어도비, 크리에이티브 전문가의 생성형 AI 활용 현황 발표
어도비는 전세계 크리에이티브 전문가의 생성형 AI 견해를 담은 조사 보고서를 30일 발표했다. 이 조사는 한국을 비롯 미국, 영국, 독일, 프랑스, 일본, 호주, 뉴질랜드 등 전 세계 크리에이티브 전문가 2천541명을 대상으로 실시됐다. 조사에 따르면 전 세계 크리에이티브 전문가는 생성형 AI를 통해 콘텐츠 속도와 품질을 높이고, 이를 통해 본인이 좋아하거나 중시하는 업무에 창의력을 쏟고 있는 것으로 나타났다. 생성형 AI는 이미 혁신적인 기술로서 인정받고 있지만, 이를 업무와 일상에 효과적으로 적용하는 방법에 대해서는 아직 많은 연구를 필요로 한다. 실제로 전 세계 크리에이티브 전문가는 자신의 창작물과 업무에 생성형 AI가 미치는 영향에 대해 높은 관심을 갖고 있다. 생성형 AI 툴의 등장과 동시에 생성형 애플리케이션이 크리에이티브를 대체하며 일반적인 기계 생성 콘텐츠가 시장을 뒤덮을지, 또는 전문가의 경쟁력을 높이는 새로운 툴로 자리잡을지 의견이 분분했다. 어도비의 새로운 조사 결과, 크리에이티브 전문가 5명 중 4명 이상(83%)이 업무에 생성형 AI 툴을 사용하고 74%는 일상에도 적용한다고 답해, 아직 초기 단계에 불과한 생성형 AI가 벌써부터 크리에이티브 분야의 업무 방식에 영향을 미치는 것을 확인할 수 있었다. 응답자 중 20%는 업무에 생성형 AI를 사용해달라는 고객 혹은 회사의 요구가 있었다고 답해 눈길을 끌었다. 또한 생성형 AI 툴을 사용하는 크리에이티브 전문가의 3분의 2는 생성형 AI 툴을 통해 더 나은 콘텐츠를 제작하고(66%) 더 많은 콘텐츠를 제작할 수 있게 됐다(58%)고 답했으며, 생성형 AI가 창의성을 표현하는 새로운 방식을 제공하게 될 것이라는 예상도 69%에 달했다. 이처럼 생성형 AI는 크리에이티브 전문가가 더 많은 프로젝트를 수행하고, 뛰어난 결과물을 만들며, 창의력의 지평을 넓힐 수 있도록 지원하는 것으로 나타났다. 생성형 AI가 가장 많이 활용된 크리에이티브 분야는 이미지 제작으로, 생성형 AI를 업무와 일상 전반에 활용하고 있는 전 세계 크리에이터 전문가들은 생성형 AI의 주요 이점으로 업무 효율성 제고, 작업물의 질적 향상, 전문가로서의 영역 확장 등을 꼽았다. 먼저 업무 효율성 측면에서는 더 많은 콘텐츠 제작(42%)과 자동화를 통한 시간 절약(44%)에 대한 답변이 우세했다. 생성형 AI를 사용하는 크리에이티브 전문가의 약 3분의 2가량(62%)은 이미 생성형 AI를 통해 업무 소요 시간의 20% 정도를 단축하고 있다고 했다. 이는 한국의 크리에이티브 전문가도 마찬가지로, 생성형 AI를 통해 프로젝트 투입 시간을 줄이며 효율성 향상을 체감하는 한국인 크리에이터는 81%에 달했다. 이러한 이점으로 인해 전 세계 크리에이터들은 생성형 AI가 콘텐츠 제작 속도를 높이고(74%), 디지털 콘텐츠 수요 증가에 대응하는 데 도움이 될 것(69%)이라고 여기고 있다. 크리에이티브 전문가들은 고품질의 작품을 제작하고(45%), 아이디어를 실현하며(42%), 창의적인 영감(43%)을 얻는 등 업무의 질적 향상을 위해서도 생성형 AI를 접목 중이라고 답했다. 이 밖에 새로운 표현 수단을 탐색(37%)하고, 작업물의 차별화를 꾀하며(32%), 새로운 트렌드에 발맞추는(32%) 등 전문가로서 영역을 확장하기 위해서 생성형 AI를 사용한다는 답변도 있었다. 생성형 AI 선택 시 가장 중요한 요소를 묻는 질문에 전 세계 크리에이터의 42%가 결과물의 질과 사용 편의성을 공통적으로 꼽고, 35%는 사용 편의성을 가장 중요한 요소로 꼽았다. 상대적으로 한국의 크리에이티브 전문가들은 품질과 더불어 상업적 사용의 안전성(36%)을 중시한다고 답해 차이를 보였다. 생성형 AI에 대한 신뢰도를 묻는 질문에는 응답자의 과반수 이상(66%)이 일정 수준이라고 답했으며, 주된 이유로는 수익성 및 생산성 측면에서 커리어에 긍정적인 영향을 미칠 것이라는 기대, 초기부터 지속된 생성형 AI 툴에 대한 긍정적인 경험, 생성형 AI 기업의 강력한 개인정보 보호 및 보안 정책 등을 언급했다. 반면, 크리에이티브 전문가들이 생성형 AI를 탐색하거나 사용해 보지 않은 가장 큰 이유는 정확한 사용법을 모르기 때문(31%)인 것으로 나타났다. 이 밖에도 작업하는 프로젝트 및 매체 유형에 적합하지 않거나(29%), 윤리 및 도덕적 문제에 대한 우려(25%), 시간 부족(19%), 원하는 결과 창출 방법을 알지 못해서(16%) 등이 주요 원인으로 지목됐다.