• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
CES2026
스테이블코인
배터리
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'차세대 반도체'통합검색 결과 입니다. (7건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

삼성-KAIST, 센서·연산·저장 통합한 AI반도체 첫 공개…"전력난 해소 큰 도움"

인공지능(AI)이 불러온 전력난을 반도체 제조 기술로 해결할 방법이 제시됐다. KAIST는 전기및전자공학부 전상훈 교수 연구팀이 '센서–연산–저장'을 통합한 새로운 AI 반도체 제조 방식을 공개했다고 31일 밝혔다. 이 연구는 삼성전자, 경북대, 한양대와 협업으로 수행됐다. 이 기술은 지난 8일부터 10일까지 미국 샌프란시스코에서 열린 '국제전자소자학회(IEEE IEDM 2025)'에서 전상훈 교수팀이 이와 관련한 6개의 기술을 공개, 하이라이트 논문과 최우수 학생 논문으로 각각 선정됐다고 31일 밝혔다. 이들 6개 기술의 핵심은 센서–연산–메모리를 통합해 AI 반도체 풀스택을 구현했다는 점이다. AI 반도체 입력(Perception)-전처리·연산(Computation)-저장(Storage) 전 계층을 단일 재료 및 공정 플랫폼으로 통합, AI 활용에서 대두되는 전력 문제를 최소화했다. 전상훈 교수는 "특히, 입력단 뉴로모픽 센서와 니어-픽셀 기반 아날로그 연산, 하프니아 기반 3D NAND·FeNAND 메모리를 모두 한 플랫폼에서 구현, 엣지 AI·모바일·자율주행·로보틱스·헬스케어 등 분야에서 전력 소모를 획기적으로 줄였다"고 말했다. 주요 연구결과는 ▲ M3D 인-센서 스파이킹 비전(하이라이트 논문) ▲고신뢰성 낸드플래시메모리(최우수 학생논문) ▲2T–2 근접-픽셀 아날로그 MAC(곱셈·누산) 기술 ▲촉각 뉴로모픽 소자 ▲3.5 nm NC-낸드 기술 ▲ΔP(분극변화량) /ΔQit(계면트랩 전하 변화량)/ΔQit'(분극 비의존 계면 트랩 저하 변화량) 완전 분리 측정법 확립 등이다. 하이라이트로 선정된 논문을 통해 빛을 감지하는 기능과 신경세포처럼 신호를 스파이크 형태로 변환하는 기능을 단일 칩에 집적한 연구결과를 공개했다. 빛을 감지하는 센서와 뇌처럼 신호를 처리하는 회로를 아주 얇은 층으로 만들어 위아래로 겹쳐 한 칩에 넣어 보고–판단하는 과정이 동시에 이뤄지는 구조를 구현했다. '세계 최초의 인-센서 스파이킹 컨볼루션' 플랫폼을 완성한 것. 사람의 눈과 뇌 기능을 모사해 하나의 칩 안에 쌓아 올린 반도체 연구 결과다. M3D는 센서와 회로층을 수직으로 한 칩에 적층하는 차세대 집적 기술이다. 기존에는 이미지를 찍고(센서), 숫자로 바꾼 뒤(ADC), 메모리에 저장하고(DRAM), 다시 연산하는(CNN) 여러 단계를 거쳐야 했지만, 이 기술은 센서 안에서 바로 연산이 이뤄져 불필요한 데이터 이동이 필요없다. 전상훈 교수는 "이로인해 전력 소모는 크게 줄이고, 반응 속도는 획기적으로 높인 실시간·초저전력 엣지 AI 구현이 가능해졌다"며 "특히, 기존 카메라–연산–메모리 분리형 구조를 대체할 수 있는 장점이 있다"고 말했다. 뉴로모픽 연구 논문 2편도 관심을 끌었다. 이 논문에서는 기존 이미지 센서에 필요한 복잡한 변환 회로(ADC/DAC)를 제거하고, 픽셀 인근에서 아날로그 방식으로 특징을 추출하는 초저전력 연산 기술을 제안했다. 이로 인해 이미지를 찍는 부품과 계산하는 부품을 따로 두지 않고 센서 단계에서 바로 판단이 가능하다. 사진을 찍어 다른 칩으로 보내 계산하던 기존 방식보다 전력 소모는 줄고 반응 속도는 빨라졌다. =============== 나머지 세 편의 연구에서는 차세대 3D 메모리에 필요한 고신뢰성 저장 구조, 열 안정성이 높은 산화물 채널, 전압을 줄여주는 특수 박막 설계 등의 방법을 제시했다. 이를 통해 같은 재료를 활용해 더 낮은 전압으로 동작하면서도 오래 쓰고, 전원이 꺼져도 데이터를 안정적으로 저장할 수 있는 차세대 낸드 플래시를 구현했다. 연구팀은 대규모 데이터 저장 과정의 안정성과 내구성을 크게 향상시켰다는 평가를 받았다. 연구를 이끈 전상훈 교수는 “센서·연산·저장을 각각 따로 설계하던 기존 AI 반도체 구조에서 벗어나, 전 계층을 하나의 재료와 공정 체계로 통합할 수 있음을 실증했다는 점에서 큰 의의가 있다”며, “앞으로 초저전력 엣지 AI부터 대규모 AI 메모리까지 아우르는 차세대 AI 반도체 플랫폼으로 확장해 나갈 것”이라고 밝혔다. 한편, 연구는 과학기술정보통신부, 한국연구재단 등 기초연구 사업과 극한스케일 극한물성 이종집적 한계극복 반도체기술 연구센터(CH³IPS) 지원을 받았다.

2025.12.31 14:20박희범

차세대지능형반도체사업단, 제주서 통합기술교류회 개최

과학기술정보통신부와 산업통상부는 27~28일 양일간 제주에서 '2025년도 차세대지능형반도체 기술개발사업 통합기술교류회'를 개최한다고 27일 밝혔다. 이번 교류회는 차세대지능형반도체사업단이 주관해 사업에 참여하는 주요 연구자들이 한자리에 모여 그간 연구성과와 최신기술 동향을 공유하고, 연구자 간 협력 네트워크를 강화하기 위해 마련됐다. 과기정통부는 2020년부터 2029년까지 10년간 차세대지능형반도체 기술개발사업을 통해 반도체 소자, 설계, 제조·공정 등 주요 기술개발에 1조96억원을투자할 계획이다. 이번 사업을 통해 올해 2차원 초저전압 스위칭 트랜지스터의 웨이퍼 레벨 구현 기술개발(서울대), 2천 TFLOPS급 서버 인공지능 딥러닝 프로세서 및 모듈 개발(리벨리온), CIS와 AI가 접목된 형광 라이브셀 이미징 플랫폼 기술개발(옵토레인), 1x㎚급 DDI 반도체 테스트 장비 개발(엑시콘) 등의 성과를 창출했다. 더불어 지난 5년간 동 사업을 통해 1천426건의 출원 특허, 1천440건의 SCIE 논문 개제, 설계 IP 1천343건, 1천628명의 신규고용 창출 등 유의미한 성과를 창출했다. 이번 기술교류회에서는 우리나라를 대표하는 리벨리온, 퓨리오사AI, 서울대, 한국전자통신연구원, 테스, 아이씨디, 자람테크놀로지 등의 92개 주관기관(공동연구기관 293개, 중복포함)이 참여해 연구현황 및 성과를 공유한다. 또한 각 전문기관(한국연구재단, 정보통신기획평가원, 한국과학기술기획평가원)과 산·학·연 분야 수행과제 및 전문가 간 간담회를 추진해 성공적인 연구개발 추진을 위한 연구자와 전문기관의 교류를 확대하며, 특히, 한국연구재단은 신규 R&D 사업에 대한 설명회를 함께 추진하여 반도체 분야 연구자를 대상으로 관련정보를 전달할 예정이다. 김형준 차세대지능형반도체사업단 단장은 “10년의 연구기간의 반환점을 통과한 차세대지능형반도체 기술개발사업은 긴 시간동안 정부의 반도체 R&D 생태계 활성화와 반도체 분야 기술 확보에 큰 기여를 해왔다"며 “지난 성과와 더불어 앞으로 더욱 고도화된 성과를 지속적으로 창출하고, 정부의 반도체 정책과의 긴밀한 연계를 통해 국가 반도체 R&D 역량 결집과 이를 통한 반도체 기술의 초격차 확보를 추진 할 수 있도록 노력할 것”이라고 말했다.

2025.10.27 10:46장경윤

POSTECH "쓸수록 성능 떨어지는 '강유전체 메모리' 문제 해결"

강유전체 메모리는 빠른 속도와 비휘발성을 동시에 갖춘 차세대 기술이다. 그러나 반복적인 작동은 메모리 '피로현상'을 일으키며 기능 저하를 초래한다. 이 때문에 강유전체 메모리가 미래 반도체 대안으로 불리지만, 상용화는 어려웠다. 국내 연구진이 이 같은 '피로현상'의 핵심 열쇠를 찾아, 해결 방안을 제시해 관심이다. POSTECH(포항공과대학교)은 반도체공학과 이장식 교수, 도현서 연구생(학부 3년) 연구팀이 오랜 사용으로 성능이 저하되는 '피로현상'을 겪는 반도체 부품을 다시 원래 상태로 되돌리는 혁신적인 기술을 개발했다고 11일 밝혔다. 이 연구결과는 'IEEE 전자 소자 학회 저널(IEEE Journal of the Electron Devices Society)' 최근호에 게재됐다. 연구팀은 반도체의 핵심 부품인 '강유전체 커패시터(전기를 저장하는 장치)'에서 일어나는 미세한 변화에 주목했다. 이 부품 안에는 원자 수준의 작은 '산소 빈자리'가 있는데, 이것이 반도체 피로현상의 핵심 요인이라는 것을 확인했다. 산소 빈자리는 양(+)전하를 띠고 있어 반도체를 오래 사용하면 이들이 중앙으로 몰리게 된다는 것. 마치 사람이 피곤할 때 특정 부위에 통증이 몰리듯 산소 빈자리가 한곳에 뭉치면 반도체 성능이 점차 떨어졌다. 이장식 교수는 "주목할 점은 이 '피로 상태'에 있는 반도체에 순간적으로 높은 전압을 걸어주면 반도체 내부 구조가 재정렬된다는 것"이라며 "산소 빈자리가 다시 중성 상태로 바뀌고 고르게 분산된다"고 설명했다. 이 과정을 통해 반도체는 마치 새것처럼 성능을 회복하게 되는데, 연구팀은 이러한 현상을 '회복(recovery)' 상태라고 명명했다. 이 교수는 "이 기술을 활용하면 반도체 소자를 더 오래 쓰면서도 안정적인 성능을 유지할 수 있게 된다"며 "특히 빠른 동작 속도와 신뢰성이 생명인 인공지능, 자율주행차, 사물인터넷 기기 등 첨단 기술 분야에서 더욱 중요한 역할을 할 것"으로 기대했다. 이 교수는 또 “이번 성과가 강유전체 소재를 이용한 차세대 반도체 개발에 중요한 이정표가 될 것”이라고 덧붙였다. POSTECH 반도체공학과 3+3 학사·석박사 연계 집중교육과정을 이수 중인 제1저자 도현서 연구생은 “반도체 분야에서 실질적인 변화를 이끄는 연구자로 성장하고 싶다”라는 포부를 밝혔다. 연구는 과학기술정보통신부(한국연구재단) 차세대지능형반도체 기술개발사업과 삼성전자 지원으로 수행됐다.

2025.07.11 11:29박희범

HBM 대부 김정호 교수, 다음 달 차세대 HBM 로드맵 공개

올해부터 오는 2040년까지 향후 15년간 고대역폭메모리반도체(HBM) 아키텍처와 구조, 성능, 세대별 특성이 어떻게 진화할 것인지를 조망하는 기술 발표회가 열린다. KAIST 전기및전자공학부 김정호 교수 연구실(KAIST테라랩)은 '차세대 HBM 로드맵(2025~2040) 기술 발표회'를 다음 달 11일 오전9시부터 개최한다고 28일 밝혔다. 김정호 교수는 “급변하는 기술 패권 경쟁 속에서 국내 반도체 산업이 나아갈 방향을 제시하고 AI 반도체의 핵심 축으로 떠오른 차세대 HBM 기술 개발을 위한 구체적인 로드맵을 공유하기 위해 마련했다”고 행사 배경에 대해 설명했다. 'HBM의 아버지'로 불리는 김 교수는 지난 20년 넘게 HBM 관련 설계 기술을 주도했다. 2010년부터는 실제 HBM 상용화 설계에도 참여하고 있다. KAIST 테라랩은 HBM 실리콘관통전극(TSV), 인터포저, 신호 무결성 설계(SI), 전력 무결성 설계(PI) 등에서 연구 독창성을 인정받아 왔다. 이달 말 현재 신태인·손기영 등 2명의 박사후연구원(포닥)을 비롯해 박사과정 10명, 석사과정 17명 등 모두 29명의 학생 연구원이 6세대 HBM인 HBM4부터 HBM8까지 향후 15년 동안 쓰일 것으로 예상되는 차세대 HBM 아키텍처와 구조, 성능 등을 연구 중이다. 테라랩은 HBM 설계를 인공지능으로 자동화하는 연구도 함께 진행 중이다. 테라랩은 강화학습과 생성 인공지능을 결합해 HBM의 전기적, 열적 최적화 연구를 세계적 수준으로 끌어 올렸다는 평가다. 이번 기술 발표회에서는 ▲세대별 HBM 구조와 성능, 특성 ▲데이터 대역폭 확장을 위한 TSV와 인터포저 ▲딥 에칭 기술 등과 전기적 신뢰성 확보를 위한 하이브리드 본딩 기술 ▲발열 문제 해결을 위한 냉각용 TSV 기술 등도 함께 소개된다. 김정호 교수는 “차세대 HBM 관련 기술적인 아이디어와 방향을 소개하기 위해 마련한 것”이라며 "발표 내용은 향후 삼성전자, SK하이닉스 등 국내 주요 반도체 업체와 관련 정보를 공유할 예정이고, 기회가 된다면 실리콘밸리 등 해외에서도 발표회를 가질 것"이라고 덧붙였다. 한편 KAIST 측은 행사 당일 발표회 시작과 함께 줌으로 생중계한다. 유튜브 방송은 이후 테라랩 홈페이지를 통해 공지할 예정이다.

2025.05.28 09:30박희범

전세계가 수십년간 연구만 하던 인화갈륨 반도체화합물 드디어 "발광"

차세대 반도체 화합물로 주목받는 인화갈륨(GaP)을 발광 소재로 사용할 수 있는 길이 열렸다. 인화갈륨은 고효율 발광 소재이지만, 효율이 떨어지는 단점으로 활용이 어려웠다. 전세계 과학기술자들이 효수십년간 연구만 하던 분야다. 한국연구재단은 KAIST 정연식 교수, KIST 김동훈 박사, 동국대 최민재 교수로 구성된 공동연구팀(제1저자 신홍주 박사, 홍두선 박사)이 황화아연(ZnS)을 핵으로 사용해 극도로 얇은 인화갈륨을 형성하는데 성공했다고 21일 밝혔다. 정연식 교수는 "인화갈륨은 전자가 간접 경로로 에너지 레벨을 바꾸는 밴드갭 구조로 인해 발광 소재로는 활용도가 낮았다"며 "수십년 간 아무도 못하던 연구결과"라고 설명했다. 정 교수는 "직접전이밴드갭을 구현하기 위해서는 1나노미터 미만의 밴드갭을 만들어야 하는데, 이를 만들지 못해 실험적 증명 조차도 어려웠다"고 부연 설명했다. 연구팀은 일반적인 초미세 반도체 입자(퀀텀닷)와는 다른 접근법인 퀀텀셀(얇은 껍질)로 인화갈륨 직접 전이 밴드갭 전환을 구현하는데 성공했다. 반도체 분야에서 사용되는 원자층증착법과 에피텍셜 성장의 원리를 콜로이달 합성에 접목하는 방법으로 화화아연 나노결정 위에 단일원자층 갭을 성장시켜 퀀텀셸을 만들어냈다. 에피텍셜은 기존 물질 표면에 원하는 물질을 성장시키는 방법이다. 정 교수는 "연구결과 45.4%의 높은 효율로 보라색 빛을 강하게 방출하는 특성을 확인했다"며 "별도의 보호층 없이도 200일 이상 발광 효율 감소 없이 우수한 성능이 유지되는 높은 안정성을 보였다"고 말했다. 정 교수는 또 "차세대 화합물 반도체 분야 및 광전자, 광학 분야에서 많은 응용이 가능할 것"으로 기대했다. 연구결과는 국제학술지 '네이처 커뮤니케이션즈(Nature Communications)'(9월16일)에 게재됐다.

2025.01.21 16:53박희범

KAIST 초세대협업연구실 3곳 추가 개소…7년만에 12개 보유

KAIST가 7일 '초세대 협업연구실' 3곳을 추가 개소했다. '초세대 협업연구실'은 지난 2018년 첫 오픈 이후 현재까지 총 12개가 됐다. '초세대협업연구실'은 KAIST가 원로 교수와 신진교수의 연구역량 연결 및 지원을 위해 만든 자체 시스템이다. 선발은 BFO(최고,최초,유일)추천위원회 추천과 공개 공모 절차를 거쳐야 한다. 선정된 연구실에는 매년 적게는 5천만 원에서 최대 1억 원까지 5년간 지원한다. 이번에 현판식을 가진 협업연구실은 ▲전기및전자공학부 유회준 교수의 '차세대 인공지능 반도체 시스템 연구실' ▲화학과 김상규 교수의 '분자분광학 및 화학동역학 연구실' ▲전산학부 문수복 교수의 '첨단 데이터 컴퓨팅 연구실'이다. 이들은 선발과정에서 2대1의 경쟁을 거쳤다. '차세대 인공지능 반도체 시스템 연구실'에는 김주영 교수가 참여, 초세대협업연구실을 운영한다. 연구목표는 심층 신경망 및 생성형AI 등 뇌 모방 인공지능 알고리즘을 포함한 차세대 인공지능반도체 설계기술을 체계적으로 협업 및 전수를 통해 핵심기술을 집대성하고, 연구개발 산출물의 활용 가능성을 타진할 예정이다. '분자분광학 및 화학동역학 연구실'은 김태규 교수가 참여해 운영한다. 추후엔 분광학 및 동역학 분야 신임 교수도 합류할 계획이다. 이들은 화학반응을 양자역학적 관점에서 들여다보고, 화학반응 원리를 기반으로 신물질 설계를 추진한다. '첨단 데이터 컴퓨팅 연구실'에는 차미영 교수와 문화기술대학원 이원재 교수가 참여하기로 했다. 연구목표는 온라인상에서 발생하는 부정적인 영향에 대한 분석과 이해를 높이고, 감정과 도덕을 활용한 혐오 전조 탐지 모델을 개발할 계획이다. 한편 이날 현판식은 KAIST 이광형 총장과 이상엽 연구부총장 등 주요 보직자들이 참석했다.

2025.01.07 15:54박희범

반도체 한계 돌파할 신물질 개발…업계 촉각

국내 연구진이 기존에 알려진 금속과는 완전히 반대인 비정질 준금속 나노 극초박막 물질이 세계 처음 개발됐다. 차세대 반도체 원천기술로 활용 가능해 관련 업계 이목이 쏠렸다. 아주대학교는 오일권 지능형반도체공학과·전자공학과 교수를 중심으로 하는 국제 공동 연구팀이 반도체 배선에 사용되는 극초박막에서 비저항이 작아지는 차세대 금속 물질을 개발했다고 3일 밝혔다. 이 연구에는 미국 스탠포드대학 전자공학과의 에릭 팝(Eric Pop) 교수와 아시르 인티자르 칸(Asir Intisar Khan) 박사가 참여했다. 아주대 연구팀은 물질 합성과 메커니즘 및 물성 연구, 스탠포드대 연구팀은 물질 합성과 전기적 특성 연구를 맡았다. 이 연구 결과는 국제 학술지 '사이언스' 1월호에 개재됐다. 이 준금속 물질은 박막 두께가 줄어듦에 따라 비저항이 증가하는 기존 금속들과는 달리 박막 두께가 줄어듦에 따라 비저항이 급격히 줄어드는 특성을 나타냈다. 반도체의 주요 공정 중 하나인 금속 배선(Metallization)은 반도체 칩 안에 있는 단위 트랜지스터 소재를 연결하는 공정이다. 마치 옹기종기 모여있는 마을과 마을, 집과 집 곳곳을 연결하는 도로와 같다. 수 ㎝ 수준의 반도체 칩 한 개에 100㎞에 달하는 금속 배선 물질이 사용된다. 이 금속을 통해 전자가 흘러 정보를 저장하거나 연산해 하나의 칩으로 구동된다. 모든 금속은 비저항 값을 가지며, 이는 물질 고유의 특성을 규정하는 것으로 알려져 있다. 그러나 수 나노미터 단위(1㎚는 10억 분의 1m)의 극초박막에서는 다른 현상이 나타난다. 반도체 소자의 크기가 줄어듦에 따라, 금속 배선의 선폭도 지속적으로 작아지는데, 이에 현재 개발된 수준의 반도체 소자는 전자가 충돌까지 걸리는 거리인 자유행정거리(EMFP) 보다도 선폭이 작아진 상황에 놓였다. 이 때문에 미세화된 배선에서는 전자가 부딪칠 확률이 높아지고, 결국 비저항 값이 비약적으로 상승하게 된다. 이에 반도체 소자의 미세화에 발맞춰 더 낮은 비저항을 갖는 금속 물질을 찾는 것이 산업계와 학계의 화두가 됐다. 반도체의 금속 배선 물질로 주로 사용되어온 구리(Cu)뿐 아니라 최근 구리를 대체하는 물질로 주목받는 몰디브데넘(Mo) 또는 루테늄(Ru) 등의 물질 역시 한계를 보이고 있다. 이 물질들 역시 특정 두께 이하에서는 비저항이 급격히 증가하는 특성을 가졌다. 당장은 구리를 대체할 수 있다고 해도, 결국에는 또 다른 신물질이 필요한 상황이다. 또한 특정 물질을 새로이 반도체 공정에 도입하기 위해서는 수 백억원에서 수 조원 단위의 투자금이 소요된다. 아주대 연구팀이 세계 최초로 개발한 위상 준금속 물질은 기존 금속들과는 정반대로 극초박막에서 비저항이 오히려 작아지는 특성을 보인다. 또한 현재 반도체 공정에 적용할 수 있을 정도로 호환성이 우수하다. 성장 온도가 400℃ 미만의 저온이며, 일반적 금속이 가지는 결정질의 단결정이나 다결정 형태의 박막이 아닌, 비정질 형태의 박막임에도 비저항 역행 현상이 나타난다. 대부분 금속의 경우 비정질이 아닌 결정질 형태가 전자를 수송하기에 용이하고 비저항도 훨씬 낮다고 알려져 있다. 이에 반도체 배선 공정에서도 다결정 형태의 금속 박막을 이용하고 있다. 비정질을 결정질 형태로 만들기 위해서는 금속 박막을 증착한 후, 고온에서의 열처리 후속 공정이 필요하다. 그러나 아주대 연구팀이 새로 개발한 물질은 비정질 물질로 별도의 고온 공정이 필요하지 않다. 즉 새로운 준금속 물질은 적은 비용으로 쉽게 구현할 수 있는 비정질 형태이며 저온 공정이 가능하다. 연구팀은 "반도체 배선 물질에 실제 활용하기 위해 가장 큰 문제가 되는 두 산을 넘었다는 의미를 가진다"고 설명했다. 아주대 연구팀은 이에 대한 후속 연구로 원자층 증착 공정 기반의 위상 준금속 공정을 개발하는 중이다. 원자층 증착법은 물리 기상 증착법에 비해 원자 단위로 박막의 두께를 조절할 수 있어 미세화에 더 적합하다. 이에 상용화에 더 가까운 기술로 평가받고 있다. 오일권 아주대 교수는 “과학자로서 '왜?'라는 호기심을 놓치지 않고 꾸준히 새로운 분야에 대한 연구를 이어왔다”며 “그동안 시도된 적 없는 연구를 통해, 완전히 새로운 물질에 대해 처음으로 실험적으로 입증해 냈다는 점에서 의미 있는 성과”라고 전했다. 오 교수는 이어 “이번 연구를 통해 확보한 신개념 금속 물질은 한계에 직면한 미래 반도체 기술의 돌파구가 될 수 있다”라며 “미래 반도체 산업의 주도권을 선점할 원천기술로 활용될 수 있을 뿐 아니라, 응용 가능성이 무한하다”라고 덧붙였다. 이번 연구는 한국연구재단 우수신진연구와 아주대학교 신임 교원 정착연구비 지원을 받아 수행됐다.

2025.01.03 04:00박희범

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

삼성전자가 돌아왔다...1년 만에 글로벌 D램 1위 탈환

"수익성은 부담, 상징성은 호감"…인천공항 면세점 입찰 딜레마

라스베이거스서 'K-뷰티테크' 알리다...에이피알 CES 전시 가보니

한국 전통 문화, '생성형 AI' 타고 세계로…K-스타트업의 도전

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.