• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
스테이블코인
배터리
AI의 눈
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'클라우드 파운데이션'통합검색 결과 입니다. (40건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

[유미's 픽] 독파모 추가 공모 나선 정부, 기업 반응은?

정부가 추진 중인 '독자 AI 파운데이션 모델(독파모, K-AI)' 프로젝트의 추가 정예팀 선발 공모가 본격화됐지만 업계가 미온적인 반응을 보이고 있다. 정부가 '독자성'에 대한 기준을 여전히 명확히 제시하지 않은 상황에서 사후 약방문식 규칙 변경으로 정책 신뢰도가 하락했을 뿐 아니라 뒤늦게 합류하는 기업의 실익이 없을 것이라고 판단해서다. 26일 업계에 따르면 과학기술정보통신부는 지난 23일부터 다음 달 12일까지 독파모 프로젝트 추가 정예팀 1곳을 선정하기 위한 공모 절차에 돌입했다. 당초 4개 팀 경쟁 구도를 목표로 했던 1차 단계 평가에서 독자성 논란 등으로 2개 팀이 탈락하며 LG AI연구원·SK텔레콤·업스테이지만 남게 되자 경쟁 구도를 복원하겠다는 취지에서 이처럼 나섰다.하지만 추가 공모가 공식화되자 업계의 반응은 냉담했다. 1차 평가에서 탈락한 네이버클라우드와 NC AI는 물론, 예선 단계에서 고배를 마셨던 카카오와 한국과학기술원(KAIST), 유력 후보로 거론되던 KT까지 모두 불참을 선언했다. 코난테크놀로지스 역시 재도전에 나서지 않겠다는 입장을 밝혔다. 현재까지 참여 의사를 밝힌 곳은 모티프테크놀로지스, 트릴리온랩스 등 스타트업 2곳에 그쳤다. 업계 관계자는 "대기업들이 독파모 '패자부활전'에 참여하지 않으면서 사실상 정부 사업에 대한 관심도가 뚝 떨어진 상황"이라며 "LG AI연구원과 SK텔레콤, 업스테이지도 추가 참가업체 선정이 사실상 큰 의미가 없다고 보고 8월께 진행하는 2차 평가보다 올 연말에 진행될 최종 평가에 초점을 맞춰 모델 개발에 나선 분위기"라고 말했다. 이처럼 독파모에 대한 업계의 집중도가 떨어진 가장 큰 이유는 정부의 기준이 모호했기 때문이다. 특히 '기술 독자성' 정의가 사전에 명확히 제시되지 않으면서 시장과의 간극이 크게 벌어진 것이 주 요인으로 분석됐다. 실제 1차 평가에서 정부는 해외 모델을 단순 미세조정한 파생형이 아닌, 설계부터 사전학습까지 자체 수행한 모델을 독자 모델로 규정했다. 특히 외부 오픈소스 모델의 가중치(weight)를 사용한 경우 독자성 기준을 충족하지 못한다고 판단했다. 그러나 이 기준은 사업 초반부터 명확하게 공유·해석되지 않아 문제를 일으켰다. 이 탓에 네이버클라우드는 성능·사용성 평가에서 상위권에 포함됐음에도 불구하고 중국 알리바바의 큐원(Qwen) 계열 가중치를 활용했다는 이유로 독자성 기준에 미달해 탈락했다. 네이버 측은 이미 검증된 모듈을 활용해 완성도를 높이기 위한 전략적 선택이었다고 설명했지만, 결과적으로 정부와 기업 간 독자성 해석의 간극만 드러냈다. 다만 독자성 논란을 정부 탓으로만 돌리긴 어렵다는 지적도 있다. 독파모는 '소버린 AI' 성격의 국가 사업인 만큼, 해외 모델 가중치 활용은 통제권·공급망 리스크 논쟁을 불러올 수밖에 없는데도 네이버클라우드가 큐원 계열 비전 인코더와 가중치를 활용한 모델을 제출했기 때문이다. 이 탓에 네이버는 국가 사업의 정책 목표와 심사 관점이 민간 서비스 개발과 다르다는 점을 간과했다는 지적을 받고 있다. 이 같은 분위기 속에 정부는 독자성 논란이 커지자 추가 공모와 함께 전문가 평가 항목에서 독자성 평가를 보강하겠다고 밝히며 해결책 마련에 나서는 모습을 보였다. 그러나 세부 가이드라인은 여전히 '추후 구체화'라는 수준에 머물러 있어 업계의 실망감은 해소되지 않고 있다. 업계 관계자는 "룰을 명확히 하지 않은 채 경기 도중 기준을 강화한 뒤 문제가 되자 다시 판을 짜는 모양새"라며 "정부가 일부 기업 구제 성격으로 패자부활전을 하려고 했지만, 해당 기업이 나서지 않고 기준도 명확히 제시하지 못하면서 독파모 사업이 애매해져 버렸다"고 지적했다. 이처럼 혼선이 빚어지면서 향후 2차 평가에 대한 부담도 커지는 분위기다. 과기정통부는 8월께 독파모 2차 평가를 진행할 계획이지만, 독자성 기준을 둘러싼 불확실성이 해소되지 않을 경우 유사한 논란이 반복될 수 있다는 우려가 나오고 있다. 특히 2차 평가는 1차 평가를 통과한 LG AI연구원·SK텔레콤·업스테이지 3개 팀과 추가 공모를 통해 선발될 1개 팀이 경쟁하는 구조로 설계돼 있다는 점도 문제다. 현재 상태로선 평가 기준의 일관성과 예측 가능성이 보장됐다고 보기 힘들어서다.업계 관계자는 "새로 추가로 선발된 기업은 기존 3개팀보다 1개월이나 더 늦게 2차 평가를 위한 준비를 시작해야 한다는 점에서 부담감이 더 클 수밖에 없다"며 "그렇다고 1차 선발된 3팀을 두고 뒤늦게 선발된 기업에게 특혜를 줄 수도 없는 노릇인 만큼 정부의 고민이 많을 것"이라고 밝혔다. 정부는 업계에서 우려하는 사항을 의식한 듯 2차 평가부터 멀티모달 역량과 실사용성을 주요 평가 요소로 삼을 것으로 알려졌다. 텍스트 중심의 대형언어모델(LLM)을 넘어 이미지·음성·영상 등 다양한 데이터를 통합적으로 처리할 수 있는 역량이 글로벌 AI 경쟁에서 필수 요소로 자리 잡고 있다는 판단에서다. 실제로 SK텔레콤과 업스테이지는 향후 개발 과정에서 멀티모달 기능을 단계적으로 적용하겠다는 계획을 밝힌 상태다. 업계 관계자는 "멀티모달 경쟁이 본격화되더라도 독자성 기준이 여전히 '전제 조건'으로 작동하는 구조가 유지된다는 점에서 문제가 해소되진 않을 듯 하다"며 "1차 평가처럼 성능·활용성보다 독자성이 탈락 여부를 좌우하는 핵심 기준으로 작용할 경우 기업 입장에서는 기술 전략 수립 자체가 불확실해질 수밖에 없을 것"이라고 말했다. 이어 "소버린 AI 확보와 글로벌 경쟁력 있는 국가대표 AI 육성을 동시에 달성하겠다는 목표는 방향성에 따라 평가 기준이 크게 달라질 수 있다"며 "정부가 추구하는 정책 목표가 하루 빨리 명확히 정리돼야 독파모 사업의 필요성도 더 부각될 수 있을 것"이라고 덧붙였다. 또 다른 관계자는 "기술 자립을 최우선으로 볼 것인지 아니면 글로벌 시장에서 실제로 쓰일 수 있는 경쟁력 있는 모델을 만들 것인지에 따라 허용 가능한 기술 선택의 범위가 달라진다"며 "정부가 어떤 가치를 우선할지 명확히 하지 않으면 기업들은 계속 눈치를 보며 보수적으로 움직일 수밖에 없다"고 밝혔다. 일각에선 추가 공모에 뒤늦게 합류하는 기업의 불확실성이 더 커 불리할 것으로 봤다. 이미 상당 기간 개발이 진행된 상황에서 제한된 기간 안에 모델을 완성해 기존 정예팀과 동일한 기준으로 평가받아야 하는 데다 탈락 시 감수해야 할 평판 리스크까지 고려하면 이익이 크지 않을 것으로 분석했다. 반면 독파모 참여만으로도 기업 인지도를 빠르게 구축할 수 있다는 이점이 있다는 의견도 나왔다. '패자부활전'에 도전장을 던진 업체들도 B200 768장 규모 GPU 지원, 'K-AI 기업' 명칭 부여 등의 혜택이 있다는 점에서 일단 매력을 느끼는 분위기다. 또 그간 독자성 논란을 의식한 듯 이에 대한 투명성을 확보하기 위해 적극 나서겠다는 의지도 내비쳤다. 신재민 트릴리온랩스 대표는 "10% 학습된 모델, 20% 학습된 모델 등을 개발했을 때마다 공개해 누구나 다운 받아 트래킹할 수 있도록 개방할 것"이라며 "최종 공개된 모델까지 극단적으로 투명하게 공개해 독자성 등과 관련한 논란을 원천 봉쇄할 수 있게 할 것"이라고 설명했다. 이어 "우리 모델이 진화하는 모습을 보면서 더 많은 사람들이 관심을 가지고 연구하게 될 것이라 믿는다"며 "자연스럽게 국내를 넘어 글로벌 AI 학습 생태계가 더 활발히 조성될 수 있도록 하는 것이 목표"라고 부연했다. 그러나 정부는 예상과 달리 '패자부활전'이 스타트업 2곳의 경쟁으로 압축되자 추가 선발을 하지 않을 수도 있다는 의사를 내비쳐 정책 일관성이 없음을 또 다시 드러냈다는 지적도 받고 있다. 과기정통부 관계자는 "평가위원 과반이 심사 기준에 해당하는 정예팀이 없다고 평가할 때 3개팀 체제로 갈 것"이라며 "(세부적인 평가 항목은) 추후 내용이 구체화될 것"이라고 말했다. 업계 관계자는 "정부가 제대로 된 기준 없이 독파모 사업을 하려고 하다보니 국가대표 싸움이 주먹구구식 동네 싸움으로 변질된 느낌"이라며 "독파모 사업이 '국가대표 AI 선발전'이라는 상징성보다는 정책 신뢰 논란 속에서 표류하고 있다"고 지적했다.

2026.01.26 16:21장유미 기자

네이버 AI 전략 이끈 성낙호, 독파모 탈락 후 첫 발언…어떤 말 꺼냈나

네이버가 정부의 독자 인공지능(AI) 파운데이션 모델(독파모) 사업 탈락 이후 주가가 연일 내리막길을 걸으며 후폭풍을 겪고 있는 가운데 기초 체력 다지기로 전략 재정비에 나섰다. 독파모 추가 사업자 모집에 재도전하는 대신 기존 AI 사업 전략을 유지하며 공공·금융·산업 현장에서 실제로 작동하는 '현장형 AI' 중심의 AX(AI 전환) 전략을 본격화 하는 모양새다. 성낙호 네이버클라우드 기술총괄은 21일 한국은행 컨퍼런스홀에서 열린 '한국은행·네이버 공동 AX 컨퍼런스'에 참석해 지디넷코리아와 만나 "원래 저희는 하던 것에 더해 독파모에 참여했던 것"이라며 "(앞으로) 원래 하던 사업대로 계속 진행할 예정"이라고 밝혔다. 이는 성 총괄이 독파모 1차 결과 발표 후 내놓은 첫 입장으로, 독파모 탈락이 네이버클라우드의 AI 기술 개발이나 사업 방향에 영향을 주지 않는다는 점을 분명히 한 것으로 풀이된다. 네이버클라우드는 지난 15일 정부의 '독자 AI 파운데이션 모델' 프로젝트 1차 평가에서 탈락한 상태로, 당시 정부가 '패자부활전' 제도를 도입해 1개 팀을 추가 선정한다고 밝혔으나 불참 의사를 밝혔다.네이버는 이 여파로 주가가 큰 타격을 입었다. 이날 네이버 주가는 전일 대비 2.25% 하락한 23만8천500원에 마감했다. 올 초 26만원까지 오르며 순항했으나, 독파모 발표 이후 꾸준히 하락세를 보이며 23만원대까지 추락했다. 약 7개월 전인 지난해 6월 하정우 네이버클라우드 AI이노베이션 센터장이 이재명 정부 첫 AI 수석에 임명돼 52주 신고가(29만6천원)를 기록한 것과 비교하면 19.4%나 하락한 모습이다. 이에 네이버는 기존 사업을 다시 강화하며 시장 가치를 끌어올리려는 모습이다. 이날 한국은행과 함께 금융·경제 분야에 특화된 전용 생성형 AI 서비스 '보키(BOKI, Bank Of Korea Intelligence)' 구축을 완료하고 본격 운영에 들어간다고 발표한 것이 대표적인 예다. BOKI는 외부 네트워크와 완전히 분리된 한국은행 내부 온프레미스 환경에 구축된 전용 AI 플랫폼으로, 데이터 유출 우려를 원천 차단한 것이 특징이다. 이번 프로젝트에서 네이버클라우드는 클라우드 인프라와 초거대언어모델(LLM) 등 AI 플랫폼 기반을 제공했다. 한국은행은 이를 토대로 금융·경제 업무에 특화된 AI 애플리케이션을 직접 개발·운영한다. 이를 통해 한국은행 임직원들은 자료 검색과 요약, 질의응답, 번역은 물론 정책 수립을 위한 경제 현안 분석과 데이터 기반 의사결정까지 폭넓은 지원을 받게 된다. 업계에서는 이번 한국은행 사례가 네이버의 AI 전략이 연구·개발 중심에서 실제 운영과 사업 성과로 이동하고 있음을 보여주는 상징적 사례로 평가했다. 또 독파모 탈락 이후에도 네이버가 검색·쇼핑·금융·공공 등 강점을 가진 영역에서 AI를 실질적으로 적용하는 전략을 유지하며 사업을 확대할 것으로 기대했다. 최승호 DS투자증권 연구원은 "네이버의 2024~2026년 연간 투자 규모는 누적 1조6천억원 가량으로 국내 최대 수준"이라며 "국내 소프트웨어(SW) 기업 중 가장 많은 하드웨어 자산을 보유하고 있고 AI 모델의 성능도 국내 1~2위로 평가된다"고 밝혔다. 이어 "현재 네이버 가시화된 AI 수주 타깃이 공공보다는 중동·B2B에서 더 크다는 점에서 충격은 경감될 것"이라며 "(이번 탈락이) 실적에 미치는 영향은 제한적"이라고 분석했다.최수연 네이버 대표도 앞으로 AI 연구개발과 서비스 개발 역량을 한 단계 높여 실질적인 사업과 서비스에 연결함으로써 성과를 내겠다는 의지를 드러냈다. 이를 위해 최근 C레벨 리더 3명을 추가 발탁하기도 했다. 최 대표는 지난 20일 사내 소통 행사인 '컴패니언 데이'에서 "대한민국을 대표하는 인터넷 기업으로서 관련 투자는 오히려 더 확대될 것"이라고 강조했다. 또 독파모 탈락과 관련해 아쉬움을 표하면서도 성능 경쟁을 넘어 한 단계 발전된 모델을 선보인 것은 의미 있는 도전이었다고 임직원을 격려했다. 향후 전략 방향에 대해선 공공·산업 현장에서 작동하는 '실질적 과제'의 수행을 꼽았다. 모델 성능을 넘어 실제 사용자가 체감할 수 있는 비즈니스에서 이용자 가치를 창출하겠다는 의지도 드러냈다. 네이버클라우드 관계자는 "독파모 사업에 참여하지는 않지만 기존 사업들을 더 강화하는 것에 앞으로 힘을 쏟을 것 같다"며 "특히 버티컬 서비스에 집중하는 방향으로 사업을 펼칠 것 같다"고 밝혔다. 업계 관계자는 "네이버가 앞으로 보안과 데이터 주권이 중요한 중앙부처와 주요 금융기관을 중심으로 공공 AX 확산을 앞세워 적극 공략할 듯 하다"며 "범용 초거대 모델 경쟁보다 국내 제도와 산업 환경에 맞춘 소버린 AI를 실제 현장에 안착시키는 전략을 펼칠 가능성이 높다"고 전망했다.

2026.01.21 17:34장유미 기자

[유미's 픽] "해외선 '통제'가 핵심"…독자 AI 기준 두고 국내선 '온도차'

최근 1차 평가 결과 발표 후 '독자 인공지능(AI) 파운데이션 모델(K-AI)' 사업을 둘러싼 논란이 해외 소버린 AI 논의와 대비되며 확산되고 있다. 우리나라는 '프롬 스크래치(from scratch)' 여부와 가중치 주권 등 기술적 독자성 기준을 둘러싸고 공방이 지속되고 있는 반면, 해외 주요국은 데이터 통제와 운용 주권을 중심으로 소버린 AI 전략을 전개하고 있다는 점에서 대조적인 모습을 보이고 있다. 20일 업계에 따르면 과학기술정보통신부가 지난 15일 'K-AI' 1차 평가 결과를 발표한 이후 ▲독자 AI모델과 해외 모델의 유사성 ▲외부 가중치 활용 범위 ▲독자성 판단 기준 등을 둘러싼 논쟁이 국내에서 불거졌다. 특히 네이버클라우드, NC AI가 1차 평가에서 탈락하면서 성능 경쟁을 넘어 '어디까지를 독자 AI로 볼 것인가'를 둘러싼 정책·기술적 논의가 본격화됐다는 평가가 나온다. 이번 논란은 특정 기업의 성패를 넘어 한국 독자 AI 정책이 해외 소버린 AI 사례와 비교해 기술적 출발점과 설계 주체성에 과도하게 초점을 맞췄기 때문으로 분석된다. 해외에선 '누가 통제하고 어디서 운용하느냐'를 주권의 핵심으로 삼는 반면, 한국은 '직접 만들었는가'를 기준으로 삼으면서 논쟁의 강도가 커진 것으로 보인다. 이는 해외 주요국의 소버린 AI 접근 방식과 비교하면 차이가 더욱 두드러진다. 우선 유럽연합(EU)은 미국 빅테크 의존을 줄이기 위해 데이터 주권과 규제(AI Act)를 중심으로 전략을 전개하고 있다. 또 오픈소스 모델을 활용하더라도 유럽 내 인프라에서 통제 가능하고 법·가치 체계에 부합한다면 주권을 확보한 것으로 보는 경향이 강하다. 일본은 자국어 특화 대형언어모델(LLM) 개발을 지원하는 한편, 글로벌 기업과의 협력을 통한 인프라 구축을 병행하는 전략을 택하고 있다. 인도, 아랍에미리트(UAE)는 한국처럼 미국·중국에 대한 기술 종속을 경계하면서도 독자성을 정의하는 방식에서 보다 유연하고 실용적인 접근을 취하고 있다. 특히 인도는 정부가 단일 '국가대표 모델'을 직접 설계하기보다 여러 민간 기업을 선정해 자국 언어와 산업 환경에 특화된 파운데이션 모델 개발을 지원하는 방식에 방점을 찍고 있다. 수십 개의 공용어와 복잡한 산업 구조를 가진 인도에서는 '밑바닥부터 코드를 만들었는지'가 아닌 인도어 데이터와 현지 산업 맥락을 얼마나 효과적으로 반영했는지가 독자성의 핵심 기준으로 작용한다. 또 해외 모델을 활용하더라도 인도의 언어·데이터로 재학습하고 실사용 가능한 형태로 고도화한다면 소버린 AI의 일환으로 인정하는 구조다. 이는 기술적 혈통보다는 데이터 주권과 현지 적합성을 중시하는 분위기다. UAE는 오픈소스를 통한 글로벌 주도권 전략으로 주목받고 있다. 이곳은 정부 산하 기술혁신연구소(TII)가 개발한 '팔콘(Falcon)' 시리즈 모델을 오픈소스로 공개해 전 세계 개발자들이 이를 개선·확장하도록 유도하고 있다. 이를 통해 팔콘은 사실상 글로벌 기술 표준 중 하나로 자리 잡게 됐다. 또 최근에는 중국 모델 '큐원(Qwen)' 등 외부 오픈 웨이트 모델을 참고해 성능을 보완한 모델도 공개하며 기술적 순수성보다 실용성과 확장성을 강조하는 전략을 이어가고 있다. 이는 기술적 순수성보다 확산성과 영향력을 주권의 요소로 보는 UAE식 접근을 보여준 것으로 평가받는다. 반면 한국의 소버린 AI 논쟁은 모델 개발의 출발점과 내부 구조에 대한 기술적 독자성으로 집중되고 있다. 앞서 정부는 공모 단계에서 해외 AI 모델을 단순 미세조정(fine-tuning)한 파생형 모델은 독자 AI로 인정하지 않겠다는 원칙을 제시한 바 있다. 또 이번 1차 평가에서는 사전학습(pre-training) 단계에서 핵심 가중치를 자체적으로 학습·갱신했는지 여부가 주요 판단 기준으로 적용된 것으로 알려졌다.이를 두고 일각에선 가중치 초기화 여부만으로 독자성을 단정하기는 어렵다고 지적했다. 토크나이저 설계, 학습 데이터 구성, 모델 아키텍처 변형 여부 등 복합적인 요소가 함께 고려돼야 하지만, 정부가 이를 제대로 반영했는지에 대해 의구심을 드러냈다. 이 과정에서 성능보다는 학습의 출발점과 가중치 통제 여부가 평가의 핵심 변수로 작용했다는 의견도 제기됐다. 업계에선 글로벌 오픈소스 생태계 활용이 일반화된 상황 속에 정부가 외부 모델 활용의 허용 범위와 독자성 기준을 사전에 충분히 공유하지 않았다는 점이 논쟁을 키웠다고 보고 있다. 업계 관계자는 "독자성이 곧 '모든 것을 혼자 만드는 것'을 의미하는 것은 아니다"며 "외부 기술을 활용하더라도 이를 통제하고 개조하며 장기적으로 유지할 수 있는 역량 역시 주권의 중요한 요소"라고 짚었다. 이어 "데이터의 질과 현지 최적화, 글로벌 생태계와의 호흡이 기술적 혈통 못지않게 중요해지고 있다"고 지적했다. 이와 함께 과기정통부의 역할에 대한 요구도 커지고 있다. 정부가 가중치 초기화 여부, 사전학습 수행 범위, 컴포넌트별 오픈소스 허용 기준 등을 보다 명확히 제시해 독자성 판단의 불확실성을 줄여야 한다고 봐서다. 또 기술적 순수성 중심의 단일 기준에서 벗어나, 실질적 통제 가능성과 활용도를 함께 평가하는 다층적 기준이 필요하다는 의견도 제기된다. 업계 관계자는 "이번 논쟁이 특정 기업의 탈락 여부를 넘어 한국이 AI 주권을 어떤 기준으로 정의하고 확보할 것인지에 대한 시험대가 되고 있다"며 "정부가 단순한 예산 집행자를 넘어 인도, UAE 처럼 유연하면서도 현실적인 방향성을 제시할 수 있을지가 향후 독자 AI 정책의 성패를 가를 핵심 변수가 될 것"이라고 전망했다.

2026.01.20 10:01장유미 기자

[AI는 지금] 독파모 '패자부활전' 할까 말까…"혜택 크다" vs "역효과"

정부가 '독자 인공지능(AI) 파운데이션 모델 프로젝트' 패자부활전 정책을 추진하지만 주요 기업들이 잇따라 불참 의사를 밝히면서 정책 실효성을 둘러싼 논란이 커지고 있다. 16일 업계에 따르면 과학기술정보통신부는 지난 15일 독파모 1차 평가에서 5개 정예팀 중 네이버클라우드와 NC AI를 탈락시켰다. 네이버클라우드는 모델 독자성 논란이 평가에 영향 준 것으로 알려졌다. NC AI는 종합 점수가 기준에 미치지 못했다. 이에 기존 4개 팀 선발이던 계획과 달리 LG AI연구원, SK텔레콤, 업스테이지만 통과했다. 정부는 공석을 메우기 위해 올해 상반기 중 1개 팀을 추가 선정하는 재공모를 추진한다고 밝혔다. 대상에는 1차 탈락 컨소시엄인 네이버클라우드와 NC AI, 앞서 정예팀 선발 과정에서 탈락한 카카오, KT, 모티프테크놀로지스, 코난테크놀로지, 한국과학기술원 컨소시엄까지 포함된다. 류제명 과기정통부 제2차관은 "신규 정예팀에도 기존 3개 팀과 동일한 그래픽처리장치(GPU)·데이터 지원과 'K-AI' 명칭 부여 등 개발 기회를 제공하겠다"고 밝혔다. 현재 주요 기업들은 재도전에 선을 긋고 있다. 네이버클라우드는 "정부 판단을 존중한다"며 "추가 공모를 검토하지 않겠다"고 밝혔다. 카카오 역시 참여 계획이 없다는 입장을 알렸다. NC AI도 "산업 특화 AI와 피지컬 AI 개발에 집중하겠다"며 패자부활전에 나서지 않겠다는 뜻을 분명히 했다. 업계에선 패자부활전 없이 갔어야 한다는 목소리가 나오고 있다. 업계 관계자는 "추가 선발 없이 기존 결과를 확정했다면 공정성 논란을 조기에 종식시킬 수 있었다"며 "잘못된 추가 선정이 이뤄질 경우 정부 지원 자체가 무용론에 빠질 수 있다"고 우려했다. 또 다른 관계자는 독파모 프로젝트 구조 자체가 문제라고 지적했다. 그는 "새 정예팀은 신규 GPU로 모델을 처음부터 학습할 수 있는 장점을 얻을 수 있지만 이를 실험할 시간적 여유가 부족하다"며 "결국 해외 모델을 카피해 학습만 프롬 스크래치로 진행할 수밖에 없는 상황일 것"이라고 분석했다. 이어 "'K-AI' 타이틀만 얻고 실질적 기술 자립을 못 할 가능성도 배제하기 어렵다"고 꼬집었다. 이 같은 상황 속에 정부는 신규 정예팀과 기존 정예팀 간 형평성 문제를 최소화하겠다고 밝혔다. 류 차관은 "기존 3개 팀 일정 지연은 최대한 피할 것"이라며 "팀 간 개발 시간과 환경 간극을 최소한으로 할 것"이라고 강조했다.

2026.01.16 18:37김미정 기자

독파모 1차 탈락 네이버클라우드 "과기정통부 판단 존중…기술 경쟁력 높일 것"

독자 인공지능(AI) 파운데이션 모델(독파모) 프로젝트 1차 단계평가에서 탈락한 네이버클라우드가 정부 판단을 존중한다는 입장을 표명했다. 네이버클라우드 측은 15일 이번 탈락에 대해 "과학기술정보통신부의 판단을 존중하고 앞으로 AI 기술 경쟁력을 높이기 위해 다각적인 노력을 이어갈 것"이라고 밝혔다. 이날 과기정통부는 정부서울청사에서 독파모 프로젝트 1차 단계평가 결과를 발표했다. LG AI연구원과 SK텔레콤, 업스테이지 등 3개 정예팀이 2차 단계에 진출한 반면, 네이버클라우드와 NC AI는 1차 단계에서 탈락했다. 과기정통부는 네이버클라우드가 벤치마크·전문가·사용자 평가를 종합한 점수 기준에서는 상위 4개 팀에 포함됐지만, 독자성 부문 요건을 충족하지 못한 것으로 판단했다. 네이버클라우드 모델에 포함된 외부 인코더 활용 자체가 불가능한 것은 아니지만, 이번 평가에서는 인코더가 가중치를 업데이트할 수 없는 형태로 활용됐다는 점에서 독자 AI 모델로 인정하기 어렵다는 내부 판단이 있었다는 설명이다. 정부는 이번 평가 이후 정예팀이 3개로 줄어든 점을 고려해 1개 정예팀을 추가 선정하는 공모를 추진할 계획이다. 이날 브리핑에서는 이번 1차 평가에서 2차 단계에 진출하지 못한 기업들뿐 아니라, 최초 공모에 참여했던 다른 컨소시엄과 새로운 기업들에게도 기회를 열어두겠다는 방침을 밝혔다. 다만 2차 재도전에 대해 네이버클라우드 관계자는 "아직 검토하고 있진 않다"고 전했다.

2026.01.15 17:41한정호 기자

'독파모' 1차서 네이버·NC AI 동반 탈락…정부, 정예팀 1곳 추가 공모

독자 인공지능(AI) 파운데이션 모델(이하 독파모) 프로젝트 1차 단계평가에서 네이버클라우드와 NC AI가 최종 탈락했다. 당초 5개 정예팀 가운데 1개 팀만 탈락할 것으로 예상됐지만, 평가 과정에서 독자성 기준과 종합 점수 경쟁이 동시에 작동하면서 2개 팀이 2차 단계 진출에 실패하게 됐다. 과학기술정보통신부는 15일 정부서울청사에서 독파모 1차 단계평가 결과를 발표했다. 이번 평가 결과, LG AI연구원·SK텔레콤·업스테이지 등 3개 정예팀이 2차 단계에 진출했으며 기존 정예팀 가운데 네이버클라우드와 NC AI는 1차 단계에서 탈락했다. 독자 AI 파운데이션 모델 프로젝트는 당초 5개 정예팀을 선정한 뒤 1차 단계평가를 거쳐 4개 팀을 2차 단계로 압축하는 구조로 설계됐다. 그러나 이번 평가에 정책적 기준과 상대평가 결과가 함께 반영되면서 결과적으로 2개 팀이 탈락하고 3개 팀만 2차 단계에 진출하게 됐다. 과기정통는 네이버클라우드 경우 벤치마크·전문가·사용자 평가를 종합한 점수 기준에서는 상위 4개 팀에 포함됐으나, 독자 AI 파운데이션 모델 요건을 충족하지 못한 것으로 판단했다. 과기정통부는 "이번 사업에서 해외 AI 모델을 단순 파인튜닝한 파생형 모델은 독자 AI 파운데이션 모델로 인정하지 않는다는 기준을 적용해 왔다"며 "네이버클라우드 모델은 독자성 측면에서 한계가 있다는 전문가 의견이 제기됐다"고 설명했다. 반면 NC AI는 독자성 기준과 관련한 별도의 결격 사유는 제시되지 않았지만, 1차 단계평가에서 다른 정예팀과의 종합 점수 경쟁에서 밀리며 2차 단계 진출에 실패한 것으로 풀이된다. 이번 평가는 AI 모델 성능을 중심으로 한 벤치마크 평가와 전문가 평가, 실제 활용 가능성을 살핀 사용자 평가를 합산해 진행됐으며 이 과정에서 NC AI가 다른 정예팀 대비 상대적으로 낮은 점수를 받은 것으로 해석된다. 평가 구조상 네이버클라우드와 NC AI 두 기업이 동시에 1차 단계에서 탈락하는 결과로 이어지는 등 당초 예상보다 탈락 팀 수가 늘어나면서 프로젝트 경쟁 구도에도 변화가 생기게 됐다. 과기정통부는 이번 1차 평가 이후 정예팀이 3개로 줄어든 점을 고려해 향후 1개 정예팀을 추가로 선정하는 공모를 추진할 계획이다. 추가 공모에는 이번 1차 단계에서 탈락한 네이버클라우드와 NC AI 컨소시엄도 참여할 수 있도록 문을 열어두겠다는 방침이다. 다시 한 번 경쟁 기회가 주어진 만큼 향후 두 기업이 어떤 전략으로 재도전에 나설지 주목된다. 배경훈 부총리 겸 과기정통부 장관은 이날 결과 발표에 앞서 "승자와 패자를 구분하고 싶지 않고 결과에 대해 깨끗하게 승복하고 다시 도전하는 모습을 기대한다"며 "정부에서도 새로운 해법을 추가적으로 제시할 것"이라고 SNS를 통해 밝혔다.

2026.01.15 15:13한정호 기자

LG AI연구원·SK텔레콤·업스테이지, 'K-AI' 1차 평가 통과

정부가 '독자 인공지능(AI) 파운데이션 모델' 1차 평가 결과를 공개했다. 과학기술정보통신부는 독파모 기존 5개 정예팀 가운데 LG AI연구원과 SK텔레콤, 업스테이지를 2단계에 진출했다고 15일 밝혔다. 이번 평가는 벤치마크를 비롯한 전문가, 사용자 평가를 합산해 모델 성능과 비용 효율성, 실제 활용 가능성, 생태계 파급력을 종합 검증한 결과다. 세 지표에서 모두 최고점을 받은 LG AI연구원이 전체 1위를 기록했다. 벤치마크 평가 부문에서 LG AI연구원은 40점 만점 중 33.6점을 받아 평균을 상회했다. 전문가 평가에서도 35점 만점 중 31.6점, 사용자 평가에서는 25점 만점을 획득해 모든 영역에서 선두를 유지했다. 종합 점수상 상위 4개 팀에는 LG AI연구원, 네이버클라우드, SK텔레콤, 업스테이지가 포함됐다. 다만 네이버클라우드는 독자성 기준을 충족하지 못해 최종 탈락했다. 이에 따라 2차 단계는 LG AI연구원과 SK텔레콤, 업스테이지 3개 팀 체제로 진행된다. 과기정통부는 "독자 AI 파운데이션 모델은 해외 모델 미세조정이 아닌 아키텍처 설계와 데이터 구축, 가중치 초기화 후 학습까지 전 과정을 자체 수행한 국산 모델"이라고 정의했다. 이어 "네이버클라우드 모델은 가중치 기반 독자성 요건을 충족하지 못한 것으로 판단했다"며 탈락 이유를 밝혔다. 정부는 경쟁과 생태계 유지를 위해 1개 정예팀을 추가 공모해 총 4개 팀 체제를 다시 구축할 계획이다. 신규 정예팀에는 그래픽처리장치(GPU)와 데이터, 'K-AI 기업' 명칭이 제공된다. 과기정통부는 "이번 프로젝트는 대한민국이 글로벌 AI 경쟁에서 독자 기술로 당당히 맞서기 위한 역사적 도전"이라며 "K-AI 모델을 반드시 확보해 지속 가능하고 건강한 AI 생태계를 구축할 것"이라고 밝혔다.

2026.01.15 15:00김미정 기자

[유미's 픽] '독자 AI' 논쟁, 韓서 유독 격화된 이유는

정부 주도의 독자 인공지능(AI) 파운데이션 모델 사업을 둘러싼 논란이 기업 간 경쟁을 넘어 정책·기술 논쟁으로 확산되고 있다. 해외 모델과의 유사성, '프롬 스크래치' 정의, 외부 가중치 사용 여부를 두고 해석이 엇갈리면서 논쟁의 강도도 커지는 양상이다. 나아가 업체 간 '진흙탕 싸움'으로도 번지자 이번 사업에서 국내 독자 AI 정책 설계 방식과 기준 설정이 미흡했기 때문이란 지적이 나온다. 14일 업계에 따르면 이번 논란이 확산된 것은 '독자 AI'라는 정책 목표가 기술적 정의보다 먼저 제시됐기 때문이다. 일단 정부는 지난 해 공모 단계에서 해외 AI 모델을 단순 미세조정(fine-tuning)한 파생형 모델을 독자 AI로 인정하지 않겠다는 원칙을 밝혔다. 그러나 '프롬 스크래치'와 '독자성'을 어디까지로 해석할 것인지에 대해서는 구체적인 기준을 제시하지 않았다. AI 연구 현장에서 통용되는 '프롬 스크래치'는 일반적으로 기존 모델의 가중치를 사용하지 않고 랜덤 초기화 상태에서 학습했는지를 의미한다. 반면 정책 논의 과정에서는 이 개념이 모델 구조, 아키텍처 차용, 모듈 활용 여부까지 포함하는 방식으로 확장되면서 기술적 정의와 정책적 해석 간의 차이가 드러났다는 평가가 나온다. 업계에선 이 간극이 이후 논쟁을 키운 근본 배경이라고 보고 있다. 평가 기준이 개발 전이 아닌 5개 팀 선발 결과 공개 이후에 본격적으로 논의됐다는 점도 논란을 키운 요인으로 꼽힌다. 짧은 개발 기간과 제한된 자원으로 글로벌 수준의 성능을 요구받은 상황 속에 다수 참여 기업이 오픈소스 생태계와 기존 연구 성과를 일정 부분 활용할 수밖에 없었다는 것도 문제다. 이를 활용했을 때 어느 수준까지 허용되는지에 대한 사전 합의가 충분히 공유되지 않은 탓이다. 이에 각 기업의 기술 선택은 현재 독자성 논쟁의 대상이 됐다. 업계 관계자는 "사전 가이드라인이 명확하지 않은 상태에서 사후 검증이 강화되다 보니 기술적 판단이 정책적·정치적 논쟁의 중심에 놓이게 됐다"며 "기술 선택의 맥락보다는 결과를 기준으로 한 평가가 이뤄지면서 논쟁이 과열됐다"고 진단했다. 이번 사업이 단순한 연구개발(R&D) 지원을 넘어 '국가대표 AI'를 선발하는 성격을 띠고 있다는 점도 논쟁을 증폭시킨 요인으로 분석된다. 기업 간 경쟁이 국가 기술 자립의 상징으로 해석되면서 기술적 차이보다 독자성의 순수성을 둘러싼 평가가 부각됐다는 점에서다. 글로벌 AI 연구 환경에서는 오픈소스와 기존 연구 성과를 활용하는 것이 일반적이지만, 국내에서는 안보와 기술 주권 담론이 결합되며 기술 선택 하나하나가 상징적 의미를 띠게 됐다는 지적도 나온다. 업계 관계자는 "이번 논쟁의 본질은 특정 기업의 기술 선택 문제가 아니라 기술 기준과 정책 기준이 혼재된 구조적 문제"라며 "AI 연구 관점에서는 구조 차용과 독자 학습을 구분해 평가하는 반면, 정책 관점에서는 외부 의존성과 통제 가능성이 더 중요한 판단 기준이 된다"고 말했다. 그러면서 "이번 독자 AI 사업에서는 이 두 기준이 동일한 언어로 정리되지 않은 상태에서 추진되면서 혼선이 커졌다"고 분석했다. 이로 인해 기술적으로는 합리적인 선택이 정책적으로는 부적절해 보일 수 있게 됐다. 반대로 정책적 메시지가 강한 선택이 기술적 완성도와는 별개로 평가되는 상황도 만들어졌다. 업계에선 이번 논쟁이 '유사성' 여부를 따지는 문제를 넘어 무엇을 기준으로 독자성을 판단할 것인지에 대한 논의로 이어지고 있다고 보고 있다. 일각에선 이번 1차 평가를 계기로 독자 AI의 기준을 보다 정교화할 필요가 있다는 의견을 내놨다. 단순한 성능 지표나 선언적 독자성보다 가중치 통제권, 설계 역량, 비용 효율성, 장기적 운용 가능성 등을 종합적으로 평가하는 체계가 필요하다는 지적이다. 업계 관계자는 "이번 논쟁이 한국 AI 산업에 반드시 부정적인 신호만은 아니라고 본다"며 "독자 AI의 정의와 정책 목표를 다시 정립하는 계기로 삼을 필요가 있다"고 밝혔다.이어 "앞으로 기술 논쟁을 도덕적 공방으로 몰고 가기보다 정책 목적과 기술 현실을 구분해 설명할 수 있는 기준을 우선 마련하는 것이 필요해보인다"며 "이번 독자 AI 논쟁은 개별 기업의 성패를 넘어 한국이 어떤 방식으로 AI 주권을 확보할 것인지에 대한 정책적 시험대가 될 것"이라고 덧붙였다.

2026.01.14 16:54장유미 기자

'K-AI' 주도권 잡을 4개 정예팀은…정부, 첫 심사 발표 임박

정부가 이번 주 '독자 인공지능(AI) 파운데이션 모델 프로젝트' 첫 심사 결과 발표를 앞둔 가운데 공정 심사 여부와 첫 탈락팀에 대한 이목이 쏠리고 있다. 12일 IT 업계에 따르면 과학기술정보통신부와 정보통신산업진흥원(NIPA)은 오는 15일 전후로 독자 AI 모델 1차 평가 결과를 발표할 예정인 것으로 알려졌다. 정부는 지난주부터 각 컨소시엄이 제출한 모델 성능과 효율성을 검토하면서 최종 선별 작업을 진행 중인 것으로 전해졌다. 현재 정예팀은 네이버클라우드와 NC AI, 업스테이지, SK텔레콤, LG AI연구원이다. 정부는 15일 전후로 여기서 4팀만 선별한다. 네이버클라우드는 텍스트·이미지·오디오 등 서로 다른 데이터를 단일 모델서 처리하는 옴니 파운데이션 모델 '네이티브 옴니모델(HyperCLOVA X SEED 8B Omni)'과 기존 추론형 AI에 시각·음성·도구 활용 역량을 더한 '고성능 추론모델(HyperCLOVA X SEED 32B Think)'을 오픈소스로 공개했다. 해당 모델은 에이전트 AI와 버티컬 서비스 기반 기술로 활용될 계획이다. 이를 통해 소버린 AI 경쟁력을 강화하고 월드모델과 로보틱스, 자율주행 등 물리 세계 AI로 키울 방침이다. NC AI는 멀티모달 생성용 파운데이션 모델 '배키(VAETKI)'를 내세웠다. 배키는 토크나이저 어휘 20%를 한국어에 할당하고 고어까지 처리 가능한 한글 조합 기능을 갖췄다. 이를 통해 국내 산업현장에 최적화된 소버린 AI를 달성하겠다는 포부다. 업스테이지는 '솔라 오픈 100B'를 허깅페이스에 내놨다. 솔라 오픈은 중국 딥시크 R1과 오픈AI GPT-OSS-120B' 등 글로벌 경쟁 모델을 주요 벤치마크에서 앞선 것으로 나타났다. 특히 한국어, 영어, 일본어 등 다국어 평가에서 모델 크기 대비 우수한 성능을 보였다. 향후 국내 금융을 비롯한 법률, 의료, 공공, 교육 등 산업별 AI 전환 확산에 활용될 방침이다. SK텔레콤은 한국형 소버린 AI 경쟁력 확보 목표로 '에이닷 엑스 K1'를 내놨다. 이 모델은 5천억 개 파라미터를 보유한 국내 첫 거대언어모델(LLM)이다. 웹 탐색과 정보 분석, 요약, 이메일 발송 등 여러 단계를 거치는 복합 업무를 자율적으로 수행할 수 있다. 향후 일상 업무뿐 아니라 제조 현장 데이터와 작업 패턴을 학습해 업무 효율을 높이는 데도 활용되는 것이 목표다. LG AI연구원은 'K-엑사원'을 공개했다. K-엑사원은 LG AI연구원이 지난 5년간 축적한 기술 바탕으로 하이브리드 어텐션 구조를 고도화해 설계됐다. 이를 통해 메모리 요구량과 연산량을 엑사원 4.0 대비 70% 줄이면서도 성능은 끌어올렸다. 해당 모델은 토크나이저 고도화, 멀티 토큰 예측 구조로 최대 26만 토큰의 초장문을 처리할 수 있다. 추론 속도도 기존 모델 대비 150% 높였다. A100급 그래픽처리장치(GPU) 환경에서도 구동 가능하다. 과기정통부 "평가 공정하게"…심사 기간은 연기 정부는 1차 발표를 앞두고 모델 평가 기간을 기존 일정보다 연장한 것으로 전해졌다. NIPA는 해당 사업에 참여하는 5개 팀에게 AI 모델 사이트를 지난 11일 자정까지 연장 운영해 달라고 요청한 것으로 확인됐다. 해당 사이트는 각 컨소시엄 모델 평가를 위해 전문 평가단이 확인할 수 있도록 구성된 플랫폼이다. 정예팀은 당초 지난 9일 오후 6시까지 사이트를 운영할 예정이었지만, 현재 정부 지침으로 약 56시간 연장한 것이다. NIPA는 해당 지침이 과기정통부 요청에 따른 것이라고 밝혔다. 과기정통부는 최근 사업 참여 컨소시엄에서 불거진 독자 기술력 논란과 모델 평가 기간 연장은 무관하다고 선 그은 것으로 알려졌다. 또 오는 15일 전후로 예정된 독자 AI 모델 선정 사업 1차 발표가 늦어질 가능성도 없다는 입장이다. 배경훈 부총리 겸 과기정통부 장관은 지난 8일 "독자 AI 파운데이션 모델 개발 프로젝트 평가는 객관적이고 공정하게 진행될 것"이라고 개인 소셜네트워크서비스(SNS)를 통해 밝혔다.

2026.01.12 15:21김미정 기자

[유미's 픽] 독자 AI 논란 속 '설계 주권' 시험대…LG 'K-엑사원'이 돋보인 이유

"이번 경쟁에서 고유 아키텍처를 고수하며 바닥부터 설계하는 곳은 LG AI연구원 정도입니다. 정부 과제의 짧은 데드라인과 제한된 자원 속에서 검증된 글로벌 오픈소스를 적극 활용할 수밖에 없는 환경 속에 특정 모듈 차용이 문제라면, 오픈소스 기반으로 개발한 국내 기업 다수도 그 비판에서 자유롭기 어려울 것입니다."최근 정부 주도의 독자 인공지능(AI) 파운데이션 모델 프로젝트를 둘러싼 잡음이 이어진 가운데 LG AI 연구원의 'K-엑사원'이 비교적 논란 없이 업계의 호평을 받으며 존재감을 드러내고 있다. 성능 평가에서도 미국, 중국이 점령한 글로벌 AI 상위 10위권에서 7위를 기록하며 유일하게 이름을 올려 'AI 3강'을 노린 한국을 대표할 AI 모델로 자리를 굳히는 분위기다.LG AI연구원은 'K-엑사원'이 정부의 독자 AI 파운데이션 모델 프로젝트 1차 평가 기준인 13개의 벤치마크 테스트 중 10개 부문 1위를 기록했다고 11일 밝혔다. 전체 평균 점수는 72점으로, 5개 정예팀 중 1위를 차지했다. 이 기준으로 평가를 했을 시 경쟁사들은 50점 중반대에서 60점 중반대 정도의 평균 점수를 기록하는 것으로 알려졌다. 일부 참가업체들이 최근 공개한 테크 리포트에서 13개 벤치마크 결과를 모두 기재하지 않은 것과 달리, LG AI연구원은 모든 결과를 공개해 비교 가능성을 높여 우위에 올라섰다는 평가도 나온다. 업계에선 독자 AI 모델의 가장 중요한 요소로 '프롬 스크래치'와 '독자성' 해석을 꼽고 있다. 최근 해외 모델 유사성 등 여러 논란 속에서 가장 중요한 요소가 외부 모델 '가중치(Weight) 사용' 여부가 핵심으로 떠오르고 있는데, 특히 LG AI연구원의 'K-엑사원'은 이를 모두 충족시키는 모델로 평가 받고 있다. 가중치는 AI 모델이 학습을 통해 축적한 지식이 압축된 결과물로, 라이선스와 통제권 문제와 직결된다. 정부가 해외 모델을 파인튜닝한 파생형 AI를 독자 AI로 간주하지 않겠다고 밝힌 이유도 이 때문이다. 다만 일각에선 가중치 논쟁이 독자 AI의 기준을 지나치게 단순화할 수 있다는 지적도 나온다. 가중치는 독자 AI의 최소 조건일 뿐 그 위에서 어떤 기술적 선택을 했는지가 모델의 완성도를 가른다는 것이다. 특히 대규모 자본과 연산 자원을 투입해 데이터와 파라미터 규모를 늘리는 방식은 단기 성능 경쟁에는 유리할 수 있지만, 장기적인 국가 AI 전략과는 거리가 있다는 평가도 있다.이 때문에 최근에는 가중치 이후의 단계인 모델 구조에 대한 설계 역량이 중요 기준으로 떠오르고 있다. 대표적인 영역이 어텐션(Attention)과 토크나이저(Tokenizer)다. 어텐션은 AI가 방대한 정보 중 어떤 부분에 집중할지를 결정하는 핵심 메커니즘으로 연산량과 메모리 요구량을 좌우한다. 토크나이저는 문장을 토큰 단위로 분해하는 방식으로 학습 효율과 언어 이해 능력에 직접적인 영향을 미친다. 두 요소는 성능과 비용을 동시에 결정하는 구조적 레버로, 독자 AI의 '설계 주권'을 가늠하는 지표로 평가된다.이에 대해 임정환 모티프테크놀로지스 대표는 독자 기술의 기준을 보다 구조적으로 봐야 한다고 지적했다. 그는 "엔비디아가 설계를 하고 TSMC가 생산을 맡는 구조나, 삼성 스마트폰이 다양한 외부 부품을 조합해 만들어지는 사례를 보더라도 핵심은 누가 설계의 주체냐는 점"이라며 "단순히 코드를 복제한 뒤 재학습하는 방식은 기술적 난이도가 낮아 독자 아키텍처로 보기 어렵다"고 말했다. 이어 "중국 딥시크는 기존 구조를 그대로 쓰지 않고 이를 변형해 자신들만의 기술적 철학을 담았기 때문에 독자 기술로 평가받는 것"이라고 덧붙였다.업계에선 독자 AI의 '설계 주권'을 판단하는 기준이 어텐션과 토크나이저에만 국한돼서는 안 된다는 지적도 나온다. 실제로 AI 모델의 성능과 효율은 어텐션 외에도 정규화(Normalization) 방식, 레이어 구성, FFN(Feed-Forward Network) 구조, 학습 커리큘럼 설계, 추론(Reasoning) 구조의 내재화 여부 등 복합적인 설계 선택에 의해 좌우된다. 정규화 방식과 레이어 구성은 학습 안정성과 스케일링 한계를 결정하는 요소로, 표준 레이어놈(LayerNorm)을 그대로 사용하는지, RMS놈(RMSNorm) 등 변형된 방식을 적용했는지에 따라 대규모 학습에서의 효율과 수렴 특성이 달라진다. 레이어놈이 모든 신호를 고르게 '정돈'하는 방식이라면, RMS놈은 꼭 필요한 크기 정보만 남겨 계산 부담을 줄이는 방식에 가깝다.FFN 구조 역시 전체 파라미터의 상당 부분을 차지하는 영역으로, 활성화 함수 선택이나 게이트 구조 도입 여부에 따라 연산량 대비 성능 효율이 크게 달라진다. FFN은 AI가 주목한 정보를 자기 언어로 다시 정리하는 '내부 사고 회로'에 해당한다. 학습 커리큘럼 역시 설계 주권을 가늠하는 중요한 지표로 꼽힌다. 단순히 대규모 데이터를 한 번에 투입하는 방식이 아니라, 언어 이해·추론·지시 이행·도메인 특화 학습을 어떤 순서와 비중으로 설계했는지가 모델의 안정성과 범용성을 좌우하기 때문이다. 여기에 프롬프트 기법에 의존하지 않고, 추론 과정을 모델 구조 내부에 내재화했는지 여부도 공공·국방·금융 등 고신뢰 영역에서 중요한 평가 요소로 거론된다. 업계 관계자는 "가중치는 독자 AI의 출발점이고, 어텐션과 토크나이저는 그 다음 단계"라며 "그 이후에는 학습 시나리오와 추론 구조, 스케일링 전략까지 얼마나 스스로 설계했는지가 진짜 기술적 자립도를 가른다"고 설명했다. LG AI연구원의 'K-엑사원'은 이 지점에서 차별화된 접근을 택했다. LG AI연구원은 데이터 양이나 파라미터 규모를 무작정 키우는 방식 대신, 모델 구조 자체를 고도화해 성능은 높이고 학습·운용 비용은 낮추는 전략을 적용했다. 엑사원 4.0에서 검증한 '하이브리드 어텐션(Hybrid Attention)'을 'K-엑사원'에 고도화해 적용, 국소 범위에 집중하는 슬라이딩 윈도우 어텐션과 전체 맥락을 이해하는 글로벌 어텐션을 결합했다. 이를 통해 메모리 요구량과 연산량을 이전 세대 대비 약 70% 절감했다는 설명이다. 토크나이저 역시 단순 재사용이 아닌 구조적 개선이 이뤄졌다. LG AI연구원은 학습 어휘를 약 15만 개로 확장하고, 한국어에서 자주 쓰이는 단어 조합을 하나의 토큰으로 묶는 방식을 적용했다. 그 결과 동일한 연산 자원으로 더 긴 문서를 기억하고 처리할 수 있게 됐으며 기존 대비 약 1.3배 긴 컨텍스트 처리 능력을 확보했다. 여기에 멀티 토큰 예측(MTP) 구조를 도입해 추론 속도도 크게 높였다. 이 같은 구조 혁신은 정부 프로젝트의 성격과도 맞닿아 있다. 독자 AI 파운데이션 모델의 목표는 단기적인 성능 순위 경쟁이 아니라 공공·산업 현장에서 실제로 활용 가능한 국가 AI 인프라를 구축하는 데 있기 때문이다. LG AI연구원이 고가의 최신 그래픽처리장치(GPU)가 아닌 A100급 환경에서도 프런티어급 모델을 구동할 수 있도록 설계해 인프라 자원이 제한된 기업과 기관에서도 활용 가능성을 넓혔다는 점도 우위 요소로 보인다. 다른 참가 기업들 역시 각자의 강점을 내세우고 있다. SK텔레콤은 최신 어텐션 기법과 초거대 파라미터 확장을 통해 스케일 경쟁력을 강조하고 있고, NC AI는 산업 특화 영역에서 운용 효율을 앞세우고 있다. 네이버클라우드는 멀티모달 통합 아키텍처를 독자성의 핵심으로 제시하고 있으며, 업스테이지는 데이터와 학습 기법을 통해 성능을 끌어올리는 전략을 취하고 있다. 다만 일부 모델은 외부 가중치나 구조 차용 여부를 둘러싼 논란으로 인해 기술 외적인 설명 부담을 안고 있는 상황이다. 업계 관계자는 "이번 논쟁이 '순혈이냐, 개발이냐'의 이분법으로 끝나기보다 가중치 주권을 전제로 한 설계 주권 경쟁으로 진화하고 있다고 본다"며 "이 기준에서 'K-엑사원'은 성능, 비용 효율, 구조적 혁신이라는 세 요소를 동시에 충족한 사례로 평가되고, 한국형 독자 AI가 나아갈 한 방향을 보여주고 있다"고 분석했다.업계에선 이번 1차 평가를 계기로 독자 AI에 대한 기준이 한층 정교해질 가능성이 높다고 봤다. 단순한 성능 순위나 '프롬 스크래치' 여부를 넘어 가중치 주권을 전제로 한 모델 설계 역량과 비용 효율, 실제 활용 가능성까지 함께 평가하는 방향으로 심사 기준이 진화할 수 있을 것으로 전망했다. 정부 역시 2차 심사 과정에서 독창성과 기술적 기여도를 평가 항목으로 포함하겠다고 밝힌 만큼, 향후 독자 AI 경쟁은 데이터·자본 경쟁을 넘어 누가 더 깊이 모델을 설계했는지를 가리는 국면으로 접어들 것이란 분석도 나온다.임정환 모티프테크놀로지스 대표는 "현재 독자 개발과 프롬 스크래치에 대한 개념이 혼재된 상황"이라며 "(정부 차원에서) 기술적 기여도에 따른 명확한 정의와 가이드라인 마련이 시급하다"고 강조했다. 이승현 포티투마루 부사장은 "독자 AI 2차 심사에서 퍼포먼스는 단순히 벤치마크 점수로 줄 세울 문제가 아니다"며 "가중치를 처음부터 자체 학습했는지, 데이터와 학습 과정에 대한 통제권을 갖고 있는지, 같은 조건에서 성능을 안정적으로 재현할 수 있는지가 먼저 봐야 할 기준"이라고 말했다. 이어 "이 전제가 빠진 성능 비교는 기술 평가라기보다 보여주기에 가깝다"고 덧붙였다.

2026.01.11 15:57장유미 기자

[AI 리더스] 'AI 표준' 만든 이승현 "K-AI 5곳, 모두 승자…톱2 집착 버려야"

"독자 인공지능(AI) 파운데이션 모델(K-AI) 사업자로 선정된 5곳은 사실상 모두 승자입니다. 2개 사업자만 선별해 정부가 지원하기 보다 각 팀이 짧은 시간 안에 각자의 방식으로 글로벌 모델과 일정 수준 비교 가능한 결과물을 만들어냈다는 점을 인정해야 합니다. 정부가 각 모델의 특성과 강점을 살릴 수 있는 지원책을 마련한다면 국내 AI 생태계도 훨씬 건강해질 수 있을 것입니다." 이승현 포티투마루 부사장은 8일 지디넷코리아와의 인터뷰를 통해 최근 독자 AI 파운데이션을 둘러싼 논란에 대해 이같이 정리했다. 오는 15일께 정부가 1차 탈락팀을 결정하기 전 각 업체들이 '이전투구' 양상으로 치닫는 모습을 보이는 것을 두고 정부가 2개팀만 선별해 지원하려는 구조 때문이라고도 진단했다. 또 이번 논란의 본질이 기술 경쟁이 아니라 구조적 문제에 있다고 봤다. 정부가 2개 사업자만 선별해 집중 지원하는 방식이 계속 유지되면 탈락 기업에 과도한 낙인이 찍히고 업계 전체가 방어적·공격적으로 변할 수밖에 없다고 분석했다. 성능 경쟁보다 통제 원칙 우선돼야…소버린 AI 기준 마련 필요 정부는 현재 네이버클라우드와 업스테이지, SK텔레콤, NC AI, LG AI연구원 등 독자 AI 파운데이션 모델 사업자로 선정된 5개 정예팀을 대상으로 1차 심사를 진행 중이다. 탈락팀 1곳은 오는 15일쯤 발표할 예정으로, 정예팀마다 평가 기준이 상이해 업계에선 각 업체별 모델을 두고 유불리 논란이 이어지고 있다. 이 부사장은 "정부 사업에서 탈락하면 해당 팀이 '사망선고'를 받는 것처럼 여겨지는 구조는 바람직하지 않다"며 "톱2만 키우는 방식은 산업 전체를 위축시킬 가능성이 높은 만큼, 선별보다 육성 중심의 정책 전환을 고민해야 한다"고 제언했다. 특히 이번 사업에 참여한 기업 상당수가 대기업 또는 대기업 계열이라는 점에서 1차 탈락이 갖는 파급력은 더 크다고 봤다. 그는 "1차에서 떨어졌다는 이유만으로 '이 정도밖에 못하느냐'는 평가가 붙으면 내부 투자나 그룹 차원의 지원이 위축될 가능성도 배제하기 어렵다"며 "그 부담이 기업을 더욱 공격적인 대응으로 몰아넣는다"고 진단했다.이에 이 부사장은 '선별'이 아닌 '육성'을 초점에 맞춘 정부 정책이 마련될 필요가 있다고 강조했다. 일정 수준 이상의 역량을 입증한 기업들을 여러 트랙으로 나눠 지속적으로 키우는 구조가 필요하다는 것이다. 그는 "영국 등 해외 사례를 보면 한 번 떨어졌다고 끝나는 게 아니라 다른 트랙으로 계속 경쟁과 육성을 이어간다"며 "이번에 선정된 5개 기업 역시 각자 다른 강점과 방향성을 갖고 있는 만큼, 정부가 이들을 '탑위너 그룹'으로 묶어 장기적으로 관리하는 전략이 필요하다"고 말했다.이 부사장은 소버린 AI를 둘러싼 논의 역시 '전면 강제'가 아니라 '위험 구간에서의 원칙'으로 재정의해야 한다고 강조했다. 글로벌 모델과의 성능 경쟁을 목표로 삼기보다 투명성을 바탕으로 통제 가능성과 주권 확보가 필요한 영역에서 전략적으로 활용해야 한다고 주장했다. 그는 "공공 영역만 보더라도 정보 등급에 따라 활용 원칙이 달라야 한다"며 "오픈 데이터나 공개 서비스 영역에서는 글로벌 모델이나 경량화 모델을 활용할 수 있지만, 민감정보·보안 등급으로 올라갈수록 소버린 모델을 원칙으로 삼는 방식이 합리적"이라고 말했다. 그러면서 "다만 소버린을 내세워 모든 것을 자체 모델로만 해결하려는 접근은 현실적이지 않다"며 "필요할 경우 월드모델 활용 등을 통해 안전한 방식의 연계·상호운용을 함께 고민해야 한다"고 덧붙였다. AI 정책, 구조적 한계 여실…공공 클라우드 전환 선행돼야 이처럼 이 부사장이 분석한 이유는 과거 공공 정책 현장에서 직접 경험한 구조적 한계가 지금도 크게 달라지지 않았다고 판단해서다. 그는 디지털정부플랫폼위원회 재직 당시부터 AI 시대를 준비하기 위해 공공 시장의 클라우드 전환이 선행돼야 한다고 꾸준히 주장해왔다. 이 부사장은 "지난 2022년 3월 무렵부터 공공이 AI 시대를 이야기하면서도 정작 기반이 되는 클라우드 전환은 제대로 이뤄지지 않는 점이 가장 큰 한계라고 봤다"며 "AI를 서비스(SaaS) 형태로 도입하려면 클라우드가 전제가 돼야 하는데, 공공 영역의 전환 속도가 이를 따라가지 못했다"고 설명했다. 그는 이에 대한 원인으로 ▲클라우드 전환 지연 ▲예산·제도 구조 ▲관료제의 연속성 부족을 꼽았다. 이 부사장은 "정부 예산 구조상 ISP 등 절차를 거치면 최소 2~3년이 소요되는데, 이 방식으로는 빠르게 변하는 AI 흐름을 따라가기 어렵다"며 "AI처럼 중장기 전략이 필요한 분야에서 담당 보직이 자주 바뀌면 학습 비용이 반복되고 정책 추진의 일관성도 흔들릴 수밖에 없다"고 지적했다. 또 그는 "이 때문에 국가AI전략위원회와 같은 컨트롤타워 조직에는 보다 실질적인 권한과 연속성이 필요하다"며 "전문가 의견을 모으는 데서 그치지 않고, 부처 간 정책을 조정하고 실행으로 연결할 수 있도록 조직에 힘을 실어줘야 한다"고 강조했다.다만 이 부사장은 제도 개선의 필요성을 강조하는 것만으로는 AI 정책의 한계를 넘기 어렵다고 봤다. 정책이 실제 서비스와 산업 현장으로 이어지지 못하는 구조가 반복되고 있다고 판단해서다. 이에 디지털플랫폼정부위원회 AI플랫폼혁신국장을 맡았던 이 부사장은 지난 달 포티투마루로 자리를 옮겼다. 이곳에서 공공 정책 설계 경험을 바탕으로 공공·민간 영역에서 AI가 실제 서비스로 구현되고 확산되는 구조를 만드는 데 직접 기여할 것이란 각오다. 또 공공 AI 활용 사례를 통해 스타트업과 중소기업이 함께 성장할 수 있는 실증 모델을 만드는 데도 집중할 계획이다. 이 부사장은 "4년간 공공 영역에서 AI 정책을 다루며 나름대로 전문성을 쌓았다고 생각했지만, 실제 현장에서는 또 다른 병목이 존재하고 있다고 판단됐다"며 "AI 강국이 되려면 결국 국민이 체감해야 한다"고 지적했다.이어 "공공 영역에서 AI를 통해 일하는 방식 혁신을 통해 생산성을 높이고, 대국민 서비스의 속도와 품질을 개선하며 의료·복지 등 사회 문제 해결로 이어져야 가능한 일"이라며 "포티투마루를 통해 공공 AI가 실제로 작동하는 사례를 만들고, 스타트업과 중소기업이 함께 성장할 수 있는 구조를 현장에서 증명하고 싶다"고 덧붙였다. 그러면서 "국내 소프트웨어 산업은 여전히 공공이 큰 축을 차지하고 있는데, 공공 시장이 SI 중심 구조에 머물러 있다 보니 스타트업이 성장할 수 있는 발판이 제한적"이라며 "영국 등은 정부가 클라우드 기반으로 전환하면서 스타트업들이 공공 시장에 자연스럽게 진입했지만, 한국은 제도와 조달 구조가 이를 가로막고 있다"고 지적했다. 소버린 AI 등급체계 직접 개발…'국산 AI' 논쟁 끝낼까 지난 6일 소버린 AI 기준 논의를 위해 직접 평가 기준과 이를 판별할 도구를 개발해 허깅페이스에 공개한 것도 이 같은 문제에 대한 고민에서 출발했다. 그는 소버린 AI 등급 체계인 'T-클래스 2.0'을 깃허브와 허깅페이스에 공개하며 막연한 '국산 AI' 구호로는 기술 주권을 설명할 수 없다는 점을 분명히 했다. 이 부사장이 제안한 'T-클래스 2.0'은 기존 논의와 달리 '설계(Code)', '지능(Weights)', '기원(Data)' 등 세 가지 실체적 기준을 중심으로 AI 모델을 T0부터 T6까지 7단계로 구분한다. ▲단순 API 호출 및 미세조정 수준(T0~T1) ▲오픈 웨이트를 활용한 과도기 모델(T2~T3) ▲소버린 AI의 기준점이 되는 아키텍처를 참조하되 가중치를 처음부터 자체 학습한 T4 ▲독자 설계 아키텍처와 한국어 토크나이저를 갖춘 T5 ▲국산 반도체·클라우드까지 결합한 T6 등으로 분류됐다. 이 중 T4를 T4-1과 T4-2로 세분화한 것이 기존 버전과의 차별점이다. T4-1은 표준 아키텍처를 그대로 유지한 채 가중치를 처음부터 학습한 모델이다. 데이터 주권은 확보했지만, 구조적 독창성은 제한적인 단계다. 반면 T4-2는 기존 아키텍처를 참고하되 레이어 구성, 파라미터 규모, 연산 구조 등을 최적화·확장한 모델로, 글로벌 표준을 활용하면서도 기술 주권까지 일정 수준 확보한 단계로 분류된다. 이 부사장은 "T4-1이 '데이터 소버린' 단계라면, T4-2는 '기술 소버린'에 한 발 더 다가간 모델"이라며 "현재 국내 독자 AI 파운데이션 모델로 선정된 팀 대부분은 모두 T4-2 영역에 해당하는 질적 변형을 수행했다는 점에서 충분히 평가받아야 한다"고 말했다. 이어 "아키텍처는 이미 범용 기술이 됐지만, 가중치는 국가가 소유해야 할 자산"이라며 "T4는 아키텍처라는 그릇을 빌리더라도 데이터와 연산, 결과 지능을 우리가 통제하는 실질적 소버린 모델"이라고 덧붙였다. 일각에서 독자 아키텍처(T5)까지 가야 진짜 소버린으로 인정할 수 있다는 주장에 대해선 "현실을 외면한 기술적 순혈주의"라고 선을 그었다. 또 수백억원을 들여 아키텍처를 처음부터 다시 만들어도 글로벌 표준 모델 대비 성능 우위를 확보하기는 쉽지 않다는 점도 분명히 했다. 이 부사장은 "대다수 기업에게는 아키텍처 재발명보다 고품질 데이터와 학습 인프라에 집중하는 것이 더 합리적인 전략"이라며 "T4는 산업의 허리를 튼튼하게 만드는 표준 전략이고, T5는 국가 안보와 기술 패권을 겨냥한 리더십 전략으로 두 트랙이 함께 가야 생태계가 건강해진다"고 강조했다. 이 기준을 구현한 '소버린 AI 판별 도구(Sovereign AI T-Class evaluator 2.0)'를 직접 개발해 공개한 이유에 대해서도 그는 투명성을 거듭 강조했다. 이 부사장은 "AI 개발은 참조와 변형의 경계가 매우 모호한 회색지대"라며 "명확한 가이드 없이 결과만 놓고 개발자를 비난하는 것은 부당하다"고 말했다. 그러면서 "기준이 없으니 불필요한 논쟁과 감정 싸움만 커진다"며 "누구나 같은 잣대로 설명할 수 있는 최소한의 공통 기준이 필요하다고 판단했다"고 덧붙였다. 실제로 해당 기준 공개 이후 업계에서는 "왜 이제야 이런 기준이 나왔느냐", "사실상 표준으로 삼을 만하다"는 반응이 이어지고 있다. 또 정부에서 이 부사장이 만든 'T-클래스 2.0'을 바탕으로 독자 AI 파운데이션 모델의 평가 기준이 구체적으로 만들어져 심사 투명성을 높여야 한다는 지적도 나왔다. 이 같은 분위기 속에 이 부사장은 독자 AI 논의가 현재 단계에만 머물러서도 안 된다고 지적했다. 또 현재의 혼란이 단기적인 사업 논쟁이 아니라 AI를 국가 전략 차원에서 어떻게 바라볼 것인가에 대한 더 큰 질문으로 이어지고 있다고 봤다. 그는 "독파모가 보여주기식 경쟁이나 단기 성과에 머물면, 월드모델·디지털 트윈·피지컬 AI로 이어지는 다음 스테이지를 놓칠 수 있다"며 "국가 R&D는 지금보다 한 단계 앞을 내다보는 구조여야 한다"고 강조했다. AGI 시대, 5년 내 현실화…AI 국가 전략, 체계적 마련 필요 이 부사장은 AI 경쟁의 종착점을 단기적인 모델 성능 비교에 두는 것 자체가 위험하다고도 경고했다. 그는 AGI(범용인공지능)가 5년 안에 현실화될 가능성이 높다고 전망하며 그 이후를 대비하지 않는 전략은 국가 차원에서도 지속 가능하지 않다고 지적했다. 그는 "AGI는 단순히 모델이 더 똑똑해지는 문제가 아니라 기억 구조와 추론 방식이 인간의 뇌를 닮아가는 단계"라며 "지금 구글이 시도하고 있는 중첩학습처럼 단기·중기·장기 기억을 분리·결합하는 구조는 거대언어모델(LLM) 이후를 준비하는 명확한 신호"라고 말했다. 그러면서 "글로벌 빅테크들은 이미 다음 스테이지를 보고 있다"며 "하지만 우리는 아직 현재 모델이 프롬 스크래치냐 아니냐에만 머물러 있는 건 아닌지 돌아봐야 한다"고 덧붙였다. 이 부사장은 AGI와 ASI(초지능)를 막연한 공포의 대상으로 보는 시각에도 선을 그었다. 그는 "인류는 오래전부터 인간을 능가하는 지능이 등장해 우리가 해결하지 못한 문제를 풀어주길 기대해왔다"며 "중요한 것은 AGI·ASI 자체가 아니라 그것을 어떤 문제 해결을 위해 어떻게 통제하고 활용할 것인가에 대한 고민"이라고 봤다. 이어 "AI를 두려워하기보다 인류 난제 해결이라는 방향성 속에서 통제권을 쥐는 것이 국가 전략의 핵심"이라고 강조했다. 이 부사장은 이 같은 고민을 담아 다음 달께 'AI 네이티브 국가'를 출간할 계획이다. 이 책에는 모델 개발을 넘어 지정학, 경제, 복지, 산업 구조 전반에서 AI가 국가 경쟁력을 어떻게 재편하는지에 대한 고민을 고스란히 담았다. 또 메모리 반도체, 제조 데이터, 클라우드 인프라를 동시에 보유한 한국의 구조적 강점을 짚으며 AI 시대에 한국이 '풀스택 국가'로 도약할 수 있는 전략도 함께 제시할 계획이다. 그는 "국내 AI 논의가 기술 우열이나 모델 성능에만 매몰돼 있는 흐름을 벗어나고 싶었다"며 "같은 기술이라도 국가가 어떤 전략을 취하느냐에 따라 결과는 전혀 달라질 수 있다는 점을 책을 통해 정리하고 싶었다"고 설명했다.마지막으로 그는 "AI를 둘러싼 지금의 혼란은 누군가가 틀렸기 때문이 아니라 기준과 구조가 없었기 때문"이라며 "논쟁을 줄이고 경쟁을 건강하게 만들 수 있는 최소한의 합의점을 만드는 데 앞으로도 계속 목소리를 낼 것"이라고 피력했다.

2026.01.08 10:10장유미 기자

아마존 AI 전략 설계자, 구글 클라우드 합류…에이전트 서비스 강화

구글 클라우드가 아마존에서 인공지능(AI) 전략과 파운데이션 모델 개발을 이끌었던 핵심 인재를 영입하며 AI 에이전트 강화에 박차를 가한다. 미국 IT 미디어 긱와이어에 따르면 구글 클라우드는 아마존에서 14년간 근무하며 AI 전략 수립과 기술 개발을 주도한 카르틱 라마크리슈난을 데이터 클라우드 조직 부사장(VP)으로 선임했다. 라마크리슈난은 아마존의 음성 AI 서비스 '알렉사' 초기 개발에 참여했으며 최근에는 자체 파운데이션 모델 '노바' 개발을 이끈 인물로 알려졌다. 라마크리슈난 부사장은 2012년 아마존에 합류한 이후 대화형 AI부터 멀티모달 범용인공지능(AGI)에 이르기까지 아마존 AI 기술 진화 전반에 관여한 것으로 평가된다. 아마존 합류 이전에는 마이크로소프트(MS)가 텔미 네트웍스를 인수한 후 3년간 수석 플랫폼 엔지니어로 근무한 바 있다. 이번 인사는 아마존 내부 AI 조직 개편과 맞물려 이뤄졌다. 최근 아마존에서는 AI 조직을 이끌던 로히트 프라사드 수석부사장이 회사를 떠났다. 앤디 재시 아마존 최고경영자(CEO)는 AI 모델 연구팀과 맞춤형 실리콘, 양자 컴퓨팅 조직을 통합하는 새로운 체제를 발표했다. 아마존은 지난해 말 '노바 2' 모델을 공개하며 경쟁사 추격에 나선 상태다. 빅테크 업계에서는 AI뿐 아니라 최고위 임원급 인재 이동이 이어지고 있다. 메타는 MS 출신 법무 책임자를 최고법률책임자(CLO)로 영입하는 등 주요 기업 간 인재 확보 경쟁이 더욱 치열해지는 양상이다. 라마크리슈난 부사장은 링크드인을 통해 "우리는 에이전트 시대에 진입하고 있다"며 "세계적 수준의 팀과 함께 미래 자율 데이터 플랫폼을 구축하는 데 집중할 것"이라고 밝혔다.

2026.01.07 17:38한정호 기자

독자 AI '프롬 스크래치' 논란 재점화…네이버클라우드, 오픈소스 차용 해명

정부가 추진 중인 '독자 인공지능(AI) 파운데이션 모델' 프로젝트를 둘러싸고 기술 자립성 논란이 다시 불거졌다. 네이버클라우드가 일부 멀티모달 구성 요소에 외부 오픈소스 모델을 활용한 사실이 알려지면서 '프롬 스크래치' 기준을 둘러싼 해석 차이가 업계 내 논쟁으로 확산되는 양상이다. 5일 업계에 따르면 네이버클라우드가 멀티모달 AI 모델 '하이퍼클로바X 시드 32B 싱크'의 음성·이미지 입력을 처리하는 비전·오디오 인코더 일부에 중국 알리바바의 오픈소스 모델 '큐웬' 계열을 활용한 것으로 알려졌다. 해당 인코더 가중치가 큐웬 모델과 높은 코사인 유사도와 피어슨 상관계수를 보였다는 점이 공개되면서 정부 과제 취지에 부합하는지 여부가 쟁점으로 떠올랐다. 정부의 독자 파운데이션 모델 프로젝트는 모델을 학습 초기 단계부터 자체 기술로 구축하는 이른바 프롬 스크래치 구현을 주요 평가 요소 중 하나로 삼고 있다. 이 때문에 핵심 구성 요소 중 일부라도 외부 모델을 활용할 경우 기술 자립성에 대한 문제 제기가 불가피하다는 지적이 나온다. 이에 대해 네이버클라우드는 어디까지를 파운데이션 모델로 볼 것인가에 대한 정의 차이를 제시했다. 회사 측은 "파운데이션 모델의 본질은 입력 정보를 해석하고 추론해 결과를 만들어내는 핵심 엔진에 있다"며 "이 영역은 인간으로 치면 사고와 정체성을 담당하는 두뇌에 해당한다"고 설명했다. 이어 "해당 핵심 추론 엔진을 프롬 스크래치 단계부터 100% 자체 기술로 개발해 왔으며 이를 통해 한국어와 한국 사회의 복잡한 맥락을 깊이 이해하는 독자적인 경쟁력을 확보해 왔다"고 강조했다. 논란이 된 비전·오디오 인코더는 이 두뇌에 입력 신호를 전달하는 역할로, 모델의 정체성과는 구분해야 한다는 입장이다. 특히 비전 인코더의 경우 시각 정보를 모델이 이해할 수 있는 신호로 변환하는 시신경 역할을 하며 자체 비전 기술 역량도 충분히 보유하고 있다고 설명했다. 이번 모델에서는 글로벌 기술 생태계와의 호환성과 전체 시스템의 효율적 최적화를 고려해 검증된 외부 인코더를 전략적으로 채택했다는 것이다. 또 네이버클라우드는 이러한 방식이 기술 자립도가 부족해서가 아닌 이미 표준화된 고성능 모듈을 활용해 전체 모델의 완성도와 안정성을 높이기 위한 고도의 엔지니어링 판단이라고 강조했다. 실제 글로벌 AI 업계에서도 알리바바의 큐웬-오디오가 오픈AI의 음성인식 기술을, 큐웬-옴니가 구글의 이미지 인식 기술을 기반으로 구축하는 등 유사한 사례가 존재한다는 점을 근거로 들었다. 아울러 관련 기술적 선택과 라이선스 정보를 허깅페이스와 테크리포트를 통해 투명하게 공개해 왔으며 모델 성능이나 기술 기여를 과장하려는 의도는 전혀 없다고 밝혔다. 멀티모달 AI에서 가장 어려운 과제는 개별 부품의 출처가 아니라 텍스트·음성·이미지를 하나의 유기적인 구조로 통합해 동시에 이해하고 생성하도록 설계하는 통합 아키텍처라는 설명이다. 정부의 독자 파운데이션 모델 프로젝트를 둘러싼 유사성 논란은 이번이 처음은 아니다. 앞서 업스테이지가 개발한 모델을 두고도 일부 가중치 유사성을 근거로 한 의혹이 제기된 바 있으며 이후 공개 검증과 추가 설명을 거치며 논쟁은 일단락됐다. 네이버클라우드 측은 "앞으로도 기술 개발의 모든 과정에서 투명성을 유지할 것"이라며 "단순히 모든 요소를 직접 만들었는가라는 프레임을 넘어, 어떻게 창의적으로 통합해 사용자에게 최고의 가치를 줄 것인가에 집중할 계획"이라고 밝혔다.

2026.01.05 20:32한정호 기자

[유미's 픽] "주사위는 던져졌다"…국대 AI 첫 탈락자, 1차 발표회서 판가름?

우리나라를 대표할 인공지능(AI) 모델을 선발하는 정부 사업 '독자 AI 파운데이션 모델 프로젝트'의 첫 결과물이 공개된 가운데 어떤 기업이 이번 심사에서 살아남을지 관심이 집중된다. 각 사업자들이 내세운 모델의 성과가 달라 정부가 심사기준을 어떻게 세웠을지도 관심사다. 31일 업계에 따르면 네이버, LG AI연구원, SK텔레콤은 AI 임원, NC AI와 업스테이지는 대표가 지난 30일 오후 2시부터 서울 강남구 코엑스에서 개최된 독자 AI 파운데이션 모델 프로젝트 1차 발표회에 참여했다. 발표는 네이버를 시작으로 NC AI, 업스테이지, SK텔레콤, LG AI연구원 순서로 진행됐다. 독자 AI 파운데이션 모델 프로젝트는 그래픽처리장치(GPU)와 데이터 등 자원을 집중 지원해 국가 대표 AI 모델을 확보하는 정부 사업이다. 과학기술정보통신부는 이번 발표를 기반으로 심사를 통해 내년 1월 15일 1개 팀을 탈락시키고, 이후에도 6개월마다 평가를 거쳐 2027년에 최종 2개 팀을 선정한다. 모델 성과 제각각…정부 심사 기준이 관건 이번 심사에선 각 팀이 주어진 공통 과제를 얼마나 잘 수행했는지, 각자 제시한 목표대로 성과를 냈는지가 관건이다. 모든 팀은 최근 6개월 내 공개된 글로벌 최고 모델 대비 95% 이상의 성능을 달성해야 하는 과제가 주어진 상태다.지난 8월 정예팀으로 선정된 지 4개월만에 첫 성과를 공개해야 하는 만큼, 개발 시간이 부족한 상황에서 각자 기술력을 얼마나 끌어올렸을지도 관심사다. 각 팀의 GPU 지원 여부, 지원 받은 시기 등이 각각 달랐다는 점에서 정부가 이를 심사 시 고려할 지도 주목된다. 이번 프로젝트를 위해 SK텔레콤과 네이버클라우드는 정부에게 GPU를 임대해주고 있다. 이 탓에 두 업체는 올해 '독자 AI 파운데이션 모델 프로젝트' 진행 시 정부로부터 GPU를 지원 받지 못했다. SK텔레콤은 엔비디아의 B200 칩 1천24장을 업스테이지와 LG AI연구원에, 네이버클라우드는 H200 칩 1천24장을 NC AI에 지원하고 있다. 이 탓에 GPU가 각 업체에 지원된 시기는 다 달랐다. 업계에선 정부가 어떤 기준을 세울지에 따라 각 팀의 승패가 갈릴 것으로 봤다. 정부는 그간 5개팀과 여러 차례 만나 평가 기준에 대해 논의 후 이달 중순께 합의를 보고 공지했으나, 어떤 팀이 탈락할 지에 따라 여전히 논란의 불씨가 많은 것으로 알려졌다. 업계 관계자는 "당초 5개 팀이 선정될 당시 정부에 제시했던 목표치를 달성했는지가 가장 중요할 것"이라며 "각 팀이 목표로 하고 있는 모델의 크기, 성능, 활용성이 제각각인 만큼 목표 달성률을 가장 중요한 기준치로 삼아야 할 것"이라고 강조했다. 이어 "벤치마크를 활용한다는 얘기가 있지만 모델 크기가 클수록 다운로드 수 측면에서 불리할 수 있어 이를 객관적 기준으로 삼기에는 다소 무리가 있을 수 있다"며 "5개 팀과 정부가 어떤 기준에 대해 합의를 했는지, 어떤 전문가를 앞세워 심사에 나설지도 주목해야 할 부분"이라고 덧붙였다. 5개 팀 첫 성과 공개…프롬 스크래치·모델 크기·활용성 주목 이번 1차 결과 공개에서 가장 주목 받는 곳은 업스테이지다. 대기업 경쟁자들 사이에서 짧은 시간 내 '프롬 스크래치(From Scratch)'를 기반으로 가성비 최고 수준인 모델을 완성도 높게 공개했다는 점에서 많은 이들의 호응을 얻었다. 프롬 스크래치는 AI 모델을 처음부터 직접 개발한다는 뜻으로, 데이터 수집과 모델 아키텍처 설계, 학습, 튜닝까지 모든 것을 자체적으로 수행하는 방식이다. 이 개념은 거대언어모델(LLM) 개발 때 많이 언급되며 아무 것도 없는 상태에서 모델을 직접 설계하고 데이터를 수집 및 전처리해 학습시킨다는 점에서 이를 통해 AI 모델을 선보일 경우 기술력이 상당히 높다고 평가를 받는다. 오픈AI의 'GPT-4'나 구글 '제미나이', 메타 '라마', 앤트로픽 '클로드' 등이 여기에 속한다. 업스테이지는 이날 독자 파운데이션 모델 '솔라 오픈 100B'를 LM 아레나 방식으로 해외 유명 모델들과 비교해 공개하며 자신감을 표출했다. 특히 발표에 직접 나선 김성훈 대표가 '솔라 오픈 100B'를 개발하게 된 과정을 스토리텔링 형식으로 발표해 호응을 얻기도 했다. 김 대표는 향후 200B, 300B 모델과 함께 멀티모달 모델도 선보일 예정이다.업계 관계자는 "김 대표가 발표 때 딥 리서치나 슬라이드 제작 등 코딩 외에 실제로 현장에서 많이 써봤을 것 같은 서비스를 직접 라이브 데모로 보여준 부분이 인상적이었다"며 "504장의 B200 GPU로 두 달 남짓 훈련한 것을 고려하면 모델 크기나 사용된 토큰수(추정)를 정말 빡빡하게 잘 쓴 게 아닌가 싶다"고 평가했다. 이승현 포티투마루 부사장은 "(업스테이지 발표 때) 솔라 프로가 'GPT-4o-미니'나 '파이-3 미디엄'보다 벤치마크가 높아 동급 사이즈에선 가장 우수하다고 했는데, 실제 가성비가 최고 수준인 것으로 보인다"며 "당장 기업들이 가져다 쓰기에도 좋을 것 같다"고 말했다. 이어 "그동안 업스테이지의 상징과도 같았던 DUS(구조 일부를 변경해 자체화한 AI 모델 개발 방식)를 넘어 프롬 스크래치로 모델을 개발했다는 점이 인상적"이라며 "기술 리포트가 없는 게 아쉽지만, 모델 카드에 프롬 스크래치를 기재한 것과 함께 API도 공개해 자신감을 드러낸 것이 국가대표로 내세우기 적합해 보였다"고 덧붙였다. 배경훈 과학기술정보통신부 부총리 겸 장관을 배출한 LG AI연구원도 이번 발표가 끝난 후 개발 중인 모델이 국가대표로 인정받기에 손색이 없다는 평가를 받았다. 이곳은 '엑사원 4.0' 아키텍처를 기반으로 파라미터 크기를 약 7배 키워 초기화한 상태에서 새로 학습시킨 'K-엑사원'을 이번에 공개했다. 'K-엑사원'은 매개변수 236B 규모의 프런티어급 모델이다. LG AI연구원에 따르면 'K-엑사원'은 개발 착수 5개월 만에 알리바바의 '큐웬3 235B'를 뛰어 넘고 오픈AI의 최신 오픈 웨이트 모델을 앞서 글로벌 빅테크 최신 모델과 경쟁할 수 있는 가능성을 입증했다. 글로벌 13개 공통 벤치마크 평균 성능 대비 104%를 확보했다는 점도 눈에 띄는 요소다. LG AI연구원은 "기존 엑사원 4.0 대비 효율성을 높이면서도 메모리 요구량과 연산량을 줄여 성능과 경제성을 동시에 확보했다"며 "특히 전문가 혼합 모델 구조(MoE)에 하이브리드 어텐션 기술을 더해 메모리 및 연산 부담을 70% 줄이고, 고가의 최신 인프라가 아닌 A100급 GPU 환경에서 구동할 수 있도록 했다"고 설명했다. 이곳은 향후 조 단위 파라미터 규모 글로벌 최상위 모델과 경쟁할 수 있도록 성능을 고도화한다는 계획이다. 또 글로벌 프론티어 AI 모델을 뛰어넘는 경쟁력을 확보해 한국을 AI 3강으로 이끌 것이란 포부도 드러냈다. 이번 발표를 두고 업계에선 LG AI연구원이 5개 팀 중 기술적인 내용이 가장 많이 들어있어 신뢰도가 높았다고 평가했다. 또 추론 강화를 위해 아키텍처를 변형하고 커리큘럼 러닝을 적용했다는 점에서 모델이 '프롬 스크래치'임을 명백히 보여줬다고 평가했다. 다만 동일 아키텍처인 32B 모델의 리포트와 가중치만 공개돼 있고, 이번 모델인 236B는 공개하지 않았다는 점은 아쉬운 대목으로 지적됐다. 업계 관계자는 "'K-엑사원'은 구조, 가중치가 완전 국산이란 점에서 통제권과 설명 가능성이 충분히 확보돼 있다고 보인다"며 "국방, 외교, 행정망 등 국가 핵심 인프라에 충분히 쓰일 수 있을 듯 하다"고 말했다. 그러면서도 "이번 발표에서 자체 MoE나 하이브리드 어텐션(hybrid attention, 효율·성능을 위해 다양한 어텐션 방식을 상황별로 혼합한 구조), 아가포(AGAPO, 어텐션·파라미터 사용을 입력에 따라 동적으로 조절하는 내부 최적화 기법) 같은 기술들에서 인상 깊은 것이 없다는 것은 아쉽다"며 "다음에는 실질적 효과에 대한 정량적 수치가 잘 기술되면 좋을 듯 하다"고 덧붙였다.이에 대해 LG AI연구원 관계자는 "모델 제출 마감이 이번 주까지여서 제출 시점에 236B 모델을 공개할 것"이라며 "이 때 테크 리포트로 세부 사항도 담을 예정"이라고 설명했다. SK텔레콤도 이번 발표에서 많은 이들의 주목을 받았다. 짧은 시간 안에 국내 최초로 매개변수 5천억 개(500B) 규모를 자랑하는 초거대 AI 모델 'A.X K1'을 공개했기 때문이다. 특히 모델 크기가 경쟁사보다 상당히 크다는 점에서 AI 에이전트 구동 등에서 유리한 고지에 있다는 일부 평가도 나오고 있다. SK텔레콤은 모델 크기가 성능과 비례하는 AI 분야에서 한국이 AI 3강에 진출하려면 500B 규모의 AI 모델이 필수적이란 점을 강조하며 톱2까지 오를 것이란 야심을 드러내고 있다. 또 SK텔레콤은 모두의 AI를 목표로 기업과 소비자간 거래(B2C)와 기업간거래(B2B)를 아우르는 AI 확산 역량도 강조했다. 여기에 SK하이닉스, SK이노베이션, SK AX 등 관계사와 협업으로 한국의 AI 전환에 이바지하겠다는 포부도 밝혔다. 다만 일각에선 프롬 스크래치로 모델을 개발했는지에 대한 의구심을 드러내고 있어 심사 시 이를 제대로 입증해야 할 것으로 보인다. SK텔레콤은 MoE 구조라고 강조했으나, 각 전문가 모델들이 자체 개발인지, 오픈소스 튜닝인지 밝히지 않아 궁금증을 더했다. 또 모델카드는 공개했으나, 테크니컬 리포트를 공개하지 않았다는 점도 의구심을 더했다. 이승현 포티투마루 부사장은 "MoE 구조를 독자 개발했다면 보통 자랑스럽게 논문을 내는 것이 일반적"이라며 "SKT가 'A.X 3.1(34B)'라는 준수한 프롬 스크래치 모델이 있으나, 이를 15개 정도 복제해 MoE 기술로 묶은 것을 이번에 'A.X K1'으로 내놓은 것이라면 혁신은 아니라고 보여진다"고 평가했다. 이어 "정량적 벤치마크보다 서비스 적용 사례 위주로 발표가 돼 기술적 성취보다 '서비스 운영 효율'에 방점이 찍힌 듯 했다"며 "SKT가 'A.X 3.1' 모델 카드에 프롬 스크래치를 분명히 명시했지만, 이번에는 명시하지 않아 소버린 모델로 활용할 수 있을지에 대해선 아직 판단이 이르다"고 덧붙였다. 이에 대해 SKT는 다소 억울해하는 눈치다. 프롬 스크래치로 개발을 한 사실이 명백한 만큼, 조만간 발표될 테크니컬 리포트를 통해 일각의 우려를 해소시킬 것이란 입장이다. SKT 관계자는 "모델 카드에 밝혔듯 A.X K1은 192개의 소형 전문가(expert)를 가지는 MoE 구조로, A.X 3.1 모델을 단순히 이어 붙여서 만들 수 없는 복잡한 구조인 만큼 처음부터 프롬 스크래치로 학습됐다"며 "관련 세부 내용은 이달 5일 전후 테크니컬 리포트를 통해서 공개할 예정"이라고 밝혔다. 업계 관계자는 "SKT가 500B 모델을 만든다는 것을 사전에 알고 우려가 많았지만, 다른 팀에 비해 성공적으로 압도적으로 큰 모델을 공개했다는 것 자체는 굉장히 인상적"이라며 "내년 상반기까지 정부에서 지원하는 GPU를 쓰지 않기 때문에 SKT가 얼마나 많은 GPU를 투입했는지 알 수는 없지만, 500B를 충분히 학습하기에는 (성능을 끌어 올리기에) 시간이 부족했을 것 같다"고 말했다. 그러면서도 "2T까지 만들겠다는 포부는 높이 평가한다"며 "성공적인 2T 모델이 나오기를 기대한다"고 부연했다. 네이버클라우드는 국내 최초 네이티브 옴니모달 구조를 적용한 파운데이션 모델 '하이퍼클로바 X 시드 8B 옴니'를 오픈소스로 공개하며 자신감을 드러냈다.이곳은 독자 AI 파운데이션 모델 전략 핵심으로 텍스트·이미지·음성을 통합한 '옴니 모델'을 제시했다. 옴니 모델은 텍스트, 이미지, 오디오, 비디오 등 다양한 데이터 형태를 하나의 모델에서 동시에 학습하고 추론하는 구조다. 사후적으로 기능을 결합하는 방식이 아닌, 처음부터 모든 감각을 하나의 모델로 공동 학습시키는 점이 기존 모델과의 차별점이다. 또 네이버클라우드는 기존 추론형 AI에 시각·음성·도구 활용 역량을 더한 고성능 추론모델 '하이퍼클로바 X 시드 32B 씽크'도 오픈소스로 공개했다. 이 모델은 올해 대학수학능력시험(수능) 문제를 풀이한 결과 국어·수학·영어·한국사 등 주요 과목에서 모두 1등급에 해당하는 성과를 거뒀다. 영어와 한국사에서는 만점을 기록했다. 네이버클라우드 성낙호 기술총괄은 "옴니 모델 기반 구조는 그래프·차트·이미지 등 시각 정보 해석에서 별도의 광학문자인식(OCR)이나 복수 모델 호출이 필요 없다"며 "개발과 운영 구조가 단순해지면서 구축 비용과 서비스 확장 부담도 크게 낮출 수 있다"고 강조했다. 업계에선 네이버클라우드의 발표를 두고 실제 '애니-투-애니(Any-to-Any) 모델'을 작은 사이즈로 공개한 부분에 대해 인상적이라고 평가했다. '애니-투-애니 모델'은 입력과 출력의 모달리티(형식)를 가리지 않고 어떤 조합이든 처리할 수 있는 멀티·옴니모달 모델이다. 또 유일하게 '덴스(Dense) 모델'을 썼다는 점도 주목을 받았다. '덴스 모델'은 모든 파라미터가 매번 계산에 참여하는 전통적인 모델 구조로, 어떤 것을 입력하든지 항상 같은 경로로 계산이 돼 지연 시간과 비용이 MoE에 비해 안정적이라고 평가된다. 이로 인해 네이버클라우드는 경쟁사들에 비해 전체 파라미터 수는 굉장히 작아 평가 시 다소 불리한 위치에 놓여 있다는 의견도 있다. 당초 1차 심사 때 14B를 선보일 것이라고 목표했던 것과 달리 모델 크기가 8B에 그쳤다는 점도 아쉬운 점으로 지목됐다. 업계 관계자는 "네이버가 태생부터 멀티모달인 '네이티브 옴니' 아키텍처를 설계했다는 점에서 방향성이 완벽하고 독자모델로도 입증을 했지만, 경량 모델을 공개했다는 점이 아쉽다"며 "거대 모델로 스케일업 했을 때의 추론 능력과 비용 효율성이 아직 검증되지 않았다는 것이 우려된다"고 짚었다. 이어 "옴니모달은 구글, 오픈AI도 지향하는 최신 아키텍처"라며 "네이버가 이를 '패치워크(여러 모델 붙이기)'가 아닌 '네이티브'로 구현했다고 강조했다는 점에서 소버린 모델로는 충분한 가치가 있다"고 덧붙였다. NC AI는 이연수 대표가 직접 발표에 나서 산업 특화 AI를 위한 파운데이션 모델 '베키(VAETKI)'를 소개했다. 또 1단계 추진 과정에서 고품질 한국어·산업 특화 데이터를 확보하고 100B급 LLM 개발도 마쳤다고 공개했다. NC AI에 따르면 현재 베키는 제조·물류·공공·국방·콘텐츠 등 28개 이상 산업 현장에 적용돼 실질적인 성과를 창출하고 있다. NC AI는 AI 모델 바로크에 3차원(3D) 생성 기술이 결합된 바로크 3D를 활용해 전 산업군에 최적화된 버티컬 AI 설루션을 제공한다는 계획이다. 이 대표는 "우리는 1차로 100B(1천억 개)급 파운데이션 모델의 틀을 마련했다"며 "2차에서 200B, 3차에서 300B급으로 글로벌 모델급 성능을 달성하려고 한다"고 강조했다. 업계에선 NC AI의 이번 발표를 두고 경쟁력 있는 모델을 다수 보유하고 있는 것에 비해 전달력이 미흡했다고 평가했다. 100B 모델과 함께 서비스에 특화된 7B, 20B, VLM 7B까지 다양한 모델을 준비했으나, 발표 구성이 미흡해 강점이 충분히 전달되지 못했다는 의견도 나왔다. 업계 관계자는 "NC AI의 텍스트로 3D 에셋을 만드는 성능은 확실한 산업적 가치를 보여주지만, 그 이상의 것은 없어 아쉽다"며 "100B 모델을 기반으로 게임에 특화된 AI 활용을 좀 더 많이 보여줬다면 훨씬 좋았을 것 같다"고 말했다. 성과 확인 '끝'…1차 발표회 호평 속 투명한 검증 '과제' 업계에선 이번 1차 발표회의 전반적인 진행에 대해 긍정적인 평가와 함께 정부가 앞으로 조금 더 구체적인 국가대표 AI 육성 평가를 내놓을 필요가 있다고 지적했다. 이번 발표회에서 소버린 AI를 강조하는 곳은 많지만, 그 실체를 증명하는 기준이 조금 느슨해보였다는 평가도 나왔다. 업계 관계자는 "이번 발표회에서 각 팀들이 얼마나, 어떻게 혁신적인 모델을 개발해 공개했는지에 대한 구체적인 설명이 없어 아쉬움이 컸다"며 "단순한 제품 홍보 발표회 느낌을 많이 받았지만, 단기간에 모든 팀이 굉장한 일을 정부 지원을 토대로 해냈다는 것에 대해선 기대감을 가지게 했다"고 밝혔다. 이어 "최소 100B급 이상의 모델을 학습시킬만한 인프라 운용과 더불어 학습 노하우를 갖추고 있어 보여 좋았다"며 "단기간 내 실험 시간의 물리적 제한이 있었음에도 기본적으로 초거대 AI 모델을 학습시킬 기본 역량은 대부분 갖췄다고 보여져 놀라웠다"고 덧붙였다. 그러면서도 "2차 발표에선 오거나이징 하는 측에서 명확한 발표 가이드를 제시해주면 더 좋을 것 같다"며 "김성훈 업스테이지 대표의 말처럼 국민 세금이 많이 투입되고 있기 때문에 짧지만 굉장히 효과적인 발표회가 앞으로도 진행될 수 있길 바란다"고 언급했다. 또 다른 관계자는 "독자 AI 파운데이션 모델의 핵심은 어떤 데이터로, 어떤 아키텍처를 써서 어떤 방식으로 학습했는지가 투명해야 한다"며 "그 결과물은 글로벌 시장에서 통할 수 있는 객관적 수치로 증명돼야 하고, 각 팀들은 기술 리포트와 모델 카드를 의무적으로 공개해야 제대로 프롬 스크래치로 개발했는지 검증할 수 있다"고 강조했다. 그러면서 "프롬 스크래치가 만능은 아니지만 투명성은 필수"라며 "무늬만 국가대표가 아닌 실력 있는 국가대표를 가려내기 위해선 마케팅의 거품을 걷어내고 기술의 족보를 따지는 엄격한 검증 시스템이 필요하다고 본다"고 덧붙였다.

2025.12.31 17:59장유미 기자

'AI 국가대표' 5개 정예팀, 첫 성적표 공개…"초거대·멀티모달 승부수"

정부가 추진 중인 '독자 인공지능(AI) 파운데이션 모델' 프로젝트 1차 성과가 공개되면서 정예팀 AI 전략 윤곽이 드러났다. 각 팀은 초거대·멀티모달·산업 특화 모델을 앞세워 AI 기술 경쟁력을 제시했다. 과학기술정보통신부와 정보통신산업진흥원(NIPA)은 30일 서울 코엑스 오디토리움에서 '독자 AI 파운데이션 모델' 프로젝트 1차 발표회를 열었다. 이날 네이버클라우드를 비롯한 NC AI, 업스테이지, SK텔레콤, LG AI연구원 등 5개 정예팀이 1차 성과를 공유했다. 행사에는 전문가, 기업 관계자, 시민 등 1천여 명이 참석했다. 정재헌 SK텔레콤 최고경영자(CEO)와 임우형·이홍락 LG AI연구원 공동원장, 김유원 네이버클라우드 대표, 김성훈 업스테이지 대표, 이연수 NC AI 대표 등 주요 기업 관계자들이 참석했다. 정부 측에서는 배경훈 과기정통부 부총리, 하정우 대통령실 AI미래기획수석, 임문영 국가AI전략위원회 상근 부위원장이 자리를 함께했다. 정부는 이번 1차 발표 이후 내년 1월 중 단계 평가를 진행할 예정이다. 정예팀들의 주요 성과와 향후 계획을 종합적으로 점검한 뒤 평가 결과를 공개하고, 이를 토대로 5개 팀 가운데 4개 팀을 최종 선별할 방침이다. 네이버클라우드, '옴니'모델 공개…NC AI, '배키'로 승부수 네이버클라우드는 독자 AI 파운데이션 모델 전략 핵심으로 텍스트·이미지·음성을 통합한 '옴니(Omni) 모델'을 제시했다. 기존 텍스트 중심 AI의 한계를 넘어 현실 세계를 보다 입체적으로 이해하는 것이 목표다. 옴니 모델은 텍스트, 이미지, 오디오, 비디오 등 다양한 데이터 형태를 하나의 모델에서 동시에 학습하고 추론하는 구조다. 사후적으로 기능을 결합하는 방식이 아니라, 처음부터 모든 감각을 하나의 모델로 공동 학습시키는 점이 기존 모델과의 차별점이다. 네이버클라우드 성낙호 기술총괄은 "옴니 모델 기반 구조는 그래프·차트·이미지 등 시각 정보 해석에서 별도의 광학문자인식(OCR)이나 복수 모델 호출이 필요 없다"며 "개발과 운영 구조가 단순해지면서 구축 비용과 서비스 확장 부담도 크게 낮출 수 있다"고 강조했다. 앞으로 네이버클라우드는 옴니 모델를 에이전트 AI와 버티컬 서비스 기반 기술로 활용할 계획이다. 이를 통해 소버린 AI 경쟁력을 강화하고 향후 월드 모델과 로보틱스, 자율주행 등 물리 세계 AI로의 확장도 추진할 방침이다. NC AI는 파운데이션 모델 '배키' 중심으로 산업 특화 AI 기술과 사업 성과를 이뤘다고 강조했다. 1단계 추진 과정에서 고품질 한국어·산업 특화 데이터를 확보하고, 100B급 LLM 개발을 마쳤다는 설명이다. 이연수 NC AI 대표는 배키가 제조·물류·공공·국방·콘텐츠 등 28개 이상 산업 현장에 적용됐다고 말했다. 그는 "현대오토에버와 손잡고 산업 AX 목표로 기술 적용을 추진했다"며 "제조·운영 데이터 기반의 AI 활용 가능성을 현장에서 검증하고 있다"고 설명했다. NC AI는 다중 전문가 구조(MoU)와 메모리 최적화 기반 MLA 아키텍처를 고도화해 기존 대비 그래픽처리장치(GPU) 사용량을 최대 83%까지 줄이고 연산 처리 시간도 약 15% 단축했다고 밝혔다. 또 데이터 부문에서는 20조 토큰 규모 다국어 사전 학습 데이터와 제조·공공·AI 안전성 등 14종의 전략적 멀티모달 데이터를 구축한 성과도 공유했다. 업스테이지, '솔라'로 한국어 추론 경쟁력 강조 업스테이지는 파운데이션 오픈 모델 '솔라 100B'를 공개하며 고성능과 효율성을 동시에 확보했다고 밝혔다. 솔라 100B는 LLM 성능을 유지하면서도 실제 활용을 염두에 둔 구조로 설계된 것이 특징이다. 전체 파라미터 규모는 1천억 개로 구성됐지만 실제 추론 과정에서는 약 120억 개 수준 파라미터만 활성화되는 구조로 작동한다. 김성훈 업스테이지 대표는 "이 모델은 대형 모델 수준 추론 능력을 유지하면서도 응답 속도와 자원 효율성을 크게 높였다"고 강조했다. 업스테이지는 해당 모델 학습 과정에서도 효율성을 강조했다. 대규모 GPU 환경에서 발생하는 장애를 자동 감지하고 즉시 대체하는 학습 시스템을 구축해 학습 중단 시간을 절반 이상 줄였다. 김 대표는 "우리는 제한된 기간과 자원 속에서도 약 20조 토큰에 달하는 대규모 데이터를 안정적으로 학습할 수 있었다"고 설명했다. 김 대표는 솔라 100B 특장점으로 우수한 한국어 이해와 추론 능력을 꼽았다. 그는 "해당 모델은 단순 암기가 아닌 단계적 추론과 맥락 이해에 초점을 맞춰 설계됐다"며 "한국어 뉘앙스와 복합 질문에서도 자연스러운 응답을 제공할 수 있다"고 말했다. 업스테이지는 솔라 100B가 산업 현장에서 실질적 생산성 향상을 이끄는 기반 모델로 자리 잡을 것으로 기대하고 있다. 김 대표는 "검색·요약·팩트체크·슬라이드 생성·심층 리포트 작성 등 복합 업무를 에이전트 방식으로 처리할 수 있다"며 "오픈 모델로 공개돼 기업과 연구기관이 커스터마이징할 수 있다"고 강조했다. SK텔레콤, '에이닷 엑스 K1' 공개…"국내 첫 5천억 파라미터" SK텔레콤은 AI 모델 '에이닷 엑스 K1(A.X K1)'을 공개했다. 에이닷 엑스 K1은 5천억 개의 파라미터를 보유한 국내 첫 LLM이다. 한국형 소버린 AI 경쟁력 확보를 목표로 개발됐다. SK텔레콤 정석근 AI CIC장은 "해당 모델은 한국어와 국내 산업 환경을 집중적으로 학습해 높은 언어 이해도와 복합 추론 능력을 갖췄다"고 설명했다. 해당 모델은 웹 탐색과 정보 분석, 요약, 이메일 발송 등 여러 단계를 거치는 복합 업무를 자율적으로 수행할 수 있다. 여행 일정 수립, 요금 조회, 예약 처리 같은 일상 업무뿐 아니라, 제조 현장 데이터와 작업 패턴을 학습해 업무 효율을 높이는 데도 활용되고 있다. 에이닷 엑스 K1은 이미 1천만 명 이상이 사용하는 '에이닷' 서비스에 적용됐다. 향후 앱을 비롯한 전화, 문자 등 여러 채널을 통해 제공될 예정이다. 정 CIC장은 "우리는 국민 누구나 일상에서 초거대 AI를 직접 활용할 수 있는 환경을 구축할 계획"이라고 강조했다. 이날 최태원 SK그룹 회장도 에이닷 엑스 K1 경쟁력을 영상을 통해 강조했다. 최 회장은 "우리는 AI를 반도체와 에너지, 배터리 등 핵심 산업에 빠르게 확산해 산업 경쟁력을 강화할 것"이라며 "대한민국 독자 AI 생태계를 주도할 것"이라고 밝혔다. LG AI연구원, 'K-엑사원' 5개월만 출시…"AI 3강 국가 발판" 이날 LG AI연구원도 'K-엑사원' 모델 성능을 처음 소개했다. 이번 모델은 매개변수 2천360억 개 규모의 프런티어급으로 설계됐다. K-엑사원은 전문가 혼합 모델 구조를 통해 성능과 효율성을 동시 확보한 것이 특징이다. 하이브리드 어텐션 기술을 적용해 기존 모델 대비 메모리 요구량과 연산량을 70% 줄였다. 성능 평가 결과 K-엑사원은 벤치마크 13종 평균에서 72.03점을 기록했다. 이는 알리바바클라우드의 '큐웬3 235B' 대비 104% 높은 성능이다. 또 오픈AI의 최신 오픈 웨이트 모델인 'GPT-OSS 120B'와 비교해도 103% 높은 수치다. 이 모델은 고가의 인프라 대신 A100급 그래픽처리장치(GPU) 환경에서도 구동이 가능하다. 이에 자금력 부족한 스타트업이나 중소기업도 프런티어급 AI 모델을 도입할 수 있는 길을 열었다는 설명이다. LG AI연구원 최정규 AI에이전트 그룹장 "우리는 향후 조 단위 파라미터 규모를 가진 글로벌 빅테크 모델과 경쟁할 것"이라며 "대한민국을 AI 3강 국가로 이끄는 게임 체인저 될 것"이라고 강조했다. 정부 관계자 '한자리'…"정예팀 모두 승자" 이날 정부 관계자도 한자리에 모여 독자 AI 파운데이션 모델 프로젝트에 참여한 정예팀을 격려했다. 배경훈 부총리 겸 과기정통부 장관은 축사를 통해 "AI 모델 개발에 매진해 온 정예팀 모두가 승자"라며 "이번 도전이 대한민국을 AI 강국으로 도약시키고, 경제·사회 전반의 AX 전환을 가속하는 결정적 동력이 될 것"이라고 밝혔다. 하정우 대통령실 AI미래기획수석은 "독자 AI 모델 개발을 통한 산업 생태계 조성을 적극 지원하겠다"며 "이번 프로젝트를 통해 국내 AI 기업들의 경쟁력이 글로벌 수준으로 빠르게 향상되고 있음을 확인했다"고 평가했다. 임문영 국가AI전략위원회 상근 부위원장은 "다섯 정예팀 모두가 대한민국 AI 생태계의 소중한 자산"이라며 "이번 1차 발표는 도전의 끝이 아니라 본격적인 출발점"이라고 강조했다.

2025.12.30 18:45김미정 기자

독자 AI 파운데이션 모델 1차 성과 공개…"글로벌 경쟁력 확인

정부가 글로벌 인공지능(AI) 패권 경쟁을 위해 진행 중인 '독자 AI 파운데이션 모델' 프로젝트의 첫 번째 결과물이 공개됐다. 과학기술정보통신부(이하 과기정통부)와 정보통신산업진흥원(NIPA)은 서울 코엑스 오디토리움에서 '독자 AI 파운데이션 모델 프로젝트 1차 발표회'를 개최했다고 30일 밝혔다. 행사에는 네이버클라우드, 업스테이지, SKT, NC AI, LG AI연구원 등 국내 AI 산업을 이끄는 5개 정예팀이 참석해 그동안의 개발 성과를 공유했다. 현장에는 산·학·연 관계자와 일반 시민 등 1천여 명이 몰렸다. 이번 프로젝트는 글로벌 빅테크에 종속되지 않는 독자적인 AI 기술력을 확보하고 'AI 강국'으로 도약하기 위한 범국가적 도전의 일환이다. 배경훈 과기정통부 부총리, 하정우 대통령실 AI미래기획수석, 임문영 국가AI전략위원회 상근 부위원장 등 정부 핵심 인사들이 총출동해 민간의 도전에 힘을 실었다. 배경훈 부총리는 축사를 통해 "AI 모델 개발에 매진해 온 정예팀 모두가 승자"라며 "이번 도전은 대한민국 경제·사회 전반의 AX(AI 대전환)를 완성하는 결정적 동력이 될 것"이라고 강조했다. 발표회에서는 5개 정예팀이 개발한 1차 AI 모델이 공개됐다. 각 팀은 최신 글로벌 모델과 견주어도 손색없는 성능 지표를 제시해 이목을 끌었다. 네이버클라우드, 업스테이지, SKT, NC AI, LG AI연구원은 단순한 모델 개발을 넘어 전 산업 분야에 AI를 접목하는 구체적인 확산 전략도 함께 발표하며, 실질적인 AI 생태계 조성에 대한 의지를 다졌다. 행사장 로비에 마련된 체험 부스 열기도 뜨거웠다. 관람객들은 정예팀들이 개발한 AI 모델을 직접 시연해보고 피드백을 주고받았으며, 함께 전시된 파트너사들의 연계 서비스를 통해 확장된 AI 생태계를 직접 체험했다. 과기정통부는 이번 발표회 내용을 바탕으로 내년 1월 중 1차 단계평가를 진행해 정예팀들의 성과를 점검하고 향후 지원 방향을 구체화할 계획이다. 하정우 AI수석은 "국내 AI 기업들의 경쟁력이 글로벌 수준으로 빠르게 향상되고 있음을 확인했다"며 아시아의 AI 수도로 도약하기 위한 전폭적인 지원을 약속했다.

2025.12.30 17:39남혁우 기자

"실무에 강해"…업스테이지, '다큐먼트 AI' 문서 인식 시연

업스테이지가 자체 인공지능(AI) 모델 '솔라'를 앞세워 문서 인식 경쟁력을 한층 강화했다. 업스테이지는 30일 서울 강남 코엑스에서 열린 과학기술정보통신부 주관 '독자 AI 파운데이션 모델 1차 발표회'서 부스를 꾸리고 '다큐먼트 AI' 데모를 시연했다. 다큐먼트 AI는 문서를 구조화된 정보 단위로 인식할 수 있는 AI 기술이다. PDF 스캔본부터 표, 도표, 계약서 등 여러 문서 형식과 의미를 동시에 해석할 수 있다. 이날 부스를 지키고 있던 업스테이지 관계자는 다큐먼트 AI 특장점으로 정교한 레이아웃 분석 기술을 꼽았다. 관계자는 "다큐먼트 AI는 문서 레이아웃과 항목 구조를 먼저 파악한 뒤 텍스트를 추출한다"며 "문서 제목부터 본문, 표, 각주 등 각 요소를 명확히 구분해 인식할 수 있어 전체 맥락을 유지할 수 있다"고 강조했다. 이어 "이 기술은 철저히 사용자가 입력한 문서 범위 내에서만 답변을 생성하도록 설계됐다"며 "근거 없는 정보가 섞일 가능성을 원천차단했다"고 덧붙였다. 이날 업스테이지는 다큐먼트 AI가 문서 처리하는 기능을 시연했다. AI가 수출입 신고서나 인보이스 등 여러 서류를 동시에 비교해 항목별 일치 여부를 자동으로 검증할 수 있었다. 이를 통해 오류 지점까지 정확히 찾아냈다. 여기에 이미지 이해 기능을 결합해 도면이나 그래프 속 문자까지 인식했으며, 그 수치가 갖는 의미까지 제시했다. 업스테이지는 다큐먼트 AI로 기업뿐 아니라 공공 시장까지 적용 범위를 확장하고 있다. 이 기술은 현재 조달청 디지털서비스몰에 등록돼 관세청 등에서 실무에 활용되고 있다. 특히 통계청 보고서와 데이터를 요약해 문서를 생성하는 등 데이터 무결성 보장이 필요한 고난도 작업에 투입되고 있다. 업스테이지는 PDF나 PPT뿐 아니라 HWP, DOC 등 국내 업무 환경에 필수적인 문서 규격 지원도 다큐먼트 AI에 추가했다. 보안이 최우선인 기관을 위해 폐쇄망에서도 구동 가능한 온프레미스 형태로 서비스를 제공하며 기술 도입 장벽을 낮췄다. 업스테이지는 "우리는 문서 구조 해석과 언어 모델 결합이라는 독자적인 기술 노선을 구축했다"며 "실무 효율을 중시하는 엔터프라이즈 AI 시장에서 한국형 AI의 강력한 경쟁 우위를 증명할 것"이라고 강조했다.

2025.12.30 14:38김미정 기자

'국가대표 AI' 1차전 D-1…'왕좌' 노린 네이버, 옴니모달 모델 공개로 격차 벌린다

정부 주도로 추진되고 있는 '독자 인공지능(AI) 파운데이션 모델' 개발 사업 첫 성과 발표를 앞두고 네이버클라우드가 새로운 무기를 공개했다. 국내 첫 네이티브 옴니모달 구조를 적용한 파운데이션 모델이란 점에서 이번 심사에서 유리한 고지에 오를 수 있을지 주목된다.네이버클라우드는 29일 '네이티브 옴니모델(HyperCLOVA X SEED 8B Omni)'과 기존 추론형 AI에 시각·음성·도구 활용 역량을 더한 '고성능 추론모델(HyperCLOVA X SEED 32B Think)'을 각각 오픈소스로 공개했다. 이는 과학기술정보통신부 '독자 AI 파운데이션 모델' 프로젝트의 주관 사업자로서 추진 중인 '옴니 파운데이션 모델' 개발 과제의 첫 성과다. 이번에 공개된 '네이티브 옴니모델'은 텍스트·이미지·오디오 등 서로 다른 형태의 데이터를 단일 모델에서 처음부터 함께 학습하는 네이티브 옴니모달 구조를 전면 적용한 모델이다. 옴니모달 AI는 정보의 형태가 달라지더라도 하나의 의미 공간에서 맥락을 통합적으로 이해할 수 있어 말과 글, 시각·음성 정보가 복합적으로 오가는 현실 환경에서 활용도가 높은 차세대 AI 기술로 주목받고 있다. 이러한 특성으로 인해 글로벌 빅테크 기업들 역시 옴니모달을 차세대 파운데이션 모델의 핵심 기술 축으로 삼고 있다. 네이버클라우드는 옴니모달 AI의 잠재력을 극대화하기 위해 기존 인터넷 문서나 이미지 중심의 학습을 넘어 현실 세계의 다양한 맥락을 담은 데이터 확보에 집중한다는 전략이다. 네이버클라우드 하이퍼스케일 AI 성낙호 기술 총괄은 "모델을 대규모로 키워도 데이터 다양성이 한정돼 있다면 AI의 문제 해결 능력도 특정 영역 또는 특정 과목에만 집중되어 나타날 수밖에 없다"며 "이에 디지털화되지 않은 생활 맥락 데이터나 지역의 지리적 특성이 반영된 공간 데이터 등 차별화된 현실 세계 데이터를 확보하고 정제하는 과정이 선행돼야 한다"고 설명했다. 네이버클라우드는 이번 모델 공개를 통해 네이티브 옴니모달 AI 개발 방법론을 검증한 만큼, 향후 차별화된 데이터를 본격적으로 학습시키며 단계적인 스케일업에 나설 계획이다. 텍스트·이미지·음성 모델을 결합하는 방식의 기존 멀티모달 접근과 달리 단일 모델 구조의 옴니모달 AI는 규모 확장이 상대적으로 용이하다는 점도 특징이다. 회사 측은 이를 기반으로 산업과 일상 밀착 서비스에 필요한 다양한 크기의 특화 옴니모달 모델을 효율적으로 확장한다는 전략이다. 또 해당 모델은 텍스트 지시를 기반으로 이미지를 생성·편집하는 옴니모달 생성 기능도 갖췄다. 텍스트와 이미지의 맥락을 함께 이해해 의미를 반영한 결과물을 만들어내는 방식으로 단일 모델에서 텍스트 이해와 이미지 생성·편집을 자연스럽게 수행한다. 이는 글로벌 프런티어 AI 모델들이 제공해온 기능으로, 네이버클라우드는 이번 모델을 통해 해당 수준의 멀티모달 생성 역량을 확보했음을 보여줬다. 이와 함께 네이버클라우드는 향후 옴니모달 AI 에이전트 활용 가능성을 검증하기 위해 '고성능 추론모델'도 공개했다. 이 모델은 자체 추론형 AI에 시각 이해, 음성 대화, 도구 활용 능력을 결합해 복합적인 입력과 요청을 이해하고 문제를 해결하는 옴니모달 에이전트 경험을 구현했다. 또 이 모델은 글로벌 AI 평가 기관인 아티피셜 애널리시스(Artificial Analysis)가 종합 지식·고난도 추론·코딩·에이전트형 과제 등 10개 주요 벤치마크를 종합해 산출한 지수 기준에서도 글로벌 주요 AI 모델들과 유사한 성능 범위에 위치한 것으로 나타났다. 영역별 평가에서는 특히 실사용과 밀접한 항목에서 경쟁력을 보였다. 한국어 기반 종합 지식, 시각 이해, 실제로 도구를 활용해 문제를 해결하는 에이전트 수행 능력 등 주요 능력 항목에서 글로벌 모델들과 비교해 우수한 성능을 기록하며 복합적인 문제 해결 역량을 입증했다. 또 해당 모델로 올해 대학수학능력시험 문제를 풀이한 결과 국어·수학·영어·한국사 등 주요 과목에서 모두 1등급에 해당하는 성과를 거뒀다. 영어와 한국사에서는 만점을 기록했다. 네이버클라우드 측은 "다수의 AI 모델이 문제를 텍스트로 변환해 입력해야 하는 방식과 달리, 이 모델은 이미지 입력을 직접 이해해 문제를 해결했다는 점에서 차별화된다"고 말했다. 네이버클라우드는 이번 옴니모달 하이퍼클로바X를 기반으로 검색·커머스·콘텐츠·공공·산업 현장 등 다양한 영역에서 활용 가능한 AI 에이전트를 단계적으로 확장하며 '모두의 AI' 실현을 위한 기술 생태계 구축에 속도를 낼 계획이다. 성 총괄은 "텍스트·시각·음성 등 AI의 감각을 수평적으로 확장하는 동시에 사고와 추론 능력을 함께 강화했을 때 현실 문제 해결력이 크게 높아진다는 점을 확인했다"며 "이러한 기본기를 갖춘 구조 위에서 점진적으로 규모를 확장해야 단순히 크기만 큰 모델이 아닌, 실제로 쓰임새 있는 AI로 발전할 수 있다고 보고 이를 토대로 스케일업을 이어갈 계획"이라고 말했다.

2025.12.29 09:51장유미 기자

팀네이버, 독자 파운데이션 모델로 버티컬 AI 스타트업 키운다

네이버클라우드가 독자 파운데이션 모델 기반의 산업 인고지능(AI) 고도화와 글로벌 시장 진출 지원에 나선다. 네이버클라우드와 네이버 아라비아는 코리아스타트업포럼(코스포)과 독자 AI 파운데이션 모델 기반의 버티컬 AI 스타트업 육성을 지원하고 중동 지역을 중심으로 한 글로벌 협력을 확대하기 위한 업무협약(MOU)을 체결했다고 12일 밝혔다. 이번 협약은 국내 AI 생태계의 선순환 구조를 구축하고 유망 스타트업의 글로벌 경쟁력 확보를 목표로 한다. 특히 네이버클라우드가 국가대표 AI 프로젝트로 진행 중인 독자 AI 파운데이션 모델을 스타트업이 활용해 산업별 AI 서비스를 고도화하고 국내 소버린 AI 생태계를 적극 확대하는 데 3사가 협력할 방침이다. 네이버클라우드와 코스포는 각 사의 기술 역량과 기업 발굴 역량을 연계해 AI 기술을 적용할 수 있는 유망 스타트업을 공동 발굴한다. 이를 통해 산업 현장에서 활용 가능한 버티컬 AI 사례를 만들어 업계 전반의 혁신을 촉진한다는 계획이다. 선발된 스타트업에는 공모전과 멘토링 등 다양한 방식의 지원 프로그램을 운영하고 네이버클라우드의 거대언어모델(LLM) '하이퍼클로바X'와 클라우드 인프라 등 최신 AI 기술과 플랫폼 활용 환경을 제공해 기술 성장을 지원한다. 또 스타트업의 글로벌 진출 기회도 제공한다. 네이버 아라비아와의 협력을 통해 중동 현지 시장 정보뿐 아니라 현지 파트너사와의 네트워크 형성 및 협력 기회를 제공해 실질적인 시장 진출 기반을 마련할 계획이다. 최근 중동 시장은 산업별 디지털 전환과 AI 수요가 빠르게 증가하고 있는 지역으로, 이번 협약을 통해 국내 스타트업이 서비스를 글로벌 무대로 확장하는 교두보를 마련한다는 목표다. 한편 네이버클라우드는 독자 AI 파운데이션 모델 프로젝트의 일환으로 텍스트·이미지·오디오·비디오 등 이종 데이터를 통합적으로 이해하고 생성하는 '옴니 파운데이션 모델'을 개발해 선보일 계획이다. 김유원 네이버클라우드 대표는 "이번 협력은 국내 기술로 개발된 독자 파운데이션 모델이 스타트업을 통해 산업 전반에 확산되고 소버린 AI 생태계를 한 단계 확장하는 데 중요한 역할을 할 것"이라며 "유망 스타트업이 중동을 비롯한 글로벌 시장에서 성장할 수 있도록 아낌없이 지원할 것"이라고 말했다.

2025.12.12 15:49한정호 기자

"25년간 가상화 1위, 프라이빗 클라우드 선두 지킬 것"

VM웨어가 25년간 가상화 시장 1위를 지켜온 기술력을 바탕으로 인공지능(AI) 시대에 최적화된 통합 프라이빗 클라우드 전략을 제시했다. 하드웨어 종속을 벗어난 개방형 플랫폼으로 데이터센터와 클라우드를 하나로 연결하고, 보안·자동화·컴플라이언스를 모두 아우르는 차세대 인프라 혁신을 예고했다. VM웨어 바이 브로드컴(이하 VM웨어)이 4일 서울에서 'VCF 9.0 미디어 브리핑'을 열고 차세대 통합 프라이빗 클라우드 플랫폼 전략을 밝혔다. 행사에는 폴 사이모스 브로드컴 아시아 총괄 부사장, 크리스 울프 브로드컴 VCF 부문 글로벌 총괄, 김정환 브로드컴 코리아 부사장이 참석해 글로벌 및 국내 시장에서의 VM웨어 전략을 설명했다. 폴 사이모스 부사장은 "한국은 반도체, 제조, 금융 등 데이터 중심 산업이 발달해 AI 인프라 수요가 빠르게 성장하는 시장"이라며 "이번 행사는 VM웨어가 한국 시장을 아시아 전략의 핵심으로 보고 있다는 메시지를 담고 있다"고 강조했다. 이어 "전 세계 기업들이 AI 도입과 복잡한 하이브리드 환경을 동시에 관리해야 하는 상황에서 VCF 9.0은 이러한 문제를 해결하기 위해 설계된 플랫폼"이라며 "기업이 개발 속도를 유지하면서도 보안과 비용, 통제력을 확보할 수 있는 기반이 될 것"이라고 설명했다. 최근 프라이빗 클라우드 시장은 오라클, 델, IBM 등 전통적인 인프라 기업들이 본격적으로 진입하며 경쟁이 치열해지고 있다. 오라클은 하드웨어 인프라와 데이터베이스(DB)를 결합한 통합형 클라우드 전략을 선보였으며 델은 서버·스토리지를 기반으로 한 멀티클라우드 관리 솔루션을 내세우며 점유율을 확대하고 있다. 이에 대해 폴 사이모스 부사장은 "다른 기업들이 하드웨어나 특정 워크로드 중심으로 접근하는 반면 VM웨어는 25년 이상 가상화 시장에서 표준을 만들어 온 기업으로 모든 형태의 인프라를 하나의 일관된 체계로 연결할 수 있다"며 "단일 데이터센터부터 여러 클라우드, 엣지 환경까지 동일한 방식으로 관리할 수 있는 기술적 깊이가 VM웨어의 핵심 경쟁력"이라고 말했다. 이어 "단순히 가상머신(VM)이나 컨테이너를 관리하는 수준을 넘어 인프라·서비스·AI 워크로드를 완전히 통합 운영하는 유일한 플랫폼"이라고 강조했다. 크리스 울프 글로벌 총괄은 "VM웨어는 기업용 하이퍼바이저 기술의 사실상 표준"이라며 "VM웨어 클라우드 파운데이션(VCF)는 그동안 축적된 가상화 기술을 집대성한 결과물로 가상머신과 컨테이너, AI 워크로드를 모두 지원하는 완전 통합형 프라이빗 클라우드 플랫폼"이라고 설명했다. 이어 "VCF는 스토리지, 서버 등 인프라 계층과 모니터링, 자동화, AI 등 서비스 계층을 단일 플랫폼으로 통합한 구조를 갖는다"며 "개별 모듈을 연결하는 다른 플랫폼과 달리 하나의 코드베이스로 구동돼, 보안 업데이트·리소스 최적화·장애 복구 등이 완전 자동화된다"고 말했다. 또한 AI 인프라의 핵심은 특정 하드웨어에 종속되지 않는 개방성으로 VCF 9.0은 엔비디아, AMD, 인텔 등 주요 GPU·CPU 아키텍처를 모두 지원하며 우분투·레드햇·수세 등 주요 리눅스 기반 환경에서도 완전한 호환성을 보장한다도 덧붙였다. 울프 총괄은 "VCF는 온프레미스는 물론 아마존웹서비스(AWS), 마이크로소프트 애저, 구글 클라우드, 오라클 클라우드 등 주요 하이퍼스케일러 환경에서도 동일하게 작동한다"며 "기업은 클라우드 간 워크로드 이동을 몇 분 만에 자동화할 수 있어 유연성을 확보함과 동시에 운영 복잡성을 최소화할 수 있다"고 설명했다. 또한 보안과 거버넌스를 강화하기 위해 제로트러스트(Zero Trust) 구조를 적용하고, 글로벌 보안 인증 기준(ISO, SOC, GDPR 등)을 자동 점검·적용하는 '컴플라이언스 코드화' 기능을 도입했다. 김정환 부사장은 "한국은 AI·반도체·제조·금융 등 데이터 중심 산업이 발전해 있고, 클라우드 전환 속도도 빠르다"며 "VM웨어는 국내 주요 기업과 협력해 주권형 AI 인프라 구축 모델을 확산할 것"이라고 말했다. 폴 사이모스 부사장 역시 "한국은 기술 수용도가 높고 글로벌 트렌드에 대한 이해가 빠르다"며 "브로드컴과 VM웨어의 통합 기술이 한국 기업이 AI 시대의 경쟁력을 확보하는 데 중요한 역할을 할 것"이라고 덧붙였다.

2025.11.04 14:02남혁우 기자

  Prev 1 2 Next  

지금 뜨는 기사

이시각 헤드라인

[타보고서] 신형 셀토스, 연비효율에 공간까지…첫차 후보 1순위

차기 美연준의장 지명…비트코인 9개월 만에 7만달러대로

HBM 공급 프로세스 달라졌다…삼성·SK 모두 리스크 양산

[ZD브리핑] 이차전지·통신·플랫폼·게임 '연간 성적표' 나온다

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.