• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
CES2026
스테이블코인
배터리
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'초거대 AI 모델'통합검색 결과 입니다. (2건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

LG AI연구원, '마곡 집결'로 재정비…AI R&D 시너지 '승부수'

LG AI연구원이 인공지능(AI) 기술 경쟁력 강화를 위한 조직 재편에 나섰다. 핵심 연구진을 한데 모아 연구개발 역량을 끌어올리려는 전략이다. LG AI연구원은 최근 본사를 서울 여의도에서 마곡 디앤오 사옥으로 이전했다고 9일 밝혔다. 본사는 3층부터 7층까지 5개 층 규모로 조성됐으며 기존 여의도와 마곡에 분산돼 근무하던 연구원 300여 명이 한 곳으로 통합됐다. 이번 이전을 통해 연구원은 공간 설계에 집중해 약 50개의 다양한 회의실을 마련했다. 자유로운 협업을 유도하고 창의적인 아이디어 발현을 유도하려는 목적이다. LG AI연구원은 지난 2020년 12월 출범 이후 그룹 차원의 전폭적인 지원을 바탕으로 LG의 AI 전환 전략을 이끄는 핵심 조직으로 성장했다. 특히 자체 초거대 AI 모델 '엑사원' 시리즈를 통해 기술 고도화를 이어왔다. 지난해 12월 공개된 '엑사원 3.5'에 이어 지난 3월에는 국내 최초 추론형 AI '엑사원 딥'도 선보였다. 계열사 제품과 서비스에 실제 적용되며 그룹 전반의 AI 내재화에 기여하고 있다. 대표 사례로는 LG전자의 AI 노트북 '그램'과 LG유플러스의 통화 에이전트 '익시오'에 엑사원 기술이 탑재됐다. 기업용 AI 에이전트 '챗엑사원'은 현재 LG 사무직 임직원의 절반 수준인 4만 명 이상이 활용 중이다. AI 인재 양성을 위한 교육도 병행되고 있다. AI 리터러시 교육부터 석·박사 과정 운영까지 전주기 체계를 구축했으며 지난 4년간 1만5천 명 이상의 임직원이 참여했다. 기술력 확보 성과도 가시적이다. LG AI연구원은 국제인공지능학회(AAAI), 국제컴퓨터언어학회(ACL), 국제 컴퓨터 비전 및 패턴 인식 학술대회(CVPR) 등 글로벌 최상위 학회에 234건의 논문을 발표했으며 국내외 특허 출원도 총 228건에 달한다. 연구원은 온디바이스 AI 성능 고도화에도 집중하고 있다. 외부 서버 연결 없이 기기 내 데이터 처리를 가능케 해 보안성과 개인정보 보호 측면에서 경쟁력을 강화하려는 전략이다. 향후 계획으로는 '에이전틱 AI' 구현을 목표로 하고 있다. 계열사 업무 효율화, 생산성 제고, 나아가 신소재와 신약 개발 영역까지 AI 적용을 확장한다는 구상이다. LG AI연구원 관계자는 "엑사원을 중심으로 산업 현장과 제품, 서비스까지 AI를 연결하는 전략을 차근차근 실현해나가고 있다"며 "기술력과 협업 역량 모두에서 세계적 수준을 목표로 하고 있다"고 밝혔다.

2025.05.09 10:38조이환

삼성·KAIST, 초거대 AI모델 학습 최적화 시뮬레이션 개발…"GPU 사용률 10% 개선"

국내 대학과 기업이 챗GPT나 딥시크 등 초거대형 AI 모델 학습 비용을 5%정도 줄일 시뮬레이션 프레임워크를 개발하고, 이를 '깃허브'에 공개했다. KAIST(총장 이광형)는 전기및전자공학부 유민수 교수 연구팀이 삼성전자 삼성종합기술원과 공동으로 대규모 분산 시스템에서 대형 언어 모델(LLM)의 학습 시간을 예측하고 최적화할 수 있는 시뮬레이션 프레임워크(이하 vTrain)를 개발했다고 13일 밝혔다. 최근 챗GPT나 딥시크등과 같은 초거대 언어 모델(LLM)이 주목받으면서 대규모 GPU 클러스터 운영과 최적화가 현안으로 떠올랐다. 그러나 이 같은 LLM은 수천에서 수만 개의 GPU를 활용한 학습이 필요하다. 특히, 학습 과정을 어떻게 병렬화하고 분산시키느냐에 따라 학습 시간과 비용이 크게 달라진다. KAIST와 삼성이 개발한 시뮬레이션이 이 같은 학습효율과 비용 문제를 개선했다. 연구팀은 병렬화 기법에 따른 통신 패턴을 효과적으로 표현하는 실행 그래프 생성 방법과 프로파일링 오버헤드를 최소화하는 연산 선별 기법을 개발했다. 이를 연구팀이 다중 GPU 환경에서 다양한 대형 언어 모델 학습 시간 실측값과 '브이트레인' 예측값을 비교한 결과, 단일 노드에서 평균 절대 오차(MAPE) 8.37%, 다중 노드에서 14.73%의 정확도로 학습 시간을 예측했다. 유민수 교수는 "기존 경험적 방식 대비 GPU 사용률을 10% 이상 향상시키면서도 학습 비용은 5% 이상 절감하는 것을 확인했다"고 말했다. 연구팀은 또 클라우드 환경에서 다중 테넌트 GPU 클러스터 운영 최적화와 주어진 컴퓨팅 자원 내에서 최적의 LLM 크기와 학습 토큰 수를 결정하는 문제와 같은 사례에서도 이 시물레이션 활용이 가능하다고 부연설명했다. 연구팀은 이 프레임워크와 1천500개 이상의 실제 학습 시간 측정 데이터를 오픈소스로 '깃허브'에 공개, AI 연구자와 기업이 이를 자유롭게 활용할 수 있도록 했다. 유민수 교수는 “프로파일링 기반 시뮬레이션 기법으로 기존 경험적 방식 대비 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 학습 전략"이라고 덧붙였다. 연구 결과는 방제현 박사과정이 제 1저자로 참여했다. 과학기술정보통신부와 삼성전자가 지원했다.

2025.03.13 08:49박희범

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

LG전자, 역대 최대 매출에도 일회성 비용에 실적 '뒷걸음'

페이커 소속 '팀 리드', 2026 LCK 시즌 오프닝 2년 연속 우승

거리로 나온 '무진장 신발 많은 곳'…무신사 킥스 가보니

엔비디아 '베라 루빈' 시대 임박…고전력에 서버·클라우드 판 바뀐다

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.