 더 높은 품질의 이미지를 생성할 수 있다. 플로우 매칭은 랜덤 노이즈에서 구조화된 이미지로 원환하게 전환하는 방법을 학습해 이미지를 생성하는 AI 모델을 만드는 기술이다. 스테이블디퓨전3는 이전 모델보다 더 나은 성능과 품질로 이미지를 만들어낸다. 한 프롬프트에 여러 주제를 넣을 수 있다. 철자 생성의 정확도도 더 높아졌다. 스테이블디퓨전3의 크기는 다양하다. 8억에서 80억개의 매개변수를 제공한다. 스테이블디퓨전은 기본적으로 오픈소스 라이선스를 따른다. 모델의 소스코드에 접근할 수 있고 미세조정이 가능하다. 현재 스테이블디퓨전3의 소스코드와 기술문서는 공개돼 있지 않다. 회사측은 미리보기 단계에서 성능과 안정성을 개선할 것이라고 밝혔다.

2024.02.23 10:43김우용

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

윤곽 잡힌 K-로봇 청사진…자원 효율적 안배 집중해야

"갤S25 엣지, 더 싸게 사자"...자급제폰 온라인몰서 인기

닛산 몰락·혼다 후퇴 '후진하는 일본차'..."남일 아냐"

"기술이 뚫려도 제도가 막았어야"...유심 해킹 민낯

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현