• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
CES2026
스테이블코인
배터리
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'업'통합검색 결과 입니다. (425건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

[유미's 픽] 독자 AI 논란 속 '설계 주권' 시험대…LG 'K-엑사원'이 돋보인 이유

"이번 경쟁에서 고유 아키텍처를 고수하며 바닥부터 설계하는 곳은 LG AI연구원 정도입니다. 정부 과제의 짧은 데드라인과 제한된 자원 속에서 검증된 글로벌 오픈소스를 적극 활용할 수밖에 없는 환경 속에 특정 모듈 차용이 문제라면, 오픈소스 기반으로 개발한 국내 기업 다수도 그 비판에서 자유롭기 어려울 것입니다."최근 정부 주도의 독자 인공지능(AI) 파운데이션 모델 프로젝트를 둘러싼 잡음이 이어진 가운데 LG AI 연구원의 'K-엑사원'이 비교적 논란 없이 업계의 호평을 받으며 존재감을 드러내고 있다. 성능 평가에서도 미국, 중국이 점령한 글로벌 AI 상위 10위권에서 7위를 기록하며 유일하게 이름을 올려 'AI 3강'을 노린 한국을 대표할 AI 모델로 자리를 굳히는 분위기다.LG AI연구원은 'K-엑사원'이 정부의 독자 AI 파운데이션 모델 프로젝트 1차 평가 기준인 13개의 벤치마크 테스트 중 10개 부문 1위를 기록했다고 11일 밝혔다. 전체 평균 점수는 72점으로, 5개 정예팀 중 1위를 차지했다. 이 기준으로 평가를 했을 시 경쟁사들은 50점 중반대에서 60점 중반대 정도의 평균 점수를 기록하는 것으로 알려졌다. 일부 참가업체들이 최근 공개한 테크 리포트에서 13개 벤치마크 결과를 모두 기재하지 않은 것과 달리, LG AI연구원은 모든 결과를 공개해 비교 가능성을 높여 우위에 올라섰다는 평가도 나온다. 업계에선 독자 AI 모델의 가장 중요한 요소로 '프롬 스크래치'와 '독자성' 해석을 꼽고 있다. 최근 해외 모델 유사성 등 여러 논란 속에서 가장 중요한 요소가 외부 모델 '가중치(Weight) 사용' 여부가 핵심으로 떠오르고 있는데, 특히 LG AI연구원의 'K-엑사원'은 이를 모두 충족시키는 모델로 평가 받고 있다. 가중치는 AI 모델이 학습을 통해 축적한 지식이 압축된 결과물로, 라이선스와 통제권 문제와 직결된다. 정부가 해외 모델을 파인튜닝한 파생형 AI를 독자 AI로 간주하지 않겠다고 밝힌 이유도 이 때문이다. 다만 일각에선 가중치 논쟁이 독자 AI의 기준을 지나치게 단순화할 수 있다는 지적도 나온다. 가중치는 독자 AI의 최소 조건일 뿐 그 위에서 어떤 기술적 선택을 했는지가 모델의 완성도를 가른다는 것이다. 특히 대규모 자본과 연산 자원을 투입해 데이터와 파라미터 규모를 늘리는 방식은 단기 성능 경쟁에는 유리할 수 있지만, 장기적인 국가 AI 전략과는 거리가 있다는 평가도 있다.이 때문에 최근에는 가중치 이후의 단계인 모델 구조에 대한 설계 역량이 중요 기준으로 떠오르고 있다. 대표적인 영역이 어텐션(Attention)과 토크나이저(Tokenizer)다. 어텐션은 AI가 방대한 정보 중 어떤 부분에 집중할지를 결정하는 핵심 메커니즘으로 연산량과 메모리 요구량을 좌우한다. 토크나이저는 문장을 토큰 단위로 분해하는 방식으로 학습 효율과 언어 이해 능력에 직접적인 영향을 미친다. 두 요소는 성능과 비용을 동시에 결정하는 구조적 레버로, 독자 AI의 '설계 주권'을 가늠하는 지표로 평가된다.이에 대해 임정환 모티프테크놀로지스 대표는 독자 기술의 기준을 보다 구조적으로 봐야 한다고 지적했다. 그는 "엔비디아가 설계를 하고 TSMC가 생산을 맡는 구조나, 삼성 스마트폰이 다양한 외부 부품을 조합해 만들어지는 사례를 보더라도 핵심은 누가 설계의 주체냐는 점"이라며 "단순히 코드를 복제한 뒤 재학습하는 방식은 기술적 난이도가 낮아 독자 아키텍처로 보기 어렵다"고 말했다. 이어 "중국 딥시크는 기존 구조를 그대로 쓰지 않고 이를 변형해 자신들만의 기술적 철학을 담았기 때문에 독자 기술로 평가받는 것"이라고 덧붙였다.업계에선 독자 AI의 '설계 주권'을 판단하는 기준이 어텐션과 토크나이저에만 국한돼서는 안 된다는 지적도 나온다. 실제로 AI 모델의 성능과 효율은 어텐션 외에도 정규화(Normalization) 방식, 레이어 구성, FFN(Feed-Forward Network) 구조, 학습 커리큘럼 설계, 추론(Reasoning) 구조의 내재화 여부 등 복합적인 설계 선택에 의해 좌우된다. 정규화 방식과 레이어 구성은 학습 안정성과 스케일링 한계를 결정하는 요소로, 표준 레이어놈(LayerNorm)을 그대로 사용하는지, RMS놈(RMSNorm) 등 변형된 방식을 적용했는지에 따라 대규모 학습에서의 효율과 수렴 특성이 달라진다. 레이어놈이 모든 신호를 고르게 '정돈'하는 방식이라면, RMS놈은 꼭 필요한 크기 정보만 남겨 계산 부담을 줄이는 방식에 가깝다.FFN 구조 역시 전체 파라미터의 상당 부분을 차지하는 영역으로, 활성화 함수 선택이나 게이트 구조 도입 여부에 따라 연산량 대비 성능 효율이 크게 달라진다. FFN은 AI가 주목한 정보를 자기 언어로 다시 정리하는 '내부 사고 회로'에 해당한다. 학습 커리큘럼 역시 설계 주권을 가늠하는 중요한 지표로 꼽힌다. 단순히 대규모 데이터를 한 번에 투입하는 방식이 아니라, 언어 이해·추론·지시 이행·도메인 특화 학습을 어떤 순서와 비중으로 설계했는지가 모델의 안정성과 범용성을 좌우하기 때문이다. 여기에 프롬프트 기법에 의존하지 않고, 추론 과정을 모델 구조 내부에 내재화했는지 여부도 공공·국방·금융 등 고신뢰 영역에서 중요한 평가 요소로 거론된다. 업계 관계자는 "가중치는 독자 AI의 출발점이고, 어텐션과 토크나이저는 그 다음 단계"라며 "그 이후에는 학습 시나리오와 추론 구조, 스케일링 전략까지 얼마나 스스로 설계했는지가 진짜 기술적 자립도를 가른다"고 설명했다. LG AI연구원의 'K-엑사원'은 이 지점에서 차별화된 접근을 택했다. LG AI연구원은 데이터 양이나 파라미터 규모를 무작정 키우는 방식 대신, 모델 구조 자체를 고도화해 성능은 높이고 학습·운용 비용은 낮추는 전략을 적용했다. 엑사원 4.0에서 검증한 '하이브리드 어텐션(Hybrid Attention)'을 'K-엑사원'에 고도화해 적용, 국소 범위에 집중하는 슬라이딩 윈도우 어텐션과 전체 맥락을 이해하는 글로벌 어텐션을 결합했다. 이를 통해 메모리 요구량과 연산량을 이전 세대 대비 약 70% 절감했다는 설명이다. 토크나이저 역시 단순 재사용이 아닌 구조적 개선이 이뤄졌다. LG AI연구원은 학습 어휘를 약 15만 개로 확장하고, 한국어에서 자주 쓰이는 단어 조합을 하나의 토큰으로 묶는 방식을 적용했다. 그 결과 동일한 연산 자원으로 더 긴 문서를 기억하고 처리할 수 있게 됐으며 기존 대비 약 1.3배 긴 컨텍스트 처리 능력을 확보했다. 여기에 멀티 토큰 예측(MTP) 구조를 도입해 추론 속도도 크게 높였다. 이 같은 구조 혁신은 정부 프로젝트의 성격과도 맞닿아 있다. 독자 AI 파운데이션 모델의 목표는 단기적인 성능 순위 경쟁이 아니라 공공·산업 현장에서 실제로 활용 가능한 국가 AI 인프라를 구축하는 데 있기 때문이다. LG AI연구원이 고가의 최신 그래픽처리장치(GPU)가 아닌 A100급 환경에서도 프런티어급 모델을 구동할 수 있도록 설계해 인프라 자원이 제한된 기업과 기관에서도 활용 가능성을 넓혔다는 점도 우위 요소로 보인다. 다른 참가 기업들 역시 각자의 강점을 내세우고 있다. SK텔레콤은 최신 어텐션 기법과 초거대 파라미터 확장을 통해 스케일 경쟁력을 강조하고 있고, NC AI는 산업 특화 영역에서 운용 효율을 앞세우고 있다. 네이버클라우드는 멀티모달 통합 아키텍처를 독자성의 핵심으로 제시하고 있으며, 업스테이지는 데이터와 학습 기법을 통해 성능을 끌어올리는 전략을 취하고 있다. 다만 일부 모델은 외부 가중치나 구조 차용 여부를 둘러싼 논란으로 인해 기술 외적인 설명 부담을 안고 있는 상황이다. 업계 관계자는 "이번 논쟁이 '순혈이냐, 개발이냐'의 이분법으로 끝나기보다 가중치 주권을 전제로 한 설계 주권 경쟁으로 진화하고 있다고 본다"며 "이 기준에서 'K-엑사원'은 성능, 비용 효율, 구조적 혁신이라는 세 요소를 동시에 충족한 사례로 평가되고, 한국형 독자 AI가 나아갈 한 방향을 보여주고 있다"고 분석했다.업계에선 이번 1차 평가를 계기로 독자 AI에 대한 기준이 한층 정교해질 가능성이 높다고 봤다. 단순한 성능 순위나 '프롬 스크래치' 여부를 넘어 가중치 주권을 전제로 한 모델 설계 역량과 비용 효율, 실제 활용 가능성까지 함께 평가하는 방향으로 심사 기준이 진화할 수 있을 것으로 전망했다. 정부 역시 2차 심사 과정에서 독창성과 기술적 기여도를 평가 항목으로 포함하겠다고 밝힌 만큼, 향후 독자 AI 경쟁은 데이터·자본 경쟁을 넘어 누가 더 깊이 모델을 설계했는지를 가리는 국면으로 접어들 것이란 분석도 나온다.임정환 모티프테크놀로지스 대표는 "현재 독자 개발과 프롬 스크래치에 대한 개념이 혼재된 상황"이라며 "(정부 차원에서) 기술적 기여도에 따른 명확한 정의와 가이드라인 마련이 시급하다"고 강조했다. 이승현 포티투마루 부사장은 "독자 AI 2차 심사에서 퍼포먼스는 단순히 벤치마크 점수로 줄 세울 문제가 아니다"며 "가중치를 처음부터 자체 학습했는지, 데이터와 학습 과정에 대한 통제권을 갖고 있는지, 같은 조건에서 성능을 안정적으로 재현할 수 있는지가 먼저 봐야 할 기준"이라고 말했다. 이어 "이 전제가 빠진 성능 비교는 기술 평가라기보다 보여주기에 가깝다"고 덧붙였다.

2026.01.11 15:57장유미

엔비디아도 'K-AI' 관심…"우리 솔루션으로 개발"

엔비디아가 한국 '독자 인공지능(AI) 파운데이션 모델' 프로젝트 정예팀 성과를 공개 지지했다. 9일 엔비디아는 "허깅페이스에 LG AI연구원과 SK텔레콤, 업스테이지의 전문가혼합(MoE) 모델이 트렌딩 모델로 올라 기쁘다"고 링크드인 공식 계정을 통해 밝혔다. 해당 게시물은 클렘 들랑그 허깅페이스 공동창업자 겸 최고경영자(CEO)가 올린 글을 리포스팅한 형태다. 들랑그 CEO는 지난 8일 "한국 모델 3개가 허깅페이스에서 트렌딩 모델로 올랐다"고 언급했다. 허깅페이스 트렌딩 모델은 일정 기간 동안 조회수, 다운로드, 커뮤니티 반응이 빠르게 증가한 모델을 의미한다. 실제 사용성과 개발자 관심도를 반영하는 지표로 활용된다. 당시 들랑그 CEO가 공개한 화면에는 LG AI연구원 'K-엑사원 236B-A23B' 모델이 국내 모델 중 가장 높은 순위에 올랐다. SK텔레콤 '에이닷엑스(A.X.) K1'과 업스테이지 '솔라 오픈 160B'이 뒤를 이었다. 실제 LG AI연구원과 SK텔레콤, 업스테이지는 엔비디아 서비스를 모델 개발에 활용한 것으로 전해졌다. 엔비디아는 "해당 모델들은 우리 풀스택 기반으로 구축됐다"며 "가속 인프라부터 네모트론 데이터셋, 라이러리 모두 적용됐다"고 강조했다. 이어 "글로벌 오픈소스 생태계에서 한국 AI 모델 경쟁력이 입증됐다"며 "오픈소스는 더 많은 국가가 소버린 AI 모델을 개발할 수 있게 돕는다"고 덧붙였다.

2026.01.09 16:56김미정

"해외도 놀랐다"...허깅페이스 CEO가 주목한 'K-AI' 3곳 어디?

국내 기업들이 개발한 인공지능(AI) 모델이 글로벌 오픈소스 생태계에서 경쟁력을 입증했다. 8일 클렘 들랑그 허깅페이스 공동창업자 겸 최고경영자(CEO)는 "한국 모델 3개가 허깅페이스에서 트렌딩 모델로 올랐다"며 링크드인 게시글을 통해 밝혔다. 허깅페이스 트렌딩 모델은 최근 일정 기간 동안 조회수와 다운로드, 커뮤니티 반응이 증가한 모델이다. 실제 사용과 관심도를 반영한 지표로, 개발자 커뮤니티 주목도를 보여준다. 들랑그 CEO가 공개한 화면에는 LG AI연구원 'K-엑사원 236B-A23B' 모델이 국내 모델 중 가장 높은 순위에 올랐다. SK텔레콤 '에이닷엑스(A.X.) K1'과 업스테이지 '솔라 오픈 160B'이 뒤를 이었다. NC AI '배키'도 다음 페이지에 이름을 올렸다. 특히 LG AI연구원의 K-엑사원은 글로벌 오픈소스 모델과 동일한 인기 지표 선상에서 상위권을 차지하며 존재감을 드러냈다. 한국 AI 모델이 단순 참여 수준을 넘어 실질적인 경쟁 모델로 평가받고 있다는 의미로 해석된다. 들랑그 CEO는 해당 게시물에 글로벌 인기 모델 목록 화면을 캡처해 공유하며 태극기 이미지도 게시했다. 이 같은 성과는 정부가 추진 중인 '모두를 위한 AI' 기조와도 맞닿았다. 정부는 AI 모델을 오픈소스로 개발해 국내외에서 활용할 수 있도록 하는 '독자 AI 파운데이션 모델' 프로젝트를 진행 중이며, 들랑그 CEO가 언급한 세 모델 모두 이 프로젝트에 참여하고 있어서다. 배경훈 부총리 겸 과학기술정보통신부 장관은 "최근 독파모가 프롬스크래치 여부 이슈 등 논쟁이 있지만 글로벌 AI 모델 도전은 진행 중"이라며 "각종 지표 반응도 긍정적"이라고 평했다. 이어 "윤리적 부분에 있어서도 모두 공감할 수 있는 수준이어야 비로소 K-AI 타이틀을 유지할 수 있을 것"이라고 페이스북을 통해 강조했다. 김성훈 업스테이지 대표는 "우리 모델이 허깅페이스에서 상위 트렌딩 모델 중 하나로 선정돼 매우 기쁘다"고 링크드인에서 밝혔다. 들랑그 CEO는 "우리가 AI 분야에서 미국과 중국에 대해서만 주로 논의했다"며 "오픈소스 덕분에 모든 국가가 AI 생태계 빌더가 될 수 있으며 그렇게 돼야 한다"고 설명했다.

2026.01.08 11:57김미정

[AI 리더스] 'AI 표준' 만든 이승현 "K-AI 5곳, 모두 승자…톱2 집착 버려야"

"독자 인공지능(AI) 파운데이션 모델(K-AI) 사업자로 선정된 5곳은 사실상 모두 승자입니다. 2개 사업자만 선별해 정부가 지원하기 보다 각 팀이 짧은 시간 안에 각자의 방식으로 글로벌 모델과 일정 수준 비교 가능한 결과물을 만들어냈다는 점을 인정해야 합니다. 정부가 각 모델의 특성과 강점을 살릴 수 있는 지원책을 마련한다면 국내 AI 생태계도 훨씬 건강해질 수 있을 것입니다." 이승현 포티투마루 부사장은 8일 지디넷코리아와의 인터뷰를 통해 최근 독자 AI 파운데이션을 둘러싼 논란에 대해 이같이 정리했다. 오는 15일께 정부가 1차 탈락팀을 결정하기 전 각 업체들이 '이전투구' 양상으로 치닫는 모습을 보이는 것을 두고 정부가 2개팀만 선별해 지원하려는 구조 때문이라고도 진단했다. 또 이번 논란의 본질이 기술 경쟁이 아니라 구조적 문제에 있다고 봤다. 정부가 2개 사업자만 선별해 집중 지원하는 방식이 계속 유지되면 탈락 기업에 과도한 낙인이 찍히고 업계 전체가 방어적·공격적으로 변할 수밖에 없다고 분석했다. 성능 경쟁보다 통제 원칙 우선돼야…소버린 AI 기준 마련 필요 정부는 현재 네이버클라우드와 업스테이지, SK텔레콤, NC AI, LG AI연구원 등 독자 AI 파운데이션 모델 사업자로 선정된 5개 정예팀을 대상으로 1차 심사를 진행 중이다. 탈락팀 1곳은 오는 15일쯤 발표할 예정으로, 정예팀마다 평가 기준이 상이해 업계에선 각 업체별 모델을 두고 유불리 논란이 이어지고 있다. 이 부사장은 "정부 사업에서 탈락하면 해당 팀이 '사망선고'를 받는 것처럼 여겨지는 구조는 바람직하지 않다"며 "톱2만 키우는 방식은 산업 전체를 위축시킬 가능성이 높은 만큼, 선별보다 육성 중심의 정책 전환을 고민해야 한다"고 제언했다. 특히 이번 사업에 참여한 기업 상당수가 대기업 또는 대기업 계열이라는 점에서 1차 탈락이 갖는 파급력은 더 크다고 봤다. 그는 "1차에서 떨어졌다는 이유만으로 '이 정도밖에 못하느냐'는 평가가 붙으면 내부 투자나 그룹 차원의 지원이 위축될 가능성도 배제하기 어렵다"며 "그 부담이 기업을 더욱 공격적인 대응으로 몰아넣는다"고 진단했다.이에 이 부사장은 '선별'이 아닌 '육성'을 초점에 맞춘 정부 정책이 마련될 필요가 있다고 강조했다. 일정 수준 이상의 역량을 입증한 기업들을 여러 트랙으로 나눠 지속적으로 키우는 구조가 필요하다는 것이다. 그는 "영국 등 해외 사례를 보면 한 번 떨어졌다고 끝나는 게 아니라 다른 트랙으로 계속 경쟁과 육성을 이어간다"며 "이번에 선정된 5개 기업 역시 각자 다른 강점과 방향성을 갖고 있는 만큼, 정부가 이들을 '탑위너 그룹'으로 묶어 장기적으로 관리하는 전략이 필요하다"고 말했다.이 부사장은 소버린 AI를 둘러싼 논의 역시 '전면 강제'가 아니라 '위험 구간에서의 원칙'으로 재정의해야 한다고 강조했다. 글로벌 모델과의 성능 경쟁을 목표로 삼기보다 투명성을 바탕으로 통제 가능성과 주권 확보가 필요한 영역에서 전략적으로 활용해야 한다고 주장했다. 그는 "공공 영역만 보더라도 정보 등급에 따라 활용 원칙이 달라야 한다"며 "오픈 데이터나 공개 서비스 영역에서는 글로벌 모델이나 경량화 모델을 활용할 수 있지만, 민감정보·보안 등급으로 올라갈수록 소버린 모델을 원칙으로 삼는 방식이 합리적"이라고 말했다. 그러면서 "다만 소버린을 내세워 모든 것을 자체 모델로만 해결하려는 접근은 현실적이지 않다"며 "필요할 경우 월드모델 활용 등을 통해 안전한 방식의 연계·상호운용을 함께 고민해야 한다"고 덧붙였다. AI 정책, 구조적 한계 여실…공공 클라우드 전환 선행돼야 이처럼 이 부사장이 분석한 이유는 과거 공공 정책 현장에서 직접 경험한 구조적 한계가 지금도 크게 달라지지 않았다고 판단해서다. 그는 디지털정부플랫폼위원회 재직 당시부터 AI 시대를 준비하기 위해 공공 시장의 클라우드 전환이 선행돼야 한다고 꾸준히 주장해왔다. 이 부사장은 "지난 2022년 3월 무렵부터 공공이 AI 시대를 이야기하면서도 정작 기반이 되는 클라우드 전환은 제대로 이뤄지지 않는 점이 가장 큰 한계라고 봤다"며 "AI를 서비스(SaaS) 형태로 도입하려면 클라우드가 전제가 돼야 하는데, 공공 영역의 전환 속도가 이를 따라가지 못했다"고 설명했다. 그는 이에 대한 원인으로 ▲클라우드 전환 지연 ▲예산·제도 구조 ▲관료제의 연속성 부족을 꼽았다. 이 부사장은 "정부 예산 구조상 ISP 등 절차를 거치면 최소 2~3년이 소요되는데, 이 방식으로는 빠르게 변하는 AI 흐름을 따라가기 어렵다"며 "AI처럼 중장기 전략이 필요한 분야에서 담당 보직이 자주 바뀌면 학습 비용이 반복되고 정책 추진의 일관성도 흔들릴 수밖에 없다"고 지적했다. 또 그는 "이 때문에 국가AI전략위원회와 같은 컨트롤타워 조직에는 보다 실질적인 권한과 연속성이 필요하다"며 "전문가 의견을 모으는 데서 그치지 않고, 부처 간 정책을 조정하고 실행으로 연결할 수 있도록 조직에 힘을 실어줘야 한다"고 강조했다.다만 이 부사장은 제도 개선의 필요성을 강조하는 것만으로는 AI 정책의 한계를 넘기 어렵다고 봤다. 정책이 실제 서비스와 산업 현장으로 이어지지 못하는 구조가 반복되고 있다고 판단해서다. 이에 디지털플랫폼정부위원회 AI플랫폼혁신국장을 맡았던 이 부사장은 지난 달 포티투마루로 자리를 옮겼다. 이곳에서 공공 정책 설계 경험을 바탕으로 공공·민간 영역에서 AI가 실제 서비스로 구현되고 확산되는 구조를 만드는 데 직접 기여할 것이란 각오다. 또 공공 AI 활용 사례를 통해 스타트업과 중소기업이 함께 성장할 수 있는 실증 모델을 만드는 데도 집중할 계획이다. 이 부사장은 "4년간 공공 영역에서 AI 정책을 다루며 나름대로 전문성을 쌓았다고 생각했지만, 실제 현장에서는 또 다른 병목이 존재하고 있다고 판단됐다"며 "AI 강국이 되려면 결국 국민이 체감해야 한다"고 지적했다.이어 "공공 영역에서 AI를 통해 일하는 방식 혁신을 통해 생산성을 높이고, 대국민 서비스의 속도와 품질을 개선하며 의료·복지 등 사회 문제 해결로 이어져야 가능한 일"이라며 "포티투마루를 통해 공공 AI가 실제로 작동하는 사례를 만들고, 스타트업과 중소기업이 함께 성장할 수 있는 구조를 현장에서 증명하고 싶다"고 덧붙였다. 그러면서 "국내 소프트웨어 산업은 여전히 공공이 큰 축을 차지하고 있는데, 공공 시장이 SI 중심 구조에 머물러 있다 보니 스타트업이 성장할 수 있는 발판이 제한적"이라며 "영국 등은 정부가 클라우드 기반으로 전환하면서 스타트업들이 공공 시장에 자연스럽게 진입했지만, 한국은 제도와 조달 구조가 이를 가로막고 있다"고 지적했다. 소버린 AI 등급체계 직접 개발…'국산 AI' 논쟁 끝낼까 지난 6일 소버린 AI 기준 논의를 위해 직접 평가 기준과 이를 판별할 도구를 개발해 허깅페이스에 공개한 것도 이 같은 문제에 대한 고민에서 출발했다. 그는 소버린 AI 등급 체계인 'T-클래스 2.0'을 깃허브와 허깅페이스에 공개하며 막연한 '국산 AI' 구호로는 기술 주권을 설명할 수 없다는 점을 분명히 했다. 이 부사장이 제안한 'T-클래스 2.0'은 기존 논의와 달리 '설계(Code)', '지능(Weights)', '기원(Data)' 등 세 가지 실체적 기준을 중심으로 AI 모델을 T0부터 T6까지 7단계로 구분한다. ▲단순 API 호출 및 미세조정 수준(T0~T1) ▲오픈 웨이트를 활용한 과도기 모델(T2~T3) ▲소버린 AI의 기준점이 되는 아키텍처를 참조하되 가중치를 처음부터 자체 학습한 T4 ▲독자 설계 아키텍처와 한국어 토크나이저를 갖춘 T5 ▲국산 반도체·클라우드까지 결합한 T6 등으로 분류됐다. 이 중 T4를 T4-1과 T4-2로 세분화한 것이 기존 버전과의 차별점이다. T4-1은 표준 아키텍처를 그대로 유지한 채 가중치를 처음부터 학습한 모델이다. 데이터 주권은 확보했지만, 구조적 독창성은 제한적인 단계다. 반면 T4-2는 기존 아키텍처를 참고하되 레이어 구성, 파라미터 규모, 연산 구조 등을 최적화·확장한 모델로, 글로벌 표준을 활용하면서도 기술 주권까지 일정 수준 확보한 단계로 분류된다. 이 부사장은 "T4-1이 '데이터 소버린' 단계라면, T4-2는 '기술 소버린'에 한 발 더 다가간 모델"이라며 "현재 국내 독자 AI 파운데이션 모델로 선정된 팀 대부분은 모두 T4-2 영역에 해당하는 질적 변형을 수행했다는 점에서 충분히 평가받아야 한다"고 말했다. 이어 "아키텍처는 이미 범용 기술이 됐지만, 가중치는 국가가 소유해야 할 자산"이라며 "T4는 아키텍처라는 그릇을 빌리더라도 데이터와 연산, 결과 지능을 우리가 통제하는 실질적 소버린 모델"이라고 덧붙였다. 일각에서 독자 아키텍처(T5)까지 가야 진짜 소버린으로 인정할 수 있다는 주장에 대해선 "현실을 외면한 기술적 순혈주의"라고 선을 그었다. 또 수백억원을 들여 아키텍처를 처음부터 다시 만들어도 글로벌 표준 모델 대비 성능 우위를 확보하기는 쉽지 않다는 점도 분명히 했다. 이 부사장은 "대다수 기업에게는 아키텍처 재발명보다 고품질 데이터와 학습 인프라에 집중하는 것이 더 합리적인 전략"이라며 "T4는 산업의 허리를 튼튼하게 만드는 표준 전략이고, T5는 국가 안보와 기술 패권을 겨냥한 리더십 전략으로 두 트랙이 함께 가야 생태계가 건강해진다"고 강조했다. 이 기준을 구현한 '소버린 AI 판별 도구(Sovereign AI T-Class evaluator 2.0)'를 직접 개발해 공개한 이유에 대해서도 그는 투명성을 거듭 강조했다. 이 부사장은 "AI 개발은 참조와 변형의 경계가 매우 모호한 회색지대"라며 "명확한 가이드 없이 결과만 놓고 개발자를 비난하는 것은 부당하다"고 말했다. 그러면서 "기준이 없으니 불필요한 논쟁과 감정 싸움만 커진다"며 "누구나 같은 잣대로 설명할 수 있는 최소한의 공통 기준이 필요하다고 판단했다"고 덧붙였다. 실제로 해당 기준 공개 이후 업계에서는 "왜 이제야 이런 기준이 나왔느냐", "사실상 표준으로 삼을 만하다"는 반응이 이어지고 있다. 또 정부에서 이 부사장이 만든 'T-클래스 2.0'을 바탕으로 독자 AI 파운데이션 모델의 평가 기준이 구체적으로 만들어져 심사 투명성을 높여야 한다는 지적도 나왔다. 이 같은 분위기 속에 이 부사장은 독자 AI 논의가 현재 단계에만 머물러서도 안 된다고 지적했다. 또 현재의 혼란이 단기적인 사업 논쟁이 아니라 AI를 국가 전략 차원에서 어떻게 바라볼 것인가에 대한 더 큰 질문으로 이어지고 있다고 봤다. 그는 "독파모가 보여주기식 경쟁이나 단기 성과에 머물면, 월드모델·디지털 트윈·피지컬 AI로 이어지는 다음 스테이지를 놓칠 수 있다"며 "국가 R&D는 지금보다 한 단계 앞을 내다보는 구조여야 한다"고 강조했다. AGI 시대, 5년 내 현실화…AI 국가 전략, 체계적 마련 필요 이 부사장은 AI 경쟁의 종착점을 단기적인 모델 성능 비교에 두는 것 자체가 위험하다고도 경고했다. 그는 AGI(범용인공지능)가 5년 안에 현실화될 가능성이 높다고 전망하며 그 이후를 대비하지 않는 전략은 국가 차원에서도 지속 가능하지 않다고 지적했다. 그는 "AGI는 단순히 모델이 더 똑똑해지는 문제가 아니라 기억 구조와 추론 방식이 인간의 뇌를 닮아가는 단계"라며 "지금 구글이 시도하고 있는 중첩학습처럼 단기·중기·장기 기억을 분리·결합하는 구조는 거대언어모델(LLM) 이후를 준비하는 명확한 신호"라고 말했다. 그러면서 "글로벌 빅테크들은 이미 다음 스테이지를 보고 있다"며 "하지만 우리는 아직 현재 모델이 프롬 스크래치냐 아니냐에만 머물러 있는 건 아닌지 돌아봐야 한다"고 덧붙였다. 이 부사장은 AGI와 ASI(초지능)를 막연한 공포의 대상으로 보는 시각에도 선을 그었다. 그는 "인류는 오래전부터 인간을 능가하는 지능이 등장해 우리가 해결하지 못한 문제를 풀어주길 기대해왔다"며 "중요한 것은 AGI·ASI 자체가 아니라 그것을 어떤 문제 해결을 위해 어떻게 통제하고 활용할 것인가에 대한 고민"이라고 봤다. 이어 "AI를 두려워하기보다 인류 난제 해결이라는 방향성 속에서 통제권을 쥐는 것이 국가 전략의 핵심"이라고 강조했다. 이 부사장은 이 같은 고민을 담아 다음 달께 'AI 네이티브 국가'를 출간할 계획이다. 이 책에는 모델 개발을 넘어 지정학, 경제, 복지, 산업 구조 전반에서 AI가 국가 경쟁력을 어떻게 재편하는지에 대한 고민을 고스란히 담았다. 또 메모리 반도체, 제조 데이터, 클라우드 인프라를 동시에 보유한 한국의 구조적 강점을 짚으며 AI 시대에 한국이 '풀스택 국가'로 도약할 수 있는 전략도 함께 제시할 계획이다. 그는 "국내 AI 논의가 기술 우열이나 모델 성능에만 매몰돼 있는 흐름을 벗어나고 싶었다"며 "같은 기술이라도 국가가 어떤 전략을 취하느냐에 따라 결과는 전혀 달라질 수 있다는 점을 책을 통해 정리하고 싶었다"고 설명했다.마지막으로 그는 "AI를 둘러싼 지금의 혼란은 누군가가 틀렸기 때문이 아니라 기준과 구조가 없었기 때문"이라며 "논쟁을 줄이고 경쟁을 건강하게 만들 수 있는 최소한의 합의점을 만드는 데 앞으로도 계속 목소리를 낼 것"이라고 피력했다.

2026.01.08 10:10장유미

게임법 개정안 쟁점 '게임진흥원 설립'…기대와 우려 공존

새해 게임산업법 전면 개정 논의가 다시 본격화되면서 게임산업진흥원 신설 구상도 주요 쟁점으로 떠오르고 있다. 산업 환경 변화에 비해 정책 집행 구조가 규제 중심에 머물러 있다는 문제의식에는 업계 전반의 공감대가 형성됐지만 제도 설계의 불확실성과 과거 좌초 전례가 겹치며 기대와 신중론이 동시에 제기됐다. 국회에 발의된 게임산업법 전면 개정안에는 게임산업진흥원 설립 근거와 함께 역할 범위가 비교적 구체적으로 담겨 있다. 개정안에 따르면 게임산업진흥원은 게임산업 정책 연구와 산업 통계·실태조사, 전문 인력 양성, 중소·인디 개발사 지원, 해외 진출 및 글로벌 협력, e스포츠 진흥 등을 전담하는 기관으로 설계됐다. 여러 부처와 기관에 분산된 진흥 기능을 통합해 정책의 연속성과 전문성을 높이겠다는 취지다. 개정안은 특히 게임산업 진흥을 위한 중장기 전략 수립과 현장 기반 정책 지원을 명시적으로 규정하고 있다. 이는 등급 분류와 사후 관리 중심으로 운영돼 온 기존 체계와 진흥 기능을 구분하겠다는 방향성으로 해석된다. 다만 조직 규모와 예산, 기존 게임물관리위원회 기능 조정 방식은 하위 법령이나 향후 논의에 맡겨져 있어서 입법 과정에서 추가 조율이 불가피할 것으로 보인다. 게임산업계가 게임산업진흥원 필요성을 강조하는 배경에는 정책 집행의 일관성 문제가 자리하고 있다. 그동안 게임 정책은 사회적 논란이나 사건이 발생할 때마다 규제가 먼저 강화되는 방식으로 전개되는 경우가 많았고, 산업 진흥 논의는 상대적으로 후순위로 밀려왔다. 특히 최근 국내 게임업계에서 대형 신작 공백과 개발 인력 해외 유출, 글로벌 경쟁 심화가 동시에 거론되면서, 산업 진흥을 전담할 정책 조직 필요성이 다시 수면 위로 떠올랐다는 분석도 나온다. 게임산업계에서는 전담 진흥 기관이 존재할 경우 규제 논의 과정에서도 산업 데이터와 현장 분석을 토대로 한 정책 조율이 가능해질 수 있다는 기대를 내놓고 있다. 그러나 이러한 기대가 실제 게임산업진흥원 신설과 진흥으로 이어질지는 좀 더 지켜봐야 하는 상황이다. 과거에도 게임산업 진흥 기능을 갖춘 조직의 필요성은 여러 차례 제기됐지만 기관 신설이나 기능 통합 단계에 이르면 부처 간 역할 조정 문제와 제도 설계 이견이 겹치며 동력을 잃는 경우가 반복됐기 때문이다. 규제와 진흥 기능이 혼재될 수 있다는 우려가 해소되지 않으면서, 입법 논의가 장기 표류한 사례도 적지 않았다. 문화체육관광부는 게임산업법 전면 개정을 통해 게임 산업 규제 개선과 진흥에 적극 나선다는 입장을 밝히고 있다. 다만 업계 전문가 다수는 과거 정책 운용 사례를 근거로 게임산업진흥원 설립에 대해 여전히 의문부호를 보내고 있다. 게임산업 진흥을 명분으로 한 제도 개편 논의 과정에서 결과적으로 관리·감독 권한이 강화된 사례가 반복돼 왔다는 점에서다. 대표적인 사례로는 2021년 확률형 아이템을 둘러싼 정책 흐름이 거론된다. 당시 문체부는 게임업계 자율규제 강화를 통한 이용자 신뢰 회복을 강조했지만 이후 국회 논의와 여론 변화 속에서 제도화·법제화 방향으로 정책 기조가 전환됐다. 당시 업계에서는 자율과 진흥을 전제로 했던 논의가 제도 설계 단계에서 규제 중심 구조로 바뀌면서 현장 부담이 커졌다고 평가했다. 2022~2023년 게임산업법 개정 과정 역시 유사한 사례로 언급된다. 확률형 아이템 정보 공개 의무화 등 이용자 보호를 명분으로 한 제도 도입이 추진됐지만 업계에서는 산업 진흥 효과보다는 행정 부담 증가가 먼저 체감됐다는 반응이 적지 않았다. 정책 취지와 현장 체감 사이의 괴리가 분명히 드러난 사례라는 것이다. 이러한 정책 운용 경험은 게임산업진흥원 신설 논의를 바라보는 업계의 시각에도 그대로 투영되고 있다. 진흥 전담 기구를 표방하더라도 법안 설계와 하위 규정 마련 과정에서 기존 관리·감독 기능을 일부 흡수하거나 보완하는 방향으로 변질될 수 있다는 지적이 반복되는 이유이기도 하다. 이 과정에서 등급 분류와 사후 관리 기능을 담당하는 게임물관리위원회 역시 규제 집행에 치중하는 모습을 보이며 업계 불안을 높이는 원인으로 함께 언급돼 왔다. 한 게임 퍼블리셔 관계자는 “등급 분류 체계 개편 논의 당시에도 사전 규제를 완화하겠다는 취지와 달리 사후 모니터링과 행정 개입 범위가 확대되면서 업계 부담이 커졌다”며 “제도 설계 단계에서 처음 목적과 다른 방향 전환이 일어나면 산업 현장에 부담이 될 수밖에 없다”고 말했다. 이런 누적된 경험으로 인해 게임산업계는 게임산업진흥원 신설 논의를 두고 우려와 경계를 동시에 드러내고 있다. 진흥 전담 기구를 표방하더라도 규제와 진흥의 경계를 명확히 설정하지 못한다면, 게임산업진흥원이 또 하나의 관리 조직으로 귀결될 수 있다는 판단에서다. 또 다른 업계 관계자는 “산업 구조 변화에 대한 인식은 분명해졌지만, 과거 불발 전례를 넘을 수 있는 정치적 의지와 제도 설계 완성도가 뒷받침되지 않으면 이번 논의 역시 시험대에 머물 가능성이 있다”고 말했다.

2026.01.07 16:11김한준

업스테이지, '솔라 오픈' 공개…"딥시크·GPT 성능 넘어"

업스테이지가 자체 개발한 언어모델을 오픈소스로 공개해 인공지능(AI) 경쟁력 강화에 나섰다. 업스테이지는 거대언어모델(LMM) '솔라 오픈 100B'를 글로벌 오픈소스 플랫폼 허깅페이스에 공개했다고 6일 밝혔다. 해당 모델은 과학기술정보통신부의 '독자 AI 파운데이션 모델 프로젝트' 첫 결과물이다. 솔라 오픈은 중국 딥시크 R1과 오픈AI GPT-OSS-120B' 등 글로벌 경쟁 모델을 주요 벤치마크에서 앞선 것으로 나타났다. 특히 한국어, 영어, 일본어 등 다국어 평가에서 모델 크기 대비 우수한 성능을 보였다. 특히 한국어 성능에서는 격차가 더 뚜렷했다. 한국 문화 이해도, 한국어 지식 벤치마크에서 딥시크 R1 대비 2배 이상 높은 성능을 보였고, 오픈AI 유사 규모 모델보다 앞선 수치를 기록했다. 업스테이지는 이같은 성과가 약 20조 토큰 규모의 고품질 사전학습 데이터와 학습 기법 고도화가 뒷받침했다고 밝혔다. 합성 데이터와 금융, 법률, 의료 등 분야별 특화 데이터를 적극 활용해 저자원 언어 한계를 보완했다는 설명이다. 솔라 오픈은 129개 전문가 모델을 섞은 혼합전문가(MoE) 구조를 적용해 실제 연산에는 일부 매개변수만 활성화했다. 이를 통해 초당 토큰 처리량을 높이고 학습 기간을 절반으로 줄여 약 120억원 규모 그래픽처리장치(GPU) 인프라 비용을 절감했다. 업스테이지는 일부 데이터셋을 한국지능정보사회진흥원의 AI 허브를 통해 공개해 국내 연구 생태계 활성화에도 나선다. 또 컨소시엄 참여 기관과 함께 금융, 법률, 의료, 공공, 교육 등 산업별 AI 전환 확산을 추진한다. 솔라 오픈은 미국 비영리 연구기관 에포크AI의 '주목할 만한 AI 모델' 목록에도 이름을 올렸다. 스탠퍼드대 인간중심 AI 연구소 보고서에도 활용돼 한국 AI 기술의 국제적 존재감을 높였다. 김성훈 업스테이지 대표는 "솔라 오픈은 우리가 처음부터 독자적으로 학습한 모델"이라며 "한국 정서와 언어적 맥락을 깊이 이해하는 가장 한국적이면서도 세계적인 AI"라고 강조했다.

2026.01.06 11:18김미정

원화 가상자산 거래대금 80% 증발…거래소 "해법은 법인 거래"

국내 원화 가상자산 거래대금이 전년 동기 대비 80% 급감하며 시장이 빠르게 위축되고 있다. 이에 가상자산 거래소 전반에 존폐 위기감이 확산되는 분위기다. 업계는 거래대금 회복을 위한 해법으로 법인 시장 개방을 주목하고 있다. 5일 가상자산 분석 플랫폼 코인게코에 따르면, 최근 한 달(2025년 12월 6일~2026년 1월 5일) 동안 국내 원화 가상자산 거래소 5곳 총 거래대금은 약 77조5952억원으로 집계됐다. 이는 전년도 비슷한 시기(2025년 1월 6일~2월 5일) 거래대금(371조4181억원)과 비교해 약 80% 감소한 수준이다. 가장 타격이 큰 곳은 시장 점유율이 높은 업비트다. 해당 기간 업비트 거래대금은 271조6223억원에서 48조9858억원으로 약 82% 줄었다. 빗썸 역시 같은 기간 91조9274억원에서 23조6062억원으로 74% 감소했다. 이외에도 고팍스는 거래대금이 약 89%, 코빗은 61% 줄었으며, 코인원은 21% 감소해 비교적 감소폭이 가장 적었다. 거래대금 감소 배경으로 지난해 10월 발생한 이른바 '검은 토요일' 이후 이어진 시장 위축과 함께, 국내 주식시장으로의 자금 이동이 지목된다. '검은 토요일'은 지난해 10월 10일부터 이틀간 약 27조원 규모 역대 최대 청산이 발생한 사건이다. 도널드 트럼프 미국 대통령 대중 고율 관세 발언과 바이낸스 거래지원 시스템 오류가 복합적으로 작용한 것으로 알려졌다. 김민승 코빗 리서치센터장은 “지난해 비트코인이 12만달러를 기록한 이후 상승 탄력이 제한된 데다, 국내 투자자금이 주식시장으로 이동했을 가능성이 크다”며 “특히 지난해 10월 10일 폭락 사건을 기점으로 거래가 본격적으로 위축된 것으로 보인다”고 설명했다. 이처럼 거래대금이 급감하자 가상자산 업계 전반에 위기감이 감돌고 있다. 업비트를 제외하면 시장 점유율이 한 자릿수에 그치는 나머지 거래소는 내부에서 존폐 위기까지 거론되는 상황이다. 국내 5대 원화 거래소 수익 약 99%가 개인 거래 수수료에 의존하고 있어, 거래대금 감소는 곧 수익성 악화로 직결되기 때문이다. 한 가상자산 거래소 관계자는 “거래대금이 작년 대비 크게 줄면서 내부 분위기가 상당히 침체돼 있다”며 “회사 존속 자체를 걱정하는 목소리까지 나올 정도”라고 전했다. 이에 원화 거래소는 가상자산 시장 활성화와 생존을 위해 거래 규모가 큰 법인 시장 진입 허용을 요구하고 있다. 금융위원회는 지난해 5월 비영리법인과 가상자산 거래소를 대상으로 실명계좌 발급을 허용한 데 이어, 영리법인 시장 진입 허용 계획을 발표한 바 있다. 다만 이해관계자 간 의견 조율이 길어지면서 일정이 지연됐고, 금융당국은 올해 1분기 내 관련 가이드라인을 마련하겠다는 입장을 밝혔다. 또 다른 가상자산 거래소 관계자는 “올해 가상자산 관련 입법과 영리법인 시장 진출 가이드라인이 마련돼 불확실성이 해소되면, 거래대금도 점진적으로 회복될 것으로 기대한다”고 말했다.

2026.01.05 18:34홍하나

[ZD 위클리 코인] 밈·AI·스포츠 강세...도지코인 약 20% 상승 눈길

지난 12월 29일부터 1월 4일까지 한 주 동안 업비트 종합지수는 전주 대비 4.24% 상승했고, 업비트 알트코인 지수는 7.86% 오르며 종합지수 대비 높은 상승률을 기록했다. 주간 공포·탐욕 지수 평균은 44.74로 중립 단계에 머물렀으며, 지수 범위는 40.67에서 48.58 사이로 집계됐다. 지수 기여도 측면에서는 비트코인(3.50%)이 업비트 종합지수 상승에 가장 큰 영향을 미쳤고, 알트코인 지수에서는 XRP가 11.30% 상승하며 주요 기여 자산으로 나타났다. 이번 주에는 밈, AI, 스포츠 섹터가 상대적으로 높은 상승률을 기록했다. 밈 섹터는 23.74% 상승해 주간 최고 성과를 보였으며, 도지코인이 19.89% 상승하며 섹터 지수 상승에 영향을 미쳤다. AI 섹터는 22.80% 올랐고, 렌더가 50.23% 급등하며 지수 상승을 주도했다. 스포츠 섹터 역시 18.54% 상승했으며, 칠리즈가 22.16% 오르며 섹터 강세에 기여했다. 반면 소셜·DAO 섹터는 0.58% 상승에 그쳤고, 광고 섹터는 -0.18%, 스테이블코인 섹터는 -0.62%를 기록하며 상대적으로 부진했다. 개별 종목 기준으로는 상승과 하락의 차이가 분명했다. 주간 베스트 자산으로는 페페가 70.77% 급등하며 가장 높은 상승률을 기록했다. 반면 플로우는 16.33% 하락해 주간 워스트 자산으로 분류됐다. 공포·탐욕 지수 분류에서는 칠리즈가 주간 평균 75.25로 탐욕 구간에 위치했고, 가격도 22.16% 상승했다. 페페 역시 평균 65.42로 탐욕 구간을 기록하며 높은 상승률을 보였다. 반대로 플로우는 평균 13.77로 매우 공포 구간에 머물렀고, 주간 가격도 두 자릿수 하락을 기록했다. 카브는 평균 27.72로 공포 구간에 속했지만 가격은 1.64% 상승했고, 소폰은 평균 31.12로 공포 구간에 위치한 가운데 7.10% 상승했다. 전략 인덱스 전반은 상승 흐름을 보였다. 모멘텀 Top5는 4.26% 상승했으며, 수이가 16.44% 오르며 주요 기여 자산으로 나타났다. 로우볼 Top5는 9.06% 상승해 종합지수 대비 높은 상승률을 기록했고, 크로노스가 15.56% 오르며 지수 상승에 영향을 미쳤다. 컨트래리안 Top5 역시 4.83% 상승했으며, XRP가 주요 상승 요인으로 집계됐다. 보합 종목군은 주간 변동률 ±1% 미만 기준에서 제한적으로 나타났다. 업비트 종합지수와 알트코인 지수가 모두 상승했지만, 공포·탐욕 지수 평균은 중립 구간에 머물러 주간 시장 심리는 특정 방향으로 크게 치우치지 않은 모습이었다.

2026.01.05 13:49김한준

업비트, 뚜레쥬르와 한정판 케이크 출시

가상자산 거래소 업비트 운영사 두나무는 CJ푸드빌이 운영하는 베이커리 브랜드 뚜레쥬르와 '2026 업비트 위시 케이크'를 출시한다고 5일 밝혔다. '2026 업비트 위시 케이크'는 총 3만개 한정 수량으로 제작되며, 오는 6일부터 전국 뚜레쥬르 매장에서 판매된다. 해당 케이크 구매 시 업비트 이벤트 응모권이 함께 제공된다. 1월 27일까지 응모권을 업비트 이벤트 페이지에 등록하면 추첨을 통해 1비트코인(BTC)(1명), CJ기프트카드 100만원(5명), CJ기프트카드 50만원(10명) 등 경품이 제공된다. 이와 함께 이벤트 기간 내 업비트에 신규 가입한 후 응모한 회원에게 5만원 상당 비트코인이 지급될 예정이다. 업비트 관계자는 “새해를 맞아 사용자 바람과 새로운 출발을 응원하는 의미에서 이번 협업을 하게 됐다”며 “앞으로도 고객의 일상과 자연스럽게 연결되는 다양한 협업을 이어갈 계획”이라고 말했다.

2026.01.05 08:51홍하나

[유미's 픽] 고석현發 中 모델 의혹에 정부도 '움찔'…국가대표 AI 개발 경로까지 본다

정부가 독자 인공지능(AI) 파운데이션 모델 프로젝트 정예 5개 팀을 대상으로 최종 모델뿐 아니라 복수의 중간 학습 기록까지 제출받아 검증하기로 하면서 국가 AI 사업의 평가 기준이 성능 경쟁에서 개발 경로 검증 중심으로 전환되고 있다. 업스테이지의 '솔라 오픈 100B'를 둘러싼 모델 유사성 논란을 계기로, 정부가 '프롬 스크래치(from scratch)' 여부를 기술적으로 입증하는 체계를 본격화했다는 해석이 나온다. 4일 과학기술정보통신부에 따르면 정부는 다음 주부터 평가를 진행해 오는 15일께 독자 AI 파운데이션 모델 프로젝트 정예 5개 팀 중 한 팀을 탈락시킨다. 이번 평가에서는 모든 팀으로부터 최종 모델 파일과 함께 복수의 중간 체크포인트(checkpoint)를 제출받아 전문기관인 한국정보통신기술협회(TTA)를 통해 면밀한 기술 검증을 실시할 예정이다. 중간 체크포인트는 AI 모델이 학습 과정에서 일정 단계마다 저장한 가중치 상태로 ▲모델이 랜덤 초기화에서 출발했는지 ▲학습이 연속적인 경로를 거쳤는지 ▲외부 모델 가중치가 중간에 유입됐는지 여부를 사후적으로 확인할 수 있는 핵심 자료다. 단일 최종 결과물만으로는 확인하기 어려웠던 개발 이력을 추적할 수 있다는 점에서 업계에선 이번 방침을 프롬 스크래치 주장에 대한 증빙 책임을 제도화한 조치로 보고 있다.배경훈 과학기술정보통신부 부총리 겸 장관은 "평가 과정에서 모든 정예팀으로부터 개발 모델의 최종 파일과 복수의 중간 체크포인트 파일 등을 제출받아 검증할 예정"이라며 "전문가 평가위원회를 통해서도 같은 자료를 바탕으로 계획에 부합한 AI 모델이 개발됐는지 여부를 검증해 확인할 것"이라고 설명했다. 정부가 이처럼 나선 것은 고석현 사이오닉에이아이 대표가 지난 1일 업스테이지의 독자 AI 프로젝트 모델 '솔라 오픈 100B'가 중국 AI를 도용·파생했다는 의혹을 제기한 것이 계기가 됐다. 고 대표는 '솔라 오픈 100B'의 기술 분석 자료를 공개하고 중국 지푸AI의 'GLM-4.5-에어' 모델에 기반을 둔 파생 모델이라고 의혹을 제기했다. 또 정부가 독자 AI 프로젝트의 참여 조건으로 제시한 프롬 스크래치(처음부터 만드는 것) 방식으로 학습된 모델이라면 나타나기 어려운 유사도라고 강조했다.이에 업스테이지는 곧바로 다음날 서울 강남역 인근에서 기술 공개 검증 행사를 열어 단순 레이어 유사성만으로 모델 파생 여부를 단정하는 것은 무리가 있다고 반박했다. 김성훈 업스테이지 대표는 "학습된 다른 모델의 가중치를 그대로 가져왔다면 프롬 스크래치가 아니지만, 모델 아이디어나 인퍼런스 코드 스타일을 참조하는 건 허용된다"며 "오픈소스 생태계에서 모델이 상호 호환되려면 구조가 비슷해야 한다"고 주장했다. 이후 문제를 제기한 고 대표는 또 다른 게시물을 통해 "상이한 모델도 레이어 값에선 높은 유사도를 보일 수 있다고 본다"면서도 "중국 모델 코드와 구조를 잘 학습하는 게 국가적인 AI 사업의 방향으로 타당한지는 의문"이라고 재차 문제를 제기했다. 이를 두고 업계에선 고 대표가 제시한 분석이 기술적으로 성립하기 어렵다는 점을 지적하며 전반적으로 업스테이지의 손을 들어줬다. 고 대표 역시 이날 또 다시 입장문을 통해 자신의 분석 방법에 한계가 있었음을 인정하며 "해당 근거를 보다 엄밀하게 검증하지 않은 채 공개함으로써 불필요한 혼란과 논란을 야기했다"고 사과했다. 그러나 고 대표는 이번 사안을 단순한 기술적 도용 논쟁이 아니라 '소버린 AI'와 '독자 파운데이션 모델'의 기준을 어떻게 정의할 것인가에 대한 구조적 질문으로 봐야 한다는 입장은 여전히 유지했다. 해외 모델의 코드나 구조를 참고·학습하는 방식이 국가 주도 독자 AI 사업의 취지에 부합하는지, 독자성을 판단하는 기준이 기술·학술적으로 얼마나 명확히 정리돼 있는지에 대한 논의가 필요하다고도 주장했다. 일각에선 고 대표의 초기 문제 제기 방식에 대해선 비판적인 태도를 보였으나, 이번 논쟁을 통해 독자 AI 모델의 개발 경로, 외부 레퍼런스 활용 범위, 학습 과정 공개 수준 등에 대한 사회적 합의 필요성이 수면 위로 떠올랐다는 점에 대해선 긍정적으로 봤다. 업계 관계자는 "이번 논란은 누가 옳고 그르냐를 가르는 사건이라기보다 한국형 파운데이션 모델을 어떤 기준으로 검증하고 설명해야 하는지를 집단적으로 학습한 과정에 가깝다"며 "검증 로그 공개, 체크포인트 관리, 참고 문헌 표기 같은 관행이 정착되는 계기가 될 수 있다"고 말했다. 또 다른 관계자는 "(고 대표가) 의혹을 제기하는 과정에서는 분명히 성급했던 부분이 있었지만, 사과와 인정이 공개적으로 이뤄졌다는 점 자체가 국내 AI 생태계의 성숙도를 보여주는 장면"이라며 "장기적으로는 정부 프로젝트 전반의 신뢰성을 높이는 방향으로 이어질 가능성이 크다"고 평가했다.정부 역시 이번 사안을 계기로 독자 AI 파운데이션 모델 프로젝트의 평가 기준을 보다 구체화해야 한다는 과제를 안게 됐다. 성능 중심 평가를 넘어 학습 경로의 투명성, 외부 기술 활용에 대한 명확한 가이드라인, 검증 가능한 공개 방식 등이 제도적으로 보완될 필요가 있다는 지적이다.이번 일에 대해 배 부총리는 긍정적으로 평가하며 독자 AI 파운데이션 모델의 검증 체계를 보완해야 할 필요성을 언급했다. 또 이번 사안을 계기로 정부가 정의한 '독자 AI 파운데이션 모델'을 어떻게 기술적으로 검증할 것인가에 대해서도 고민하는 모습을 보였다. 그는 지난 3일 자신의 소셜 미디어(SNS)를 통해 "데이터 기반의 분석과 이에 대해 공개 검증으로 답하는 기업의 모습은 우리 AI 생태계가 이미 글로벌 수준의 자정 작용과 기술적 투명성을 갖추고 있음을 보여준다"며 "성장통 없는 혁신은 없다"고 밝혔다. 이어 "의혹 제기는 할 수 있는 것"이라며 "이를 공개 검증으로 증명한 기업과 인정하고 사과한 문제 제기자 모두에게 감사하다"고 덧붙였다.국가AI전략위원회 관계자들도 이번 일에 대해 긍정적으로 평가했다. 박태웅 국가AI전략위원회 공공 AX 분과장은 "순식간에 다양한 검증과 토론이 이뤄지는 과정을 통해 한국 AI 생태계의 저력을 확인했다"고 말했다. 임문영 국가AI전략위원회 부위원장 역시 "검증 논란을 통해 방법의 한계와 개선점이 드러났고, 이는 AI 생태계가 건강하게 작동하고 있음을 보여준다"고 밝혔다.조준희 국가AI전략위원회 산업 AX·생태계 분과장도 최근 독자 파운데이션 모델의 유사성 논란이 건강한 기술 토론으로 이어진 점을 매우 고무적이라고 평가했다. 그러면서도 이제는 기술의 원천에 대한 논쟁을 넘어 '우리 모델이 글로벌 빅테크 대비 어떠한 차별적 경쟁력을 갖출 것인가'라는 소비자 관점의 본질에 집중해야 한다는 점도 강조했다. 그는 "'독자 기술'이라는 명분에만 함몰되면 정작 사용성이 뒤처져 시장에서 외면 받는 결과를 초래할 수 있다"며 "모델의 성패가 사용자의 선택에 달려 있다"고 밝혔다. 이어 "국내 모델이 지속 가능한 선순환 구조를 만들려면 적시성 있는 답변과 높은 활용도 등 철저히 고객 친화적 개발 방향을 견지해야 할 것"이라며 "5개 컨소시엄들이 이 기술을 어떻게 '잘 팔리는 서비스'와 '매력적인 상품'으로 연결할지 치열하게 고민해야 할 시점"이라고 덧붙였다. 다만 일각에선 정부가 '프롬 스크래치'를 어디까지 허용할 것인지에 대한 세부 기술 기준을 공식 문서로 명시하진 않았다는 점에서 여전히 우려를 나타냈다. 오픈소스 아키텍처 활용 범위, 구조적 유사성의 허용선, 토크나이저 재사용 여부 등은 여전히 정책적 해석의 영역으로 남아 있어서다. 업계에선 이번 정부 방침을 독자 AI 평가가 '결과물 중심'에서 '개발 경로와 증빙 책임 중심'으로 이동하고 있음을 보여주는 신호로 받아들이는 분위기다. 성능 지표만으로는 설명할 수 없는 '독자성'을 앞으로 학습 이력과 로그로 입증해야 하는 단계에 들어섰다는 점에서 고무적으로 평가했다. 업계 관계자는 "이번 논란은 누가 맞고 틀렸는지를 가리는 사건이라기보다 한국 AI 생태계가 공개 검증과 공개 토론을 감당할 수 있는 단계에 들어섰음을 보여준 사례"라며 "이 경험이 제도와 기준으로 남는다면 독자 AI를 둘러싼 논쟁은 반복되지 않을 것"이라고 말했다. 배 부총리는 "지금의 논쟁은 대한민국 AI가 더 높이 도약하기 위해 반드시 거쳐야 할 과정"이라며 "정부는 공정한 심판이자 든든한 페이스메이커로서 우리 AI 생태계가 성숙하게 발전할 수 있도록 역할을 다하겠다"고 밝혔다.

2026.01.04 06:00장유미

"솔라 독창성, 99.99%"…업스테이지, 데이터 공개로 도용 의혹 반박

업스테이지가 최신 언어모델 '솔라'를 둘러싼 기술 도용 의혹에 대응하기 위해 모델 설계도에 해당하는 학습 로그와 내부 데이터를 공개했다. 이는 독자 기술로 모델을 처음부터 구축했다는 '프롬 스크래치' 진위 논란에 정면 돌파하려는 전략이다. 김성훈 업스테이지 대표는 2일 서울 강남 인근 사무실에서 온·오프라인으로 '솔라 오픈' 현장 검증회를 열었다. 이번 검증회는 지난 1일 제기된 모델 프롬 스크래치 논란을 해소하기 위해 마련됐다. 앞서 고석현 사이오닉AI 대표는 솔라 오픈 100B가 중국 지푸AI의 'GLM-4.5-에어(Air)' 모델에 기반을 둔 파생 모델이라는 의혹을 제기했다. 솔라 오픈 100B는 지난달 30일 업스테이지가 '독자 AI 파운데이션 모델' 1차 성과 발표회에서 공개한 모델이다. 이날 업스테이지는 일부서 제기한 레이어놈(LayerNorm) 유사성을 근거로 타 모델 가중치를 재사용했다는 주장은 통계적 착시에 불과하다고 밝혔다. 레이어놈은 AI 모델 학습 안정성을 높이기 위해 데이터 수치를 일정하게 정돈하는 기술이다. LLM이 수조 개 데이터를 학습하는 과정에서 연산 값이 지나치게 커지거나 작아져 계산이 꼬이는 것을 방지하는 안정장치 역할을 한다. 솔라를 비롯해 'GPT', '라마' 등 전 세계 다수 AI 모델이 채택하고 있는 트랜스포머 핵심 표준 기술이다. 일각에선 솔라와 지푸가 레이어놈 유사성이 존재한다는 이유로 이같은 의혹이 등장했다. 솔라가 프롬 스크래치 모델이라면 해당 수치가 우연히 일치할 확률이 극히 낮다는 이유에서다. 이에 업스테이지는 해당 구간은 모델 전체 약 0.0004%에 불과한 미세 영역이라며 정면 반박했다. 오히려 솔라 오픈의 99.9996%가 타 모델과 완전히 상이함을 보여주는 역설적 지표라는 설명이다. 김 대표는 레이어놈 유사성 판단에 사용된 '코사인 유사도' 역시 적절한 비교 기준이 아니라고 선그었다. 그는 "코사인 유사도는 벡터 방향만 비교하는 단순 지표"라며 "통상 언어모델들의 레이어놈은 비슷한 구조와 특성을 공유한다"고 설명했다. 이어 "독립적인 모델 간 유사도가 높은 값으로 나오는 것이 오히려 자연스러운 현상"이라고 덧붙였다. 김 대표는 토크나이저 도용 주장 역시 어휘 수와 중복률 데이터로 반박했다. 그는 "솔라 오픈의 어휘 수는 19만6천 개로 비교 대상 모델인 15만 개와 차이가 크다"며 "공통 어휘는 41% 수준에 불과해 통상적인 동일 계열 모델의 중복률인 70%에 한참 못 미치는 독자적 결과물"이라고 주장했다. 업스테이지는 소스코드 무단 사용·라이선스 조작 의혹도 기술적 근거로 선을 그었다. 김 대표는 "외부 접근이 불가능한 학습 코드를 재사용한다는 주장은 기술적으로 성립할 수 없다"며 "인퍼런스 코드는 서빙 호환성을 위해 '아파치 2.0 라이선스'에 따라 정당하게 활용한 것"이라고 설명했다. 김 대표는 "의견을 주고받는 건강한 토론은 환영하나 허위 사실을 단정적으로 전달하는 행위는 AI 3강을 향해 최선을 다하고 있는 기업과 정부 노력을 심각하게 훼손하는 것"이라고 지적했다. 이어 "앞으로 투명한 기술 공개 바탕으로 글로벌 최고 수준 기술력을 증명하고 국내 AI 생태계 확장에 힘쓰겠다"고 밝혔다.

2026.01.02 18:44김미정

[유미's 픽] 업스테이지 中 모델 도용 논란 가열…'국대 AI' 검증 기준 시험대

정부에서 추진 중인 '독자 인공지능(AI) 파운데이션 모델 프로젝트'에 참가한 업스테이지의 중국 모델 도용·파생 의혹이 제기된 후 논쟁이 기술 공방과 검증 기준 논의로 확대되고 있다. 이번 사안이 업스테이지를 넘어 이번 프로젝트 '정예 5팀'에 선발된 경쟁사들에게도 영향을 미칠지 주목된다. 2일 업계에 따르면 업스테이지는 이날 오후 3시 서울 강남역 인근에서 '솔라 오픈 100B'의 개발 과정 전반을 검증하는 공식 행사를 진행할 예정이다. 이 자리에는 김성훈 업스테이지 대표와 이번 모델 개발에 참여한 관계자, 참석을 희망한 70여 명의 업계 전문가들이 참석할 예정이다. 업스테이지 측은 '솔라 오픈 100B'의 중국 모델 표절을 주장한 고석현 사이오닉에이아이 대표도 공개적으로 초청했다. 이번 일은 고 대표가 지난 1일 깃허브를 통해 업스테이지의 '솔라 오픈 100B'의 기술 분석 보고서를 공개한 것이 발단이 됐다. '솔라 오픈 100B'는 지난 달 30일 업스테이지가 '독자 AI 파운데이션 모델' 1차 성과 발표회에서 공개한 모델이다. 고 대표는 '솔라 오픈 100B'가 중국 지푸AI의 'GLM-4.5-에어(Air)' 모델에 기반을 둔 파생 모델이라고 의혹을 제기하며 유감을 표했다. '독자 AI 파운데이션 모델' 프로젝트가 우리나라 AI 주권 확립을 위한 국가대표 AI 선발전인 데다 '프롬 스크래치(100% 독자 개발)' 준수가 공식 참여 조건으로 명시돼 있어서다. 이번 의혹이 사실일 경우 업스테이지는 자격 미달로 5개 팀 중 첫 탈락 1순위에 오르게 된다. 이에 업스테이지는 공개 검증회를 곧바로 열어 논란 잠재우기에 나섰다. 특히 이번에 학습에 사용한 중간 체크포인트(checkpoint)와 AI 모델 학습 과정과 실험 결과를 기록·관리하는 도구인 '웨이츠 앤 바이어시스(Weights & Biases·wandb)'를 모두 공개한다고 밝히는 초강수를 뒀다. '웨이츠 앤 바이어시스'는 블랙박스와 유사한 것으로, 로그 누락·사후 조작이 힘든 것으로 알려졌다. '프롬 스크래치' 공방 본격화…'가중치 유사성'이 쟁점 이번에 고 대표가 제기한 의혹의 핵심은 두 모델의 가중치 구조 유사성이다. 그는 공개한 보고서를 통해 '솔라 오픈 100B'와 'GLM-4.5-에어'의 레이어별 파라미터를 비교한 결과, 신경망 구성 요소 중 하나인 레이어놈(LayerNorm)에서 매우 높은 수준의 유사도가 관측됐다고 주장했다. 또 이를 근거로 프롬 스크래치 방식으로 학습된 모델이라면 나타나기 어려운 수치라며 중국 모델을 기반으로 일부 가중치를 보존한 파생 모델일 가능성을 제기했다. 고 대표는 '솔라 오픈 100B'의 구동 코드 일부에서 GLM 모델과 동일한 설정 코드가 발견됐다고도 주장했다. 특히 'GLM-4.5-에어'가 46개 레이어 구조를 갖는 모델임에도 48개 레이어 구조인 '솔라 오픈 100B'의 코드에 GLM 전용 레이어 예외 처리 구문이 남아 있다는 점을 문제 삼았다. 여기에 논란이 제기된 이후 깃허브 저장소의 라이선스 파일에 중국 지푸AI 관련 저작권 문구가 병기된 점 역시 의혹을 키우는 대목으로 지목했다. 업스테이지는 이러한 주장에 대해 "기술적 사실과 다르다"며 정면 반박하고 있다. 회사 측은 레이어놈 유사성만으로 모델 파생 여부를 단정하는 것은 무리가 있고, 코드 내 일부 유사한 표현 역시 오픈소스 생태계에서 통용되는 관행이나 호환성 확보 과정에서 발생할 수 있는 문제라는 입장이다. 라이선스 표기 변경에 대해서도 법적 검토 과정에서의 정비 차원이라는 설명이다. 도용 단정은 이르다…업계 "종합 검증 필요" 업계와 학계에서는 이번 논쟁을 둘러싸고 신중론이 동시에 제기되고 있다. 레이어놈 파라미터는 초기값과 학습 특성상 구조와 학습 목표가 유사한 대규모 언어모델에서 높은 유사도가 나타날 수 있어 단일 지표만으로 도용 여부를 판단하기는 어렵다는 지적이다. 실제 도용 여부를 가리려면 어텐션의 Q·K·V 가중치나 레이어 전반의 구조적 일치 여부, 학습 경로에 대한 종합적인 검증이 필요하다는 의견도 나온다.또 업계에선 고석현 대표의 문제 제기에 대해 단일 지표만으로 도용 여부를 단정하는 데에는 한계가 있다는 다수 의견도 나오고 있다. 특히 이승현 포티투마루 부사장은 사이오닉에이아이의 분석이 기술적으로 충분한 근거를 갖췄는지에 대해 의문을 제기하며, 현재 공개된 자료를 토대로 업스테이지의 '프롬 스크래치' 주장에 더 무게를 두는 모습을 보였다. 이 부사장은 "프롬 스크래치 여부는 모델 가중치가 어떻게 형성됐는지에 관한 기술적 문제로, 라이선스 표기나 소버린 AI 논의는 별도의 정책적 판단 영역"이라며 "레이어놈이나 임베딩과 같은 보조 파라미터의 유사성은 구조와 학습 목표가 유사한 대규모 언어모델(LLM)에서 통계적으로 나타날 수 있다"고 말했다. 이에 고석현 대표 역시 이날 또 다른 게시글을 통해 기술적 유사성 문제와 별도로 이번 사안을 소버린 AI 관점에서 바라봐야 한다는 입장을 강조하며 업스테이지 논란에서 한 발 물러서는 모습을 보였다. 그는 해외, 특히 중국 모델의 코드와 구조를 적극적으로 학습·참고하는 방식이 정부 주도의 독자 AI 파운데이션 모델 사업 취지에 부합하는지에 대한 근본적인 질문을 던지며 기술적 도용 여부와는 별개로 정책적 기준에 대한 논의가 필요하다고 주장했다. 업스테이지 논란, 다른 정예 5팀에도 '설명 책임' 부담 일각에선 이번 사안이 업스테이지 한 곳에 그치지 않고 독자 AI 파운데이션 모델 프로젝트에 참여 중인 다른 '정예 5팀'에도 적잖은 영향을 미칠 수 있다는 관측이 나온다. LG AI연구원, 네이버클라우드, NC AI, SK텔레콤 등 다른 참여 기업들 역시 향후 모델 공개 과정에서 개발 경로와 외부 모델 활용 여부, 프롬 스크래치의 정의에 대해 보다 명확한 설명을 요구받을 가능성이 커졌다는 평가다. 정부의 대응에도 관심이 쏠린다. 현재 독자 AI 파운데이션 모델 프로젝트는 성능과 활용 가능성을 중심으로 평가가 이뤄져 왔지만, 이번 논란을 계기로 학습 경로와 개발 과정에 대한 검증 기준을 보다 구체화해야 한다는 목소리가 커지고 있다. 일각에서는 중간 체크포인트 제출이나 학습 로그 관리·보관 의무화 등 제도적 보완이 필요하다는 지적도 제기된다. 업계 관계자는 "이번 논쟁은 특정 기업의 공방을 넘어 독자 AI를 어떤 기준으로 검증할 것인지에 대한 시험대가 되고 있다"며 "업스테이지의 공개 검증 결과에 따라 다른 참여 기업들과 정부 역시 개발 투명성과 설명 책임의 수준을 다시 설정해야 할 상황에 놓일 수 있다"고 말했다.

2026.01.02 13:28장유미

"업비트 2030 이용자 수, 전체 청년 인구 44% 해당"

국내 2030 연령층 두명 중 한 명꼴로 가상자산 거래소 업비트를 이용하고 있는 것으로 나타났다. 업비트 운영사 두나무가 지난해 주요 이용 현황을 담은 인포그래픽을 2일 발표했다. 2025년 12월22일 기준, 업비트 누적 회원은 1천326만명으로 집계됐다. 2025년 신규 가입자는 110만명으로 2017년 서비스 출시 이후 지속적인 성장세를 이어가고 있다. 전체 이용자 중 청년세대가 눈에 띄었다. 업비트를 이용하는 2030세대는 548만명으로, 지난해 11월 기준 행정안전부 주민등록인구통계상 전체 2030세대(1237만명) 44%를 차지했다. 업비트 이용자 구성은 남성 65.4%, 여성 34.6%로 나타났다. 이용자 연령대별 비중은 30대(28.7%)가 가장 높았으며, 뒤이어 40대(24.1%), 20대(23.2%), 50대(16.9%), 60대(6.0%), 70대 이상(1.1%) 순이었다. 투자자 저변도 넓어지고 있다. 그간 남성 중심이었던 시장에 여성 이용자 유입이 두드러졌다. 2025년 신규 이용자 중 여성은 43.1%로, 남성(56.9%)과 차이가 약 13% 포인트로 좁혀졌다. 연령대별로도 살펴보면 신규 이용자 중 50대는 20%로 나타났다. 이는 3040세대 증가폭과 비슷한 수준으로 디지털자산에 대한 관심이 성별과 세대를 가리지 않고 확산되는 추세임을 입증했다. 한편 2025년 투자자들이 가장 많이 거래한 종목은 리플(XRP)로 집계됐다. 비트코인(BTC)과 이더리움(ETH)이 뒤를 이었으며, 테더(USDT)와 도지코인(DOGE)도 상위권에 이름을 올렸다. 하루 중 거래가 가장 활발한 시간은 오전 9시로 분석됐다. 지난해 연중 거래가 가장 뜨거웠던 날은 1월 9일로, 하루 거래대금만 20조8600억원을 기록했다. 미국 대선 이후 친 디지털자산 정책에 대한 기대감이 시장에 투영된 결과로 풀이된다. 업비트 관계자는 “디지털자산 투자가 일상 일부로 자리 잡은 만큼, 이용자들이 더욱 안전하고 편리하게 거래할 수 있는 환경을 조성하는 데 집중하겠다”고 말했다.

2026.01.02 09:59홍하나

[유미's 픽] 뿔난 업스테이지, '솔라 오픈 100B' 中 모델 파생 의혹에 공개 검증 '맞불'

정부에서 추진 중인 '독자 인공지능(AI) 파운데이션 모델 프로젝트'에 참가한 업스테이지가 첫 성과를 공개한 후 중국 모델을 복사해 미세 조정한 결과물로 추정되는 모델을 제출했다는 의혹에 휩싸였다. 업스테이지는 억울함을 표하며 모델 공개 검증 행사와 함께 향후 의혹 제기에 대해 강경 대응에 나설 것을 시사했다. 1일 업계에 따르면 고석현 사이오닉에이아이 대표는 이날 자신의 소셜 미디어(SNS)에 깃허브 리포트를 게재하며 업스테이지 '솔라 오픈 100B'가 중국 지푸(Zhipu) AI의 'GLM-4.5-에어'에서 파생된 모델이라고 주장했다. 고 대표는 "국민 세금이 투입된 프로젝트에서 중국 모델을 복사해 미세 조정한 결과물로 추정되는 모델이 제출됐다"며 "상당히 큰 유감"이라고 말했다. 이번 논란은 이날 오후 1시께 올라온 깃허브 리포트가 발단이 됐다. 이 리포트는 '솔라 오픈 100B'와 'GLM-4.5-에어'의 가중치 구조를 통계적으로 비교 분석한 결과를 담고 있다. 앞서 업스테이지는 지난 달 30일 독자 파운데이션 모델 '솔라 오픈 100B'를 LM 아레나 방식으로 해외 유명 모델들과 비교해 공개하며 '프롬 스크래치(From Scratch)'를 기반으로 개발했다고 소개했다. 프롬 스크래치는 AI 모델을 처음부터 직접 개발한다는 뜻으로, 데이터 수집과 모델 아키텍처 설계, 학습, 튜닝까지 모든 것을 자체적으로 수행하는 방식이다. 하지만 리포트 작성자는 '솔라 오픈 100B'와 'GLM-4.5-에어' 두 모델의 레이어별 파라미터 유사도를 측정한 결과 일부 계층에서 매우 높은 수준의 유사성이 관측됐다고 설명했다. 또 동일 모델 내부 레이어 비교보다 솔라와 GLM 간 동일 레이어 비교에서 더 높은 유사도가 나타났다고 주장하며, 이를 근거로 솔라 오픈 100B가 GLM-4.5-에어에서 파생됐다고 결론 내렸다. 다만 일각에서는 해당 분석이 두 모델의 학습 과정이나 개발 경로를 직접 확인한 것이 아니라는 점에서 해석에 신중할 필요가 있다는 지적이 나온다. 공개된 모델 가중치를 기반으로 한 사후적 통계 비교 방식으로 진행된 데다 실제 학습에 사용된 데이터셋, 학습 로그, 내부 코드베이스 등은 검증 대상에 포함되지 않았기 때문이다. 특정 가중치가 그대로 복사됐거나 모델 바이너리 차원에서 직접적인 공유가 있었다는 증거 역시 이번에 제시되지 않았다. 이 같은 의혹 제기에 대해 업스테이지는 즉각 반박에 나섰다. 고 대표가 게시물을 올린 지 2시간 후 김성훈 업스테이지 대표는 자신의 페이스북을 통해 "솔라 오픈 100B가 중국 모델을 복사해 미세 조정한 결과물이라는 주장은 사실과 다르다"며 "해당 모델은 명백히 프롬 스크래치 방식으로 학습됐다"고 강조했다. 그러면서 김 대표는 오는 2일 오후 3시 서울 강남역 부근에서 솔라 오픈 100B의 개발 과정을 공개적으로 검증받겠다고 밝혔다. 이 자리에는 의혹을 제기한 고석현 대표를 포함해 추가 검증에 참여하고 싶은 업계 및 정부 관계자들을 초청할 계획이다. 또 업스테이지 측은 이후에도 이 같은 의혹이 제기될 경우 더 강경하게 대응할지에 대해서도 내부 검토에 착수했다. 김 대표는 "학습에 사용한 중간 체크포인트(checkpoint)와 AI 모델 학습 과정과 실험 결과를 기록·관리하는 도구인 '웨이츠 앤 바이어시스(Weights & Biases·wandb)'를 모두 공개할 예정"이라며 "명확한 검증 절차를 공개해 사실 관계를 바로잡도록 할 것"이라고 말했다. 업계에서는 이번 공개 검증이 논란의 분수령이 될 수 있다는 평가를 내놨다. 실제 학습 체크포인트와 로그가 공개될 경우 '솔라 오픈 100B'가 특정 시점에서 외부 모델을 기반으로 파인튜닝됐는지, 독립적인 학습 경로를 거쳤는지를 보다 명확히 확인할 수 있기 때문이다. 동시에 통계적 유사성만으로 모델 복제 여부를 단정하기는 어렵다는 신중론도 제기된다. 대규모 언어모델 개발 과정에서는 유사한 아키텍처와 데이터, 학습 레시피를 사용할 경우 높은 유사도가 나타날 수 있어서다. 또 지식 증류(distillation)나 합성 데이터 활용 여부에 따라 통계적 패턴이 겹칠 가능성도 존재한다는 지적도 나온다. 업계 관계자는 "이번 논란이 주목받는 이유는 해당 모델이 정부 예산이 투입되는 '독자 AI 파운데이션 모델 프로젝트'의 결과물이기 때문"이라며 "사업 취지상 해외 모델에 대한 기술적 의존 여부와 개발 과정의 투명성은 핵심적인 검증 대상이 될 수밖에 없다"고 설명했다. 그러면서 "결국 이번 사안의 핵심은 통계 분석을 둘러싼 해석 논쟁을 넘어 실제 개발 과정에 대한 객관적 검증으로 옮겨가고 있다"며 "업스테이지가 예고한 공개 검증을 통해 솔라 오픈 100B의 학습 경로와 독립성이 어느 수준까지 입증될지에 많은 관심이 쏠리고 있다"고 덧붙였다.또 다른 관계자는 "이번 논란이 특정 기업의 문제를 넘어 독자 AI 파운데이션 모델 사업 전반의 검증 기준을 끌어올리는 계기가 될 수 있다"며 "다른 참여 기업들 역시 향후 모델 공개 과정에서 학습 출처와 개발 경로에 대한 설명 책임이 더 커질 가능성이 있다"고 말했다.

2026.01.01 18:09장유미

[유미's 픽] "주사위는 던져졌다"…국대 AI 첫 탈락자, 1차 발표회서 판가름?

우리나라를 대표할 인공지능(AI) 모델을 선발하는 정부 사업 '독자 AI 파운데이션 모델 프로젝트'의 첫 결과물이 공개된 가운데 어떤 기업이 이번 심사에서 살아남을지 관심이 집중된다. 각 사업자들이 내세운 모델의 성과가 달라 정부가 심사기준을 어떻게 세웠을지도 관심사다. 31일 업계에 따르면 네이버, LG AI연구원, SK텔레콤은 AI 임원, NC AI와 업스테이지는 대표가 지난 30일 오후 2시부터 서울 강남구 코엑스에서 개최된 독자 AI 파운데이션 모델 프로젝트 1차 발표회에 참여했다. 발표는 네이버를 시작으로 NC AI, 업스테이지, SK텔레콤, LG AI연구원 순서로 진행됐다. 독자 AI 파운데이션 모델 프로젝트는 그래픽처리장치(GPU)와 데이터 등 자원을 집중 지원해 국가 대표 AI 모델을 확보하는 정부 사업이다. 과학기술정보통신부는 이번 발표를 기반으로 심사를 통해 내년 1월 15일 1개 팀을 탈락시키고, 이후에도 6개월마다 평가를 거쳐 2027년에 최종 2개 팀을 선정한다. 모델 성과 제각각…정부 심사 기준이 관건 이번 심사에선 각 팀이 주어진 공통 과제를 얼마나 잘 수행했는지, 각자 제시한 목표대로 성과를 냈는지가 관건이다. 모든 팀은 최근 6개월 내 공개된 글로벌 최고 모델 대비 95% 이상의 성능을 달성해야 하는 과제가 주어진 상태다.지난 8월 정예팀으로 선정된 지 4개월만에 첫 성과를 공개해야 하는 만큼, 개발 시간이 부족한 상황에서 각자 기술력을 얼마나 끌어올렸을지도 관심사다. 각 팀의 GPU 지원 여부, 지원 받은 시기 등이 각각 달랐다는 점에서 정부가 이를 심사 시 고려할 지도 주목된다. 이번 프로젝트를 위해 SK텔레콤과 네이버클라우드는 정부에게 GPU를 임대해주고 있다. 이 탓에 두 업체는 올해 '독자 AI 파운데이션 모델 프로젝트' 진행 시 정부로부터 GPU를 지원 받지 못했다. SK텔레콤은 엔비디아의 B200 칩 1천24장을 업스테이지와 LG AI연구원에, 네이버클라우드는 H200 칩 1천24장을 NC AI에 지원하고 있다. 이 탓에 GPU가 각 업체에 지원된 시기는 다 달랐다. 업계에선 정부가 어떤 기준을 세울지에 따라 각 팀의 승패가 갈릴 것으로 봤다. 정부는 그간 5개팀과 여러 차례 만나 평가 기준에 대해 논의 후 이달 중순께 합의를 보고 공지했으나, 어떤 팀이 탈락할 지에 따라 여전히 논란의 불씨가 많은 것으로 알려졌다. 업계 관계자는 "당초 5개 팀이 선정될 당시 정부에 제시했던 목표치를 달성했는지가 가장 중요할 것"이라며 "각 팀이 목표로 하고 있는 모델의 크기, 성능, 활용성이 제각각인 만큼 목표 달성률을 가장 중요한 기준치로 삼아야 할 것"이라고 강조했다. 이어 "벤치마크를 활용한다는 얘기가 있지만 모델 크기가 클수록 다운로드 수 측면에서 불리할 수 있어 이를 객관적 기준으로 삼기에는 다소 무리가 있을 수 있다"며 "5개 팀과 정부가 어떤 기준에 대해 합의를 했는지, 어떤 전문가를 앞세워 심사에 나설지도 주목해야 할 부분"이라고 덧붙였다. 5개 팀 첫 성과 공개…프롬 스크래치·모델 크기·활용성 주목 이번 1차 결과 공개에서 가장 주목 받는 곳은 업스테이지다. 대기업 경쟁자들 사이에서 짧은 시간 내 '프롬 스크래치(From Scratch)'를 기반으로 가성비 최고 수준인 모델을 완성도 높게 공개했다는 점에서 많은 이들의 호응을 얻었다. 프롬 스크래치는 AI 모델을 처음부터 직접 개발한다는 뜻으로, 데이터 수집과 모델 아키텍처 설계, 학습, 튜닝까지 모든 것을 자체적으로 수행하는 방식이다. 이 개념은 거대언어모델(LLM) 개발 때 많이 언급되며 아무 것도 없는 상태에서 모델을 직접 설계하고 데이터를 수집 및 전처리해 학습시킨다는 점에서 이를 통해 AI 모델을 선보일 경우 기술력이 상당히 높다고 평가를 받는다. 오픈AI의 'GPT-4'나 구글 '제미나이', 메타 '라마', 앤트로픽 '클로드' 등이 여기에 속한다. 업스테이지는 이날 독자 파운데이션 모델 '솔라 오픈 100B'를 LM 아레나 방식으로 해외 유명 모델들과 비교해 공개하며 자신감을 표출했다. 특히 발표에 직접 나선 김성훈 대표가 '솔라 오픈 100B'를 개발하게 된 과정을 스토리텔링 형식으로 발표해 호응을 얻기도 했다. 김 대표는 향후 200B, 300B 모델과 함께 멀티모달 모델도 선보일 예정이다.업계 관계자는 "김 대표가 발표 때 딥 리서치나 슬라이드 제작 등 코딩 외에 실제로 현장에서 많이 써봤을 것 같은 서비스를 직접 라이브 데모로 보여준 부분이 인상적이었다"며 "504장의 B200 GPU로 두 달 남짓 훈련한 것을 고려하면 모델 크기나 사용된 토큰수(추정)를 정말 빡빡하게 잘 쓴 게 아닌가 싶다"고 평가했다. 이승현 포티투마루 부사장은 "(업스테이지 발표 때) 솔라 프로가 'GPT-4o-미니'나 '파이-3 미디엄'보다 벤치마크가 높아 동급 사이즈에선 가장 우수하다고 했는데, 실제 가성비가 최고 수준인 것으로 보인다"며 "당장 기업들이 가져다 쓰기에도 좋을 것 같다"고 말했다. 이어 "그동안 업스테이지의 상징과도 같았던 DUS(구조 일부를 변경해 자체화한 AI 모델 개발 방식)를 넘어 프롬 스크래치로 모델을 개발했다는 점이 인상적"이라며 "기술 리포트가 없는 게 아쉽지만, 모델 카드에 프롬 스크래치를 기재한 것과 함께 API도 공개해 자신감을 드러낸 것이 국가대표로 내세우기 적합해 보였다"고 덧붙였다. 배경훈 과학기술정보통신부 부총리 겸 장관을 배출한 LG AI연구원도 이번 발표가 끝난 후 개발 중인 모델이 국가대표로 인정받기에 손색이 없다는 평가를 받았다. 이곳은 '엑사원 4.0' 아키텍처를 기반으로 파라미터 크기를 약 7배 키워 초기화한 상태에서 새로 학습시킨 'K-엑사원'을 이번에 공개했다. 'K-엑사원'은 매개변수 236B 규모의 프런티어급 모델이다. LG AI연구원에 따르면 'K-엑사원'은 개발 착수 5개월 만에 알리바바의 '큐웬3 235B'를 뛰어 넘고 오픈AI의 최신 오픈 웨이트 모델을 앞서 글로벌 빅테크 최신 모델과 경쟁할 수 있는 가능성을 입증했다. 글로벌 13개 공통 벤치마크 평균 성능 대비 104%를 확보했다는 점도 눈에 띄는 요소다. LG AI연구원은 "기존 엑사원 4.0 대비 효율성을 높이면서도 메모리 요구량과 연산량을 줄여 성능과 경제성을 동시에 확보했다"며 "특히 전문가 혼합 모델 구조(MoE)에 하이브리드 어텐션 기술을 더해 메모리 및 연산 부담을 70% 줄이고, 고가의 최신 인프라가 아닌 A100급 GPU 환경에서 구동할 수 있도록 했다"고 설명했다. 이곳은 향후 조 단위 파라미터 규모 글로벌 최상위 모델과 경쟁할 수 있도록 성능을 고도화한다는 계획이다. 또 글로벌 프론티어 AI 모델을 뛰어넘는 경쟁력을 확보해 한국을 AI 3강으로 이끌 것이란 포부도 드러냈다. 이번 발표를 두고 업계에선 LG AI연구원이 5개 팀 중 기술적인 내용이 가장 많이 들어있어 신뢰도가 높았다고 평가했다. 또 추론 강화를 위해 아키텍처를 변형하고 커리큘럼 러닝을 적용했다는 점에서 모델이 '프롬 스크래치'임을 명백히 보여줬다고 평가했다. 다만 동일 아키텍처인 32B 모델의 리포트와 가중치만 공개돼 있고, 이번 모델인 236B는 공개하지 않았다는 점은 아쉬운 대목으로 지적됐다. 업계 관계자는 "'K-엑사원'은 구조, 가중치가 완전 국산이란 점에서 통제권과 설명 가능성이 충분히 확보돼 있다고 보인다"며 "국방, 외교, 행정망 등 국가 핵심 인프라에 충분히 쓰일 수 있을 듯 하다"고 말했다. 그러면서도 "이번 발표에서 자체 MoE나 하이브리드 어텐션(hybrid attention, 효율·성능을 위해 다양한 어텐션 방식을 상황별로 혼합한 구조), 아가포(AGAPO, 어텐션·파라미터 사용을 입력에 따라 동적으로 조절하는 내부 최적화 기법) 같은 기술들에서 인상 깊은 것이 없다는 것은 아쉽다"며 "다음에는 실질적 효과에 대한 정량적 수치가 잘 기술되면 좋을 듯 하다"고 덧붙였다.이에 대해 LG AI연구원 관계자는 "모델 제출 마감이 이번 주까지여서 제출 시점에 236B 모델을 공개할 것"이라며 "이 때 테크 리포트로 세부 사항도 담을 예정"이라고 설명했다. SK텔레콤도 이번 발표에서 많은 이들의 주목을 받았다. 짧은 시간 안에 국내 최초로 매개변수 5천억 개(500B) 규모를 자랑하는 초거대 AI 모델 'A.X K1'을 공개했기 때문이다. 특히 모델 크기가 경쟁사보다 상당히 크다는 점에서 AI 에이전트 구동 등에서 유리한 고지에 있다는 일부 평가도 나오고 있다. SK텔레콤은 모델 크기가 성능과 비례하는 AI 분야에서 한국이 AI 3강에 진출하려면 500B 규모의 AI 모델이 필수적이란 점을 강조하며 톱2까지 오를 것이란 야심을 드러내고 있다. 또 SK텔레콤은 모두의 AI를 목표로 기업과 소비자간 거래(B2C)와 기업간거래(B2B)를 아우르는 AI 확산 역량도 강조했다. 여기에 SK하이닉스, SK이노베이션, SK AX 등 관계사와 협업으로 한국의 AI 전환에 이바지하겠다는 포부도 밝혔다. 다만 일각에선 프롬 스크래치로 모델을 개발했는지에 대한 의구심을 드러내고 있어 심사 시 이를 제대로 입증해야 할 것으로 보인다. SK텔레콤은 MoE 구조라고 강조했으나, 각 전문가 모델들이 자체 개발인지, 오픈소스 튜닝인지 밝히지 않아 궁금증을 더했다. 또 모델카드는 공개했으나, 테크니컬 리포트를 공개하지 않았다는 점도 의구심을 더했다. 이승현 포티투마루 부사장은 "MoE 구조를 독자 개발했다면 보통 자랑스럽게 논문을 내는 것이 일반적"이라며 "SKT가 'A.X 3.1(34B)'라는 준수한 프롬 스크래치 모델이 있으나, 이를 15개 정도 복제해 MoE 기술로 묶은 것을 이번에 'A.X K1'으로 내놓은 것이라면 혁신은 아니라고 보여진다"고 평가했다. 이어 "정량적 벤치마크보다 서비스 적용 사례 위주로 발표가 돼 기술적 성취보다 '서비스 운영 효율'에 방점이 찍힌 듯 했다"며 "SKT가 'A.X 3.1' 모델 카드에 프롬 스크래치를 분명히 명시했지만, 이번에는 명시하지 않아 소버린 모델로 활용할 수 있을지에 대해선 아직 판단이 이르다"고 덧붙였다. 이에 대해 SKT는 다소 억울해하는 눈치다. 프롬 스크래치로 개발을 한 사실이 명백한 만큼, 조만간 발표될 테크니컬 리포트를 통해 일각의 우려를 해소시킬 것이란 입장이다. SKT 관계자는 "모델 카드에 밝혔듯 A.X K1은 192개의 소형 전문가(expert)를 가지는 MoE 구조로, A.X 3.1 모델을 단순히 이어 붙여서 만들 수 없는 복잡한 구조인 만큼 처음부터 프롬 스크래치로 학습됐다"며 "관련 세부 내용은 이달 5일 전후 테크니컬 리포트를 통해서 공개할 예정"이라고 밝혔다. 업계 관계자는 "SKT가 500B 모델을 만든다는 것을 사전에 알고 우려가 많았지만, 다른 팀에 비해 성공적으로 압도적으로 큰 모델을 공개했다는 것 자체는 굉장히 인상적"이라며 "내년 상반기까지 정부에서 지원하는 GPU를 쓰지 않기 때문에 SKT가 얼마나 많은 GPU를 투입했는지 알 수는 없지만, 500B를 충분히 학습하기에는 (성능을 끌어 올리기에) 시간이 부족했을 것 같다"고 말했다. 그러면서도 "2T까지 만들겠다는 포부는 높이 평가한다"며 "성공적인 2T 모델이 나오기를 기대한다"고 부연했다. 네이버클라우드는 국내 최초 네이티브 옴니모달 구조를 적용한 파운데이션 모델 '하이퍼클로바 X 시드 8B 옴니'를 오픈소스로 공개하며 자신감을 드러냈다.이곳은 독자 AI 파운데이션 모델 전략 핵심으로 텍스트·이미지·음성을 통합한 '옴니 모델'을 제시했다. 옴니 모델은 텍스트, 이미지, 오디오, 비디오 등 다양한 데이터 형태를 하나의 모델에서 동시에 학습하고 추론하는 구조다. 사후적으로 기능을 결합하는 방식이 아닌, 처음부터 모든 감각을 하나의 모델로 공동 학습시키는 점이 기존 모델과의 차별점이다. 또 네이버클라우드는 기존 추론형 AI에 시각·음성·도구 활용 역량을 더한 고성능 추론모델 '하이퍼클로바 X 시드 32B 씽크'도 오픈소스로 공개했다. 이 모델은 올해 대학수학능력시험(수능) 문제를 풀이한 결과 국어·수학·영어·한국사 등 주요 과목에서 모두 1등급에 해당하는 성과를 거뒀다. 영어와 한국사에서는 만점을 기록했다. 네이버클라우드 성낙호 기술총괄은 "옴니 모델 기반 구조는 그래프·차트·이미지 등 시각 정보 해석에서 별도의 광학문자인식(OCR)이나 복수 모델 호출이 필요 없다"며 "개발과 운영 구조가 단순해지면서 구축 비용과 서비스 확장 부담도 크게 낮출 수 있다"고 강조했다. 업계에선 네이버클라우드의 발표를 두고 실제 '애니-투-애니(Any-to-Any) 모델'을 작은 사이즈로 공개한 부분에 대해 인상적이라고 평가했다. '애니-투-애니 모델'은 입력과 출력의 모달리티(형식)를 가리지 않고 어떤 조합이든 처리할 수 있는 멀티·옴니모달 모델이다. 또 유일하게 '덴스(Dense) 모델'을 썼다는 점도 주목을 받았다. '덴스 모델'은 모든 파라미터가 매번 계산에 참여하는 전통적인 모델 구조로, 어떤 것을 입력하든지 항상 같은 경로로 계산이 돼 지연 시간과 비용이 MoE에 비해 안정적이라고 평가된다. 이로 인해 네이버클라우드는 경쟁사들에 비해 전체 파라미터 수는 굉장히 작아 평가 시 다소 불리한 위치에 놓여 있다는 의견도 있다. 당초 1차 심사 때 14B를 선보일 것이라고 목표했던 것과 달리 모델 크기가 8B에 그쳤다는 점도 아쉬운 점으로 지목됐다. 업계 관계자는 "네이버가 태생부터 멀티모달인 '네이티브 옴니' 아키텍처를 설계했다는 점에서 방향성이 완벽하고 독자모델로도 입증을 했지만, 경량 모델을 공개했다는 점이 아쉽다"며 "거대 모델로 스케일업 했을 때의 추론 능력과 비용 효율성이 아직 검증되지 않았다는 것이 우려된다"고 짚었다. 이어 "옴니모달은 구글, 오픈AI도 지향하는 최신 아키텍처"라며 "네이버가 이를 '패치워크(여러 모델 붙이기)'가 아닌 '네이티브'로 구현했다고 강조했다는 점에서 소버린 모델로는 충분한 가치가 있다"고 덧붙였다. NC AI는 이연수 대표가 직접 발표에 나서 산업 특화 AI를 위한 파운데이션 모델 '베키(VAETKI)'를 소개했다. 또 1단계 추진 과정에서 고품질 한국어·산업 특화 데이터를 확보하고 100B급 LLM 개발도 마쳤다고 공개했다. NC AI에 따르면 현재 베키는 제조·물류·공공·국방·콘텐츠 등 28개 이상 산업 현장에 적용돼 실질적인 성과를 창출하고 있다. NC AI는 AI 모델 바로크에 3차원(3D) 생성 기술이 결합된 바로크 3D를 활용해 전 산업군에 최적화된 버티컬 AI 설루션을 제공한다는 계획이다. 이 대표는 "우리는 1차로 100B(1천억 개)급 파운데이션 모델의 틀을 마련했다"며 "2차에서 200B, 3차에서 300B급으로 글로벌 모델급 성능을 달성하려고 한다"고 강조했다. 업계에선 NC AI의 이번 발표를 두고 경쟁력 있는 모델을 다수 보유하고 있는 것에 비해 전달력이 미흡했다고 평가했다. 100B 모델과 함께 서비스에 특화된 7B, 20B, VLM 7B까지 다양한 모델을 준비했으나, 발표 구성이 미흡해 강점이 충분히 전달되지 못했다는 의견도 나왔다. 업계 관계자는 "NC AI의 텍스트로 3D 에셋을 만드는 성능은 확실한 산업적 가치를 보여주지만, 그 이상의 것은 없어 아쉽다"며 "100B 모델을 기반으로 게임에 특화된 AI 활용을 좀 더 많이 보여줬다면 훨씬 좋았을 것 같다"고 말했다. 성과 확인 '끝'…1차 발표회 호평 속 투명한 검증 '과제' 업계에선 이번 1차 발표회의 전반적인 진행에 대해 긍정적인 평가와 함께 정부가 앞으로 조금 더 구체적인 국가대표 AI 육성 평가를 내놓을 필요가 있다고 지적했다. 이번 발표회에서 소버린 AI를 강조하는 곳은 많지만, 그 실체를 증명하는 기준이 조금 느슨해보였다는 평가도 나왔다. 업계 관계자는 "이번 발표회에서 각 팀들이 얼마나, 어떻게 혁신적인 모델을 개발해 공개했는지에 대한 구체적인 설명이 없어 아쉬움이 컸다"며 "단순한 제품 홍보 발표회 느낌을 많이 받았지만, 단기간에 모든 팀이 굉장한 일을 정부 지원을 토대로 해냈다는 것에 대해선 기대감을 가지게 했다"고 밝혔다. 이어 "최소 100B급 이상의 모델을 학습시킬만한 인프라 운용과 더불어 학습 노하우를 갖추고 있어 보여 좋았다"며 "단기간 내 실험 시간의 물리적 제한이 있었음에도 기본적으로 초거대 AI 모델을 학습시킬 기본 역량은 대부분 갖췄다고 보여져 놀라웠다"고 덧붙였다. 그러면서도 "2차 발표에선 오거나이징 하는 측에서 명확한 발표 가이드를 제시해주면 더 좋을 것 같다"며 "김성훈 업스테이지 대표의 말처럼 국민 세금이 많이 투입되고 있기 때문에 짧지만 굉장히 효과적인 발표회가 앞으로도 진행될 수 있길 바란다"고 언급했다. 또 다른 관계자는 "독자 AI 파운데이션 모델의 핵심은 어떤 데이터로, 어떤 아키텍처를 써서 어떤 방식으로 학습했는지가 투명해야 한다"며 "그 결과물은 글로벌 시장에서 통할 수 있는 객관적 수치로 증명돼야 하고, 각 팀들은 기술 리포트와 모델 카드를 의무적으로 공개해야 제대로 프롬 스크래치로 개발했는지 검증할 수 있다"고 강조했다. 그러면서 "프롬 스크래치가 만능은 아니지만 투명성은 필수"라며 "무늬만 국가대표가 아닌 실력 있는 국가대표를 가려내기 위해선 마케팅의 거품을 걷어내고 기술의 족보를 따지는 엄격한 검증 시스템이 필요하다고 본다"고 덧붙였다.

2025.12.31 17:59장유미

'AI 국가대표' 5개 정예팀, 첫 성적표 공개…"초거대·멀티모달 승부수"

정부가 추진 중인 '독자 인공지능(AI) 파운데이션 모델' 프로젝트 1차 성과가 공개되면서 정예팀 AI 전략 윤곽이 드러났다. 각 팀은 초거대·멀티모달·산업 특화 모델을 앞세워 AI 기술 경쟁력을 제시했다. 과학기술정보통신부와 정보통신산업진흥원(NIPA)은 30일 서울 코엑스 오디토리움에서 '독자 AI 파운데이션 모델' 프로젝트 1차 발표회를 열었다. 이날 네이버클라우드를 비롯한 NC AI, 업스테이지, SK텔레콤, LG AI연구원 등 5개 정예팀이 1차 성과를 공유했다. 행사에는 전문가, 기업 관계자, 시민 등 1천여 명이 참석했다. 정재헌 SK텔레콤 최고경영자(CEO)와 임우형·이홍락 LG AI연구원 공동원장, 김유원 네이버클라우드 대표, 김성훈 업스테이지 대표, 이연수 NC AI 대표 등 주요 기업 관계자들이 참석했다. 정부 측에서는 배경훈 과기정통부 부총리, 하정우 대통령실 AI미래기획수석, 임문영 국가AI전략위원회 상근 부위원장이 자리를 함께했다. 정부는 이번 1차 발표 이후 내년 1월 중 단계 평가를 진행할 예정이다. 정예팀들의 주요 성과와 향후 계획을 종합적으로 점검한 뒤 평가 결과를 공개하고, 이를 토대로 5개 팀 가운데 4개 팀을 최종 선별할 방침이다. 네이버클라우드, '옴니'모델 공개…NC AI, '베키'로 승부수 네이버클라우드는 독자 AI 파운데이션 모델 전략 핵심으로 텍스트·이미지·음성을 통합한 '옴니(Omni) 모델'을 제시했다. 기존 텍스트 중심 AI의 한계를 넘어 현실 세계를 보다 입체적으로 이해하는 것이 목표다. 옴니 모델은 텍스트, 이미지, 오디오, 비디오 등 다양한 데이터 형태를 하나의 모델에서 동시에 학습하고 추론하는 구조다. 사후적으로 기능을 결합하는 방식이 아니라, 처음부터 모든 감각을 하나의 모델로 공동 학습시키는 점이 기존 모델과의 차별점이다. 네이버클라우드 성낙호 기술총괄은 "옴니 모델 기반 구조는 그래프·차트·이미지 등 시각 정보 해석에서 별도의 광학문자인식(OCR)이나 복수 모델 호출이 필요 없다"며 "개발과 운영 구조가 단순해지면서 구축 비용과 서비스 확장 부담도 크게 낮출 수 있다"고 강조했다. 앞으로 네이버클라우드는 옴니 모델를 에이전트 AI와 버티컬 서비스 기반 기술로 활용할 계획이다. 이를 통해 소버린 AI 경쟁력을 강화하고 향후 월드 모델과 로보틱스, 자율주행 등 물리 세계 AI로의 확장도 추진할 방침이다. NC AI는 파운데이션 모델 '베키(VEKI)' 중심으로 산업 특화 AI 기술과 사업 성과를 이뤘다고 강조했다. 1단계 추진 과정에서 고품질 한국어·산업 특화 데이터를 확보하고, 100B급 LLM 개발을 마쳤다는 설명이다. 이연수 NC AI 대표는 베키가 제조·물류·공공·국방·콘텐츠 등 28개 이상 산업 현장에 적용됐다고 말했다. 그는 "현대오토에버와 손잡고 산업 AX 목표로 기술 적용을 추진했다"며 "제조·운영 데이터 기반의 AI 활용 가능성을 현장에서 검증하고 있다"고 설명했다. NC AI는 다중 전문가 구조(MoU)와 메모리 최적화 기반 MLA 아키텍처를 고도화해 기존 대비 그래픽처리장치(GPU) 사용량을 최대 83%까지 줄이고 연산 처리 시간도 약 15% 단축했다고 밝혔다. 또 데이터 부문에서는 20조 토큰 규모 다국어 사전 학습 데이터와 제조·공공·AI 안전성 등 14종의 전략적 멀티모달 데이터를 구축한 성과도 공유했다. 업스테이지, '솔라'로 한국어 추론 경쟁력 강조 업스테이지는 파운데이션 오픈 모델 '솔라 100B'를 공개하며 고성능과 효율성을 동시에 확보했다고 밝혔다. 솔라 100B는 LLM 성능을 유지하면서도 실제 활용을 염두에 둔 구조로 설계된 것이 특징이다. 전체 파라미터 규모는 1천억 개로 구성됐지만 실제 추론 과정에서는 약 120억 개 수준 파라미터만 활성화되는 구조로 작동한다. 김성훈 업스테이지 대표는 "이 모델은 대형 모델 수준 추론 능력을 유지하면서도 응답 속도와 자원 효율성을 크게 높였다"고 강조했다. 업스테이지는 해당 모델 학습 과정에서도 효율성을 강조했다. 대규모 GPU 환경에서 발생하는 장애를 자동 감지하고 즉시 대체하는 학습 시스템을 구축해 학습 중단 시간을 절반 이상 줄였다. 김 대표는 "우리는 제한된 기간과 자원 속에서도 약 20조 토큰에 달하는 대규모 데이터를 안정적으로 학습할 수 있었다"고 설명했다. 김 대표는 솔라 100B 특장점으로 우수한 한국어 이해와 추론 능력을 꼽았다. 그는 "해당 모델은 단순 암기가 아닌 단계적 추론과 맥락 이해에 초점을 맞춰 설계됐다"며 "한국어 뉘앙스와 복합 질문에서도 자연스러운 응답을 제공할 수 있다"고 말했다. 업스테이지는 솔라 100B가 산업 현장에서 실질적 생산성 향상을 이끄는 기반 모델로 자리 잡을 것으로 기대하고 있다. 김 대표는 "검색·요약·팩트체크·슬라이드 생성·심층 리포트 작성 등 복합 업무를 에이전트 방식으로 처리할 수 있다"며 "오픈 모델로 공개돼 기업과 연구기관이 커스터마이징할 수 있다"고 강조했다. SK텔레콤, '에이닷 엑스 K1' 공개…"국내 첫 5천억 파라미터" SK텔레콤은 AI 모델 '에이닷 엑스 K1(A.X K1)'을 공개했다. 에이닷 엑스 K1은 5천억 개의 파라미터를 보유한 국내 첫 LLM이다. 한국형 소버린 AI 경쟁력 확보를 목표로 개발됐다. SK텔레콤 정석근 AI CIC장은 "해당 모델은 한국어와 국내 산업 환경을 집중적으로 학습해 높은 언어 이해도와 복합 추론 능력을 갖췄다"고 설명했다. 해당 모델은 웹 탐색과 정보 분석, 요약, 이메일 발송 등 여러 단계를 거치는 복합 업무를 자율적으로 수행할 수 있다. 여행 일정 수립, 요금 조회, 예약 처리 같은 일상 업무뿐 아니라, 제조 현장 데이터와 작업 패턴을 학습해 업무 효율을 높이는 데도 활용되고 있다. 에이닷 엑스 K1은 이미 1천만 명 이상이 사용하는 '에이닷' 서비스에 적용됐다. 향후 앱을 비롯한 전화, 문자 등 여러 채널을 통해 제공될 예정이다. 정 CIC장은 "우리는 국민 누구나 일상에서 초거대 AI를 직접 활용할 수 있는 환경을 구축할 계획"이라고 강조했다. 이날 최태원 SK그룹 회장도 에이닷 엑스 K1 경쟁력을 영상을 통해 강조했다. 최 회장은 "우리는 AI를 반도체와 에너지, 배터리 등 핵심 산업에 빠르게 확산해 산업 경쟁력을 강화할 것"이라며 "대한민국 독자 AI 생태계를 주도할 것"이라고 밝혔다. LG AI연구원, 'K-엑사원' 5개월만 출시…"AI 3강 국가 발판" 이날 LG AI연구원도 'K-엑사원' 모델 성능을 처음 소개했다. 이번 모델은 매개변수 2천360억 개 규모의 프런티어급으로 설계됐다. K-엑사원은 전문가 혼합 모델 구조를 통해 성능과 효율성을 동시 확보한 것이 특징이다. 하이브리드 어텐션 기술을 적용해 기존 모델 대비 메모리 요구량과 연산량을 70% 줄였다. 성능 평가 결과 K-엑사원은 벤치마크 13종 평균에서 72.03점을 기록했다. 이는 알리바바클라우드의 '큐웬3 235B' 대비 104% 높은 성능이다. 또 오픈AI의 최신 오픈 웨이트 모델인 'GPT-OSS 120B'와 비교해도 103% 높은 수치다. 이 모델은 고가의 인프라 대신 A100급 그래픽처리장치(GPU) 환경에서도 구동이 가능하다. 이에 자금력 부족한 스타트업이나 중소기업도 프런티어급 AI 모델을 도입할 수 있는 길을 열었다는 설명이다. LG AI연구원 최정규 AI에이전트 그룹장 "우리는 향후 조 단위 파라미터 규모를 가진 글로벌 빅테크 모델과 경쟁할 것"이라며 "대한민국을 AI 3강 국가로 이끄는 게임 체인저 될 것"이라고 강조했다. 정부 관계자 '한자리'…"정예팀 모두 승자" 이날 정부 관계자도 한자리에 모여 독자 AI 파운데이션 모델 프로젝트에 참여한 정예팀을 격려했다. 배경훈 부총리 겸 과기정통부 장관은 축사를 통해 "AI 모델 개발에 매진해 온 정예팀 모두가 승자"라며 "이번 도전이 대한민국을 AI 강국으로 도약시키고, 경제·사회 전반의 AX 전환을 가속하는 결정적 동력이 될 것"이라고 밝혔다. 하정우 대통령실 AI미래기획수석은 "독자 AI 모델 개발을 통한 산업 생태계 조성을 적극 지원하겠다"며 "이번 프로젝트를 통해 국내 AI 기업들의 경쟁력이 글로벌 수준으로 빠르게 향상되고 있음을 확인했다"고 평가했다. 임문영 국가AI전략위원회 상근 부위원장은 "다섯 정예팀 모두가 대한민국 AI 생태계의 소중한 자산"이라며 "이번 1차 발표는 도전의 끝이 아니라 본격적인 출발점"이라고 강조했다.

2025.12.30 18:45김미정

독자 AI 파운데이션 모델 1차 성과 공개…"글로벌 경쟁력 확인

정부가 글로벌 인공지능(AI) 패권 경쟁을 위해 진행 중인 '독자 AI 파운데이션 모델' 프로젝트의 첫 번째 결과물이 공개됐다. 과학기술정보통신부(이하 과기정통부)와 정보통신산업진흥원(NIPA)은 서울 코엑스 오디토리움에서 '독자 AI 파운데이션 모델 프로젝트 1차 발표회'를 개최했다고 30일 밝혔다. 행사에는 네이버클라우드, 업스테이지, SKT, NC AI, LG AI연구원 등 국내 AI 산업을 이끄는 5개 정예팀이 참석해 그동안의 개발 성과를 공유했다. 현장에는 산·학·연 관계자와 일반 시민 등 1천여 명이 몰렸다. 이번 프로젝트는 글로벌 빅테크에 종속되지 않는 독자적인 AI 기술력을 확보하고 'AI 강국'으로 도약하기 위한 범국가적 도전의 일환이다. 배경훈 과기정통부 부총리, 하정우 대통령실 AI미래기획수석, 임문영 국가AI전략위원회 상근 부위원장 등 정부 핵심 인사들이 총출동해 민간의 도전에 힘을 실었다. 배경훈 부총리는 축사를 통해 "AI 모델 개발에 매진해 온 정예팀 모두가 승자"라며 "이번 도전은 대한민국 경제·사회 전반의 AX(AI 대전환)를 완성하는 결정적 동력이 될 것"이라고 강조했다. 발표회에서는 5개 정예팀이 개발한 1차 AI 모델이 공개됐다. 각 팀은 최신 글로벌 모델과 견주어도 손색없는 성능 지표를 제시해 이목을 끌었다. 네이버클라우드, 업스테이지, SKT, NC AI, LG AI연구원은 단순한 모델 개발을 넘어 전 산업 분야에 AI를 접목하는 구체적인 확산 전략도 함께 발표하며, 실질적인 AI 생태계 조성에 대한 의지를 다졌다. 행사장 로비에 마련된 체험 부스 열기도 뜨거웠다. 관람객들은 정예팀들이 개발한 AI 모델을 직접 시연해보고 피드백을 주고받았으며, 함께 전시된 파트너사들의 연계 서비스를 통해 확장된 AI 생태계를 직접 체험했다. 과기정통부는 이번 발표회 내용을 바탕으로 내년 1월 중 1차 단계평가를 진행해 정예팀들의 성과를 점검하고 향후 지원 방향을 구체화할 계획이다. 하정우 AI수석은 "국내 AI 기업들의 경쟁력이 글로벌 수준으로 빠르게 향상되고 있음을 확인했다"며 아시아의 AI 수도로 도약하기 위한 전폭적인 지원을 약속했다.

2025.12.30 17:39남혁우

"실무에 강해"…업스테이지, '다큐먼트 AI' 문서 인식 시연

업스테이지가 자체 인공지능(AI) 모델 '솔라'를 앞세워 문서 인식 경쟁력을 한층 강화했다. 업스테이지는 30일 서울 강남 코엑스에서 열린 과학기술정보통신부 주관 '독자 AI 파운데이션 모델 1차 발표회'서 부스를 꾸리고 '다큐먼트 AI' 데모를 시연했다. 다큐먼트 AI는 문서를 구조화된 정보 단위로 인식할 수 있는 AI 기술이다. PDF 스캔본부터 표, 도표, 계약서 등 여러 문서 형식과 의미를 동시에 해석할 수 있다. 이날 부스를 지키고 있던 업스테이지 관계자는 다큐먼트 AI 특장점으로 정교한 레이아웃 분석 기술을 꼽았다. 관계자는 "다큐먼트 AI는 문서 레이아웃과 항목 구조를 먼저 파악한 뒤 텍스트를 추출한다"며 "문서 제목부터 본문, 표, 각주 등 각 요소를 명확히 구분해 인식할 수 있어 전체 맥락을 유지할 수 있다"고 강조했다. 이어 "이 기술은 철저히 사용자가 입력한 문서 범위 내에서만 답변을 생성하도록 설계됐다"며 "근거 없는 정보가 섞일 가능성을 원천차단했다"고 덧붙였다. 이날 업스테이지는 다큐먼트 AI가 문서 처리하는 기능을 시연했다. AI가 수출입 신고서나 인보이스 등 여러 서류를 동시에 비교해 항목별 일치 여부를 자동으로 검증할 수 있었다. 이를 통해 오류 지점까지 정확히 찾아냈다. 여기에 이미지 이해 기능을 결합해 도면이나 그래프 속 문자까지 인식했으며, 그 수치가 갖는 의미까지 제시했다. 업스테이지는 다큐먼트 AI로 기업뿐 아니라 공공 시장까지 적용 범위를 확장하고 있다. 이 기술은 현재 조달청 디지털서비스몰에 등록돼 관세청 등에서 실무에 활용되고 있다. 특히 통계청 보고서와 데이터를 요약해 문서를 생성하는 등 데이터 무결성 보장이 필요한 고난도 작업에 투입되고 있다. 업스테이지는 PDF나 PPT뿐 아니라 HWP, DOC 등 국내 업무 환경에 필수적인 문서 규격 지원도 다큐먼트 AI에 추가했다. 보안이 최우선인 기관을 위해 폐쇄망에서도 구동 가능한 온프레미스 형태로 서비스를 제공하며 기술 도입 장벽을 낮췄다. 업스테이지는 "우리는 문서 구조 해석과 언어 모델 결합이라는 독자적인 기술 노선을 구축했다"며 "실무 효율을 중시하는 엔터프라이즈 AI 시장에서 한국형 AI의 강력한 경쟁 우위를 증명할 것"이라고 강조했다.

2025.12.30 14:38김미정

정부, '국가 AI 프로젝트' 1차 성과 공개…"AX 핵심 동력"

정부가 독자 인공지능(AI) 파운데이션 모델 확보를 위한 국가 프로젝트 1차 성과를 내놨다. 과학기술정보통신부와 정보통신산업진흥원(NIPA)은 30일 서울 코엑스 오디토리움에서 '독자 AI 파운데이션 모델' 프로젝트 1차 발표회를 열고 5개 정예팀 개발 현황을 공유했다. 행사에는 전문가, 기업 관계자, 시민 등 1천여 명이 참석했다. 이번 프로젝트에는 네이버클라우드, 업스테이지, SK텔레콤, NC AI, LG AI연구원 등 5개 정예팀이 참여했다. 각 팀은 독자 AI 모델 개발을 목표로 1단계 연구·개발 성과를 공유했다. 행사에는 정재헌 SK텔레콤 최고경영자(CEO)와 임우형·이홍락 LG AI연구원 공동원장, 김유원 네이버클라우드 대표, 김성훈 업스테이지 대표, 이연수 NC AI 대표 등 주요 기업 관계자들이 참석했다. 정부 측에서는 배경훈 과기정통부 부총리, 하정우 대통령실 AI미래기획수석, 임문영 국가AI전략위원회 상근 부위원장이 자리를 함께했다. 현장에서는 정예팀들이 개발한 AI 모델을 직접 체험할 수 있는 전시 부스도 운영됐다. 학생, 연구자, 기업 관계자뿐 아니라 일반 국민까지 참여해 모델 시연과 피드백이 이어졌다. 특히 체험 부스에는 정예팀과 협력하는 다양한 파트너사의 연계 서비스도 함께 전시됐다. 이를 통해 국내 AI 기술이 개별 기업을 넘어 생태계 전반으로 확산되고 있음을 보여줬다. 발표회에서는 각 정예팀이 최신 글로벌 AI 모델과 견줄 수 있는 수준의 성능을 구현한 1차 결과물을 공개했다. 기술 성과와 함께 향후 모델 고도화 방향과 적용 전략도 제시됐다. 정예팀들은 파운데이션 모델 개발에 그치지 않고, 산업 전반에 AI를 확산시키는 'AX(AI 전환)' 실행 계획을 강조했다. 제조, 서비스, 공공 등 다양한 영역으로 AI 적용을 넓히겠다는 구상이다. 과기정통부는 이번 1차 발표 이후 1월 중 단계 평가를 진행할 예정이다. 평가를 통해 정예팀의 성과와 향후 계획을 종합 점검하고 결과를 공개할 방침이다. 배경훈 과기정통부 부총리는 축사에서 "AI 모델 개발에 매진해 온 정예팀 모두가 승자"라며 "이번 도전이 대한민국을 AI 강국으로 도약시키고 경제·사회 AX를 완성하는 데 결정적 동력이 될 것"이라고 밝혔다. 하정우 대통령실 AI미래기획수석은 "글로벌 수준의 독자 AI 모델 개발·확보를 통한 AI 산업 생태계 조성을 적극 지원하겠다"며 "이번 프로젝트를 통해 국내 AI 기업들의 경쟁력이 글로벌 수준으로 빠르게 향상되고 있음을 결과로 확인할 수 있었다"고 말했다. 임문영 국가AI전략위원회 상근 부위원장은 "어려운 여건 속에서도 1단계 목표를 성실히 수행해준 다섯 팀 모두가 대한민국 AI 생태계의 소중한 자산"이라며 "이번 1차 발표는 담대한 도전의 마침표가 아니라 본격적인 대장정의 출발점"이라고 강조했다.

2025.12.30 14:30김미정

콘진원 "국내 이스포츠 산업 2천872억…외형 성장 지속"

국내 이스포츠 산업이 단순한 외형 성장을 넘어, 패러다임이 변화하는 '구조 전환점'을 맞이한 것으로 확인됐다. '미디어업(보는 재미)'에서 '게임단(팬덤 비즈니스)'으로 중심축이 이동했다. 29일 한국콘텐츠진흥원(이하 콘진원)이 발간한 '2025 이스포츠 실태조사'에 따르면 지난해 국내 이스포츠 산업 규모는 전년 대비 11.8% 증가한 2천872억원으로 나타났다. 게임단 예산 및 종목사 매출 확대가 성장을 이끌었다. 세부 항목별로 살펴보면, 게임단 예산은 1천426억원(49.7%)으로 가장 높은 비중을 차지했다. 이는 지난해보다 6.3%p 상승한 수치다. 아울러 예산 대비 매출 비율은 83.7%로, 전년도 74.6% 대비 9.1%p 증가했다. 반면 게임단 예산 다음으로 높은 비중을 차지하는 미디어업 매출(32.1%)은 전년 대비 3.8%p 감소한 923억원으로 집계됐다. 게임단 예산은 프로게임단에 소속된 선수 연봉을 포함한 운영비용을 포함한 수치라면, 미디어업 예산은 프로덕션과 스트리밍사를 대상으로 대회 제작 수주 이익과 티켓 수입, 광고·스폰서십, MD판매, 이스포츠 광고 및 콘텐츠 제작 매출 등이 담겼다. 다음으로 종목사 매출은 234억원(8.2%), 상금 규모는 183억원(6.4%), 데이터 플랫폼 매출 은106억원(3.7%) 순이었다. 이러한 현황은 국내 이스포츠 산업 성장 동력이 게임단으로 편중되고 있는 흐름을 보여준다. 또한 방송·중계 중심 기존 비즈니스 모델은 감소세로 전환해 눈길을 끌었다. 다만 이러한 성장세에도 불구하고 구조 취약성은 여전한 숙제로 남아 있다. 현재 국내 게임단은 수익 상당 부분을 외부 스폰서십에 의존하고 있어, 스타 선수 이적이나 계약 종료 등 외부 요인에 따라 재정 구조가 크게 흔들릴 수 있다는 한계를 보였다. 국내 이스포츠 팬덤이 게임단 자체보다 '특정 선수 개인'에 결집해 있다는 점도 문제로 지적됐다. 선수가 팀을 떠나면 팬덤도 함께 이동하면서 게임단 브랜드 가치가 약화되는 고질적인 문제가 반복되고 있다는 설명이다. 여기에 사우디아라비아 등 글로벌 신규 자본 대규모 유입으로 대회 주도권이 변화하고 있는 점 또한 산업 측면에서 점검이 필요한 사안이라는 분석도 나왔다. 콘진원 측은 "지난해 국내 이스포츠 산업은 단순한 성장 국면보다 산업 구조 전반이 조정되고 있는 단계로 볼 수 있다"면서 "게임단 예산 확대와 예산 대비 매출 비율 개선은 새로운 가치 창출로, 방송·중계 매출 비중 축소는 기존 비즈니스 구조 한계로 해석된다"고 밝혔다.

2025.12.30 12:13진성우

  Prev 1 2 3 4 5 6 7 8 9 10 Next  

지금 뜨는 기사

이시각 헤드라인

눈앞으로 다가온 '피지컬 AI'…CES 2026이 증명했다

[ZD브리핑] 국가대표 AI 1차 탈락팀 발표 예정...새해 행사·정책 일정 잇따라

[르포] 폭설에 얼어붙는 도시…전기차 보기 힘든 홋카이도 가다

이더리움 창립자 "탈중앙화 스테이블코인, 달러 의존 취약점"

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.