• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
지스타2025
인공지능
스테이블코인
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'언어'통합검색 결과 입니다. (209건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

타이핑 없이 느낌으로 코딩하는 시대…'바이브코딩'오나

인공지능(AI) 기술 급격한 발전으로 소프트웨어(SW) 개발 방식에 큰 변화가 있을 것이란 전망이 제기되고 있다. 특히 기존의 수작업 중심 개발 방식에 근본적인 변화를 예고하며 AI가 대신 코딩하는 형태의 개발 문화가 자리잡을 것이란 예상이다. 대표적으로 최근 전 테슬라 AI 디렉터이자 오픈AI 공동 창립자인 안드레 카파시(Andrej Karpathy)는 '바이브코딩(Vibe Coding)'이라는 개념을 SNS를 통해 제시했다. 그는 "최근 내가 '바이브 코딩이라고 부르는 새로운 종류의 코딩이 있다"며 "이 방식은 그저 바이브에 완전히 몸을 맡기고 지수적 변화를 받아들이며 코드가 존재한다는 사실조차 잊는다"고 바이브코딩을 설명했다. 이어 "이러한 개발이 가능한 이유는 LLM의 기능이 너무 좋아졌기 때문"이라고 밝혔다. 그는 실제로 코드 편집기인 커서 컴포저(Cursor Composer), LLM 소넷(Sonnet), 음성 명령 도구 슈퍼위스퍼(SuperWhisper) 등을 AI기반 도구를 활용해 키보드를 거의 사용하지 않고 프로젝트를 진행하고 있다고 밝혔다. 예를 들어 UI 스타일 변경, 버그 수정, 레이아웃 조정 등의 요청을 모두 음성이나 자연어로 입력하는 것 만으로 AI가 이를 인식하고 자동으로 작성한다. 안드레 카파시는 코드 리뷰나 디버깅도 AI에 맡기고 있다고 설명했다. 에러 메시지를 복사해 붙여넣기만 해도 대부분 문제가 해결되며, 코드 변경 내용은 별도 검토 없이 전부 수락하는 방식으로 작업한다. 그는 이러한 흐름을 '더 이상 코딩이라 부를 수 없는 새로운 제작 방식'이라고 표현했다. 안드레 카파시 외에도 실리콘밸리의 스타트업에서 상당수 AI를 활용한 개발이 가속화되고 있는 추세다. 미국 최대 스타트업 액셀러레이터인 와이컴비네이터의 개리 탄 최고경영자는 "포트폴리오 스타트업 중 25%가 전체 코드의 95%를 AI에 의존하고 있다"고 밝힌바 있다. 그는 LLM 기반 개발 도구를 활용하면 소규모 인력으로도 대규모 제품을 빠르게 출시할 수 있으며, 코드 품질 역시 일정 수준 이상을 유지할 수 있다고 설명한다. 더불어 비개발자인 실무자도 직접 앱을 개발하고 운영하는 만큼 속도가 중요한 스타트업의 경쟁력을 높일 수 있다는 것도 장점으로 꼽았다. 비개발자나 초급 개발자도 프로토타이핑 수준의 기능을 빠르게 구현할 수 있어 스타트업과 소규모 팀에 적합하다는 의견이 제시된다. 프로덕트 매니저, 디자이너 등의 직군에서도 AI 기반 개발 도구를 도입하는 사례가 늘고 있다. AI의 개입이 코드 작성 전반을 대체하면서 개발자의 역할도 재정의되고 있다. 코드를 잘 작성하는 능력은 점차 AI로 대체되고 있으며 대신 AI의 효율적 활용, 명확한 설계 지시 능력, 비즈니스 요구사항과 다양한 기술 간 조합 능력이 새로운 핵심 역량으로 부상하고 있다. 안드레 카파시의 바이브코딩에 대해선 아직 긍정과 우려가 교차한다. 생산성과 접근성을 높였다는 평가가 있는 반면, 코드 품질 저하와 기술 부채 누적에 대한 경계도 커지고 있다. 특히 AI가 생성한 코드를 사용자가 충분히 이해하지 못한 채 적용할 경우 보안 취약점이나 논리 오류가 발생할 수 있다. 복잡한 시스템에서는 장기적인 유지보수가 어려워질 수 있다는 지적도 제기된다. 안드레 카파시 역시 바이브코딩이 주말에 만들고 테스트하는 프로젝트용으로 바이브코딩이 적합하며 진짜 코딩은 아니라고 언급했다. 간단한 서비스나 데모 개발 등에는 효과적이지만 정교한 인프라나 실시간 시스템 개발에는 여전히 한계가 있다는 것이다. 더불어 그는 일부 버그의 경우 AI가 해결하지 못해 반복적인 요청이나 질문을 우회해야 했다고 밝혔다. 파이썬 웹 프레임워크 장고(Django)의 공동 창시자인 사이먼 윌리슨도 "LLM은 강력한 보조 도구이지만, 코드에 대한 이해와 검토 과정을 생략해서는 안 된다"며 과도한 AI 의존에 대해 경고했다. 이러한 우려에도 불구하고 AI를 중심에 둔 개발 방식은 빠르게 하나의 흐름으로 자리잡고 있다. 구글, 마이크로소프트, 아마존 등 주요 빅테크는 코파일럿, 제미나이 코드 어시스트, Q디벨로퍼 등 자체 개발한 LLM 기반 개발 도구를 선보이고 있다. AI 기반 개발은 아직 실험과 실전 단계의 경계에 놓여 있다. 그러나 LLM이 생성하는 코드 품질이 빠르게 개선되며 일부 분야에서는 코드를 쓰지 않고 개발이 가능할 것이란 예측이 강세를 보이고 있다. 베타랩스 데니스김 CEO는 "바이브코딩은 아직 초기 개념이지만 직관과 감성, 협업의 시대로 전환하는 디딤돌이 될 수 있다"며 "이제 우리는 AI와 코드를 함께 느끼는 시대로 향하고 있는지도 모른다"고 말했다.

2025.03.30 09:11남혁우

대만만 쳐도 '삭제'...中, AI로 비판 글 '실시간 감시' 훈련했다

중국이 민감 콘텐츠를 탐지·차단하는 인공지능(AI) 기반의 검열 체계를 구축한 정황이 드러났다. 사회적 불만이나 정치적 비판을 효율적으로 관리하려는 목적이 반영된 것으로, 권위주의 정부가 최신 생성형 AI 기술을 억압 수단으로 전환하고 있다는 정황을 뒷받침하는 사례란 분석이 나온다. 26일 테크크런치에 따르면 보안 연구자 '넷아스카리(NetAskari)'는 최근 중국 바이두 서버에서 보안 설정 없이 공개된 엘라스틱서치 데이터베이스를 발견했다. 이 데이터는 약 13만3천 건의 텍스트를 기반으로 거대언어모델(LLM)이 콘텐츠를 실시간으로 검열하도록 훈련된 것으로 확인됐다. 유출된 데이터는 군사 정보부터 노동 분쟁, 환경오염, 식품 안전, 정치 풍자, 대만 관련 이슈까지 폭넓게 포함돼 있다. 심지어는 "나무가 쓰러지면 원숭이가 흩어진다"는 중국 속담처럼 우회적 표현도 검열 대상에 포함되며 감정적 불만과 체제 비판을 구분 없이 탐지하도록 설계됐다. 이 같은 방식이 가능한 것은 LLM이 단순한 키워드가 아닌 표현의 맥락을 이해하고 판단하기 때문이다. 시스템은 이를 토대로 콘텐츠를 정치, 사회, 군사 이슈 중 하나로 분류해 '즉시 조치 대상'으로 삼는다. 대표적 사례로는 부패 경찰에 대한 기업인의 고발, 농촌 빈곤에 대한 호소, 미신을 믿는 공산당 간부의 부패 보도 등이 포함됐다. 대만 관련 키워드는 1만5천 회 이상 등장했으며 신형 전투기 정보 등 군사 움직임까지 정밀하게 추적 대상에 올랐다. 데이터 속 LLM 명령어에는 '프롬프트 토큰' 등 '챗GPT'류 모델과 유사한 지시어가 포함돼 있었다. 이는 중국 정부가 최신 AI 기술을 활용해 여론 통제를 체계화하고 있음을 뒷받침한다. 데이터의 활용 목적은 '여론 작업'으로 명시돼 있다. 이는 중국 중앙인터넷정보판공실(CAC)이 주도하는 국가 검열·선전 활동을 지칭하는 용어로 알려져 있다. UC버클리 샤오 치앙 연구원은 "전통적 검열을 넘어 AI가 국가 통제를 한층 정교하게 만든다"며 "중국 정부가 AI를 억압 도구로 활용하려는 증거"라고 밝혔다. 오픈AI 역시 지난달 보고서를 통해 "중국 기반 행위자가 AI로 인권 시위 감시, 반체제 인사 음해까지 시도한 정황이 있다"고 밝혔다.

2025.03.27 10:58조이환

아토믹GPT, AI 에이전트로 진화하나

한국원자력연구원이 자체 개발한 '아토믹 GPT'가 지능형 에이전트로 진화 중이다. 한국원자력연구원은 인공지능(AI) 스타트업인 ㈜젠티(대표 최은진)와 거대언어모델(LLM) 기술 활용에 관한 업무협약(MOA)을 체결했다고 27일 밝혔다. 이번 협약은 연구원이 최근 선보인 원자력 특화 AI 솔루션 '아토믹GPT'와 ㈜젠티의 강력한 거대언어모델 기술을 결합하자는 것. 원자력과 관련된 방대한 자료를 신속하게 분석해 활용할 수 있도록 도와주는 혁신적 AI 솔루션인 지능형 에이전트를 구축하는 것이 목표다. '아토믹 GPT'는 원자력 기술 문서 분석, 연구 정보 검색, 연구 문서 자동 요약 및 생성 등 연구자들이 겪는 다양한 어려움을 해소하기 위해 연구원이 자체 개발한 AI 프로그램이다. 현재 연구원 내부 직원들을 위한 전용 서비스로도 제공 중이다. ㈜젠티는자연어 처리와 의미 기반 검색 기술로 정리되지 않은 복잡한 문서를 분석해 원하는 정보를 신속․정확하게 제공하는 플랫폼을 보유했다. 지난 2021년 한국원자력연구원과 과학기술정보통신부가 주관한 인공지능그랜드챌린지에 참가해 대상을 차지했다. 이번 협약을 통해 양 기관은 표와 그림 등이 포함된 복잡한 원자력 관련 문서에서 핵심 정보를 빠르게 찾아 정리해주고, 자연어 기반의 질의응답 챗봇 등을 갖춘 AI 에이전트 서비스를 구축할 계획이다. 특히, 연구원의 외부와 분리된 네트워크 환경에서도 보안과 독립성을 유지하면서 서비스 이용이 가능하도록 개발해 연구자들의 활용성을 높인다는 복안이다. 원자력연구원 유용균 인공지능응용연구실장은 "원자력 연구에서 기초적인 문서작업 소요 시간을 최소화함으로써 연구자들이 창의적 연구 활동에 전념할 수 있도록 도울 것"이라고 말했다. ㈜젠티 최은진 대표는 “다년간 축적된 문서 분석 기술을 바탕으로 원자력연구원이 혁신적인 정보처리 및 연구지원 시스템을 구축할 수 있도록 기술적 협력과 맞춤형 솔루션을 제공할 것”이라고 덧붙였다. 원자력연구원 조윤제 디지털원자로․AI연구센터장은 “원자력과 같이 데이터가 방대하고 전문성이 요구되는 분야일수록 문서 분석 AI 기술의 효과가 클 것”이라며, “앞으로도 인공지능을 통해 산업 현장에서 실질적 변화를 만들어 갈 것"이라고 밝혔다.

2025.03.27 09:22박희범

[AI는 지금] "개보위, 中 AI 옹호"…딥시크에 긍정 신호 보낸 고학수 위원장, 이유는?

중국 딥시크의 국내 진출 여부를 둘러싼 논란이 이어지는 가운데 개인정보보호위원회가 오픈소스 기반 인공지능(AI) 모델 활용에 긍정적인 입장을 밝혔다. 중국 기업의 앱 자체를 옹호한 것이 아니라 딥시크 등의 오픈소스 생태계 확장이라는 기술 전략에 지지를 표한 것으로 보인다. 24일 업계에 따르면 고학수 개인정보보호위원회 위원장은 최근 한 세미나에서 딥시크 오픈소스 모델의 활용 가능성을 언급하며 '글로벌 빅테크가 아닌 기업도 도전할 수 있는 기회'라고 표현했다. 해당 발언은 지난달 국내 앱스토어에서 자진 철수한 딥시크 앱과는 별개로 발전하고 있는 오픈소스 기술 흐름을 짚은 것으로 평가된다. 딥시크는 중국발 오픈소스 거대언어모델(LLM) 스타트업으로, 지난 1월 이후 전 세계 AI 생태계를 신속히 장악했다. 오픈AI, 앤트로픽, 구글 딥마인드 등 미국·영국 프런티어 AI 기업들이 천문학적 자금을 투입한 것과 달리 적은 비용으로 고성능 모델을 구현한 데다 오픈소스로 공개돼 폭발적인 관심을 받았다. 퍼플렉시티 등 해외 LLM 서비스 기업들은 이미 딥시크를 로컬 환경에 설치해 운영 중이다. 최근에는 국내 기업들도 이를 기반으로 특화 모델 개발에 나서고 있다. 뤼튼테크놀로지스와 이스트소프트는 지난 2월 딥시크 모델을 자체 클라우드 환경에 구축해 운영을 시작했다. 크라우드웍스는 일본 법인을 통해 딥시크 R1 기반 일본어 모델을 개발한 뒤 이를 한국어로 확장할 계획이다. 일각에선 크라우드웍스가 딥시크 본사와 직접 계약을 맺고 한국어 모델을 공동 개발했다고 주장했지만 이는 사실이 아닌 것으로 확인됐다. 크라우드웍스 측이 지난 23일 딥시크 본사와 계약한 적이 없으며 회사가 활용 중인 모델은 앱이 아닌 설치형 B2B 버전이라고 해명했기 때문이다. 데이터가 중국 서버로 전송되는 B2C 앱과는 구조적으로 다르다는 설명이다. 실제로 퍼플렉시티, 뤼튼, 이스트소프트 등의 국내 설치형 모델은 외부 인터넷과 연결되지 않는 제한된 환경에서 구동된다. 이에 따라 중국 서버로 정보가 전송될 가능성은 원천적으로 차단된다. 다만 보안업계에서는 딥시크처럼 오픈소스로 제공되는 모델이라도 로컬 환경에 도입할 경우 여전히 위험 요소가 존재한다고 지적한다. 오픈소스 특성상 코드나 가중치 파일에 악성 코드가 삽입될 수 있으며 모델 로딩 과정에서 시스템 취약점을 노린 침투 가능성도 배제할 수 없기 때문이다. 또 일부 개발자가 모델에 내장된 안전 장치를 우회하거나 변형 모델을 제작할 경우 유해한 콘텐츠나 악성 코드를 생성하는 방식으로 악용될 수 있다. 특히 딥시크는 경쟁 모델에 비해 보안 업데이트나 코드 감사가 부족하다는 평가도 있어 도입 시 철저한 검증과 보안 관리가 필요하다는 지적이 잇따른다. 실제로 김승주 고려대학교 정보보호대학원 교수는 최근 자신의 링크드인을 통해 "딥시크를 PC나 클라우드에 설치해서 쓰면 운영주체가 중국이 아니기 때문에 안전하다는 말이 돈다"며 "이는 굉장히 위험한 생각"이라고 지적했다. 그럼에도 고 위원장이 딥시크를 위시한 오픈소스 LLM에 주목한 이유는 분명하다. 자본과 인프라가 부족한 국내 AI 생태계가 낮은 진입 장벽을 바탕으로 글로벌 경쟁에 도전할 수 있다는 점 때문이다. 업계에선 이 같은 메시지를 한국 정부가 추진 중인 '월드 베스트 LLM' 프로젝트와 맞물려 해석하는 분위기다. 정부는 국가 차원의 대규모 언어모델 개발을 위해 파운데이션 모델을 오픈소스로 공개하고 공공 중심의 활용 사례를 확산하겠다는 계획을 밝힌 바 있다. 이 프로젝트는 지난 2월 과학기술정보통신부가 발표한 'AI R&D 전략 고도화 방안'에 핵심 과제로 포함됐다. 정부는 향후 3개월 이내 'AI 국가대표팀'을 선발해 연구 자원과 데이터를 집중 지원하고 공공 데이터를 기반으로 한 특화 모델 개발을 유도할 방침이다. 업계에선 딥시크 사례가 이 같은 흐름을 촉발하는 계기가 됐다는 평가도 나온다. 고성능 언어모델을 오픈소스를 통해 낮은 비용으로 구현할 수 있다는 점이 확인되면서 '챗GPT'나 '클로드' 등 프런티어 AI를 빠르게 따라잡을 수 있다는 기대가 생겼다는 분석으로, 보안만 보장된다면 무료로 실사용도 가능하다는 인식이 퍼진 것이 정책 전환에 영향을 미쳤다는 해석도 제기된다. 고학수 개인정보보호위원회 위원장은 "딥시크 등의 모델에는 분명 잠재적인 불안 요소가 있지만 빅테크가 아니어도 적은 투자를 통해 세계 시장에 도전할 수 있다는 메시지를 줬다"며 "이러한 오픈소스를 통해 국내에서도 다양한 앱 서비스를 만들 수 있을 것"이라고 말했다. 이어 "향후에 보다 넓은 생태계를 구축해야 한다고 믿는다"며 "자유로운 혁신의 한 축은 열린 모델을 통해 새로운 응용 생태계를 형성하는 것이라 생각한다"고 말했다.

2025.03.24 16:16조이환

오라클, '자바 24'에 AI·양자 내성 보안 추가…OCI와 연동

오라클이 프로그래밍 언어·개발 플랫폼 '자바 24'를 출시해 개발자 생산성과 보안을 한층 높였다. 오라클은 오라클이 자바 최신 버전 자바 24를 공개했다고 19일 발표했다. 자바 24의 최신 기능은 플랫폼 성능과 안정성을 높여 기업의 핵심 애플리케이션 운용을 강화할 것으로 예상된다. 자바 24는 20개 이상의 신규 기능을 포함해 인공지능(AI)·양자 내성 암호화 기능을 도입했다. 패턴 매칭 기능이 강화돼 기본 유형을 보다 쉽게 처리할 수 있다. 모듈 임포트 선언을 통해 모듈화된 라이브러리 재사용성이 증가했다. 생성자 본문 개선으로 코드 안정성도 늘었다. 또 학생·초보 개발자를 위한 간단한 소스 파일 기능도 추가됐다. 오라클은 자바 24의 라이브러리가 업그레이드됐다고 밝혔다. 특히 스트림 API가 개선돼 커스텀 중간 연산을 지원하며, 클래스 파일을 분석·변환할 수 있는 표준 API가 도입됐다. AI 연산에 최적화된 벡터 API가 9차 인큐베이터로 제공되며, 구조화된 동시성을 통해 동시 프로그래밍의 유지보수성과 안정성이 높아졌다. 자바 24의 보안 기능도 강화됐다. 자바 24는 양자 내성 암호화를 위한 키 캡슐화 매커니즘과 디지털 서명 알고리즘을 도입해 보안성을 높였다. 특히 미국 국립표준기술연구소(NIST)의 FIPS 204를 기반으로 표준화된 디지털 서명 기능이 추가돼 향후 양자 컴퓨팅 시대를 대비할 수 있도록 설계됐다. 성능 최적화 측면에서도 변화가 있다. 간결한 객체 헤더 기능을 통해 힙 크기가 감소하고 배포 밀도가 향상됐다. G1 가비지 컬렉터 개선으로 실행 속도가 향상됐으며, 사전 컴파일(AOT) 클래스 로딩 및 연결을 지원해 애플리케이션 시동 시간을 단축했다. 또 Z 가비지 컬렉터(ZGC)의 비세대 모드를 제거해 유지보수 비용을 줄였다. 이번 자바 24 출시가 오라클 클라우드 인프라스트럭처(OCI) 점유율 향상에 긍정적 영향을 미칠 전망이다. OCI에서도 자바 24가 지원되기 때문이다. 개발자는 OCI를 통해 추가 비용 없이 자바 SE와 오라클 그랄VM, 자바 SE 구독 엔터프라이즈 퍼포먼스 팩을 활용할 수 있다. 오라클은 이를 통해 클라우드 환경에서도 최적화된 자바 개발 경험을 제공할 계획이다. 자바 개발자들은 이번 릴리스에 대해 긍정적인 반응을 보였다. 프랭크 그레코 뉴욕 자바 사용자 그룹 회장은 "자바 24의 벡터 API 개선이 AI 애플리케이션 성능 향상에 기여할 것"이라고 평가했다. 리처드 피히트너 XDEV 소프트웨어 최고경영자(CEO)는 "스트림 수집기 기능이 데이터 변환을 효율적으로 수행할 수 있도록 지원한다"고 밝혔다.

2025.03.19 11:02김미정

[현장] 이경일 솔트룩스 대표 "초거대 AI 대신 에이전트로 돌파구 찾아야"

"한국이 초거대 AI 모델 경쟁에서 살아남기 위해서는 소형 모델 최적화와 데이터 활용 전략이 필수적입니다. 단순한 거대 모델 구축이 아니라 에이전트 AI와 같은 차별화된 기술을 통해 비용을 절감하고 성능을 극대화해야 합니다. 당장 이 변화를 준비하지 않으면 글로벌 AI 시장에서 도태될 것입니다." 이경일 솔트룩스 대표는 14일 강남 해성빌딩에서 열린 '한국데이터산업협회(KODIA) 정기총회'에서 '생성형 AI와 데이터 산업의 미래'를 주제로 특별 강연을 진행하며 이같이 말했다. 이날 행사는 국내 데이터 산업의 발전 방향을 모색하고 업계 관계자들이 최신 AI 트렌드를 공유하기 위해 KODIA가 마련했다. 이 대표는 행사에서 거대언어모델(LLM) 중심의 경쟁이 아닌 에이전트 AI를 기반으로 한 차별화 전략이 필요하다는 점을 강조했다. 글로벌 기업들과 정면 승부하기보다는 데이터 활용 최적화와 협업형 AI 모델로 새로운 시장 기회를 모색해야 한다는 주장이다. 지난 2022년 '챗GPT' 출시 이후 AI 산업은 PC·인터넷·스마트폰 시대를 거쳐 또 한 번의 변곡점을 맞았다. 기술 패러다임이 변화할 때마다 기존 강자들이 몰락하거나 새로운 기업들이 부상했는데 생성형 AI는 이 흐름을 이어받아 새로운 혁신을 이끌고 있다. 지난 1980년대 유닉스 기반 기업들의 쇠퇴, 1990년대 인터넷 기업의 등장, 2010년대 스마트폰 혁명이 대표적인 사례다. 현재 생성형 AI는 지난 2022년 이후 급격한 성장세를 보이며 또 하나의 기술 혁신 시점을 맞고 있다. 이 대표는 "단순히 오픈AI '챗GPT' 같은 거대 모델을 구축하는 방식은 비용과 인프라 측면에서 한계가 크기 때문에 국내 기업들은 소형 모델 최적화 및 데이터 기반 전략으로 경쟁력을 확보해야 한다"고 주장했다. 이어 "트랜스포머(Transformer) 모델의 발전과 초거대 모델의 등장으로 AI 성능이 폭발적으로 증가하고 있지만 그에 따른 문제점도 함께 발생하고 있다"고 지적했다. 그는 ▲환각(Hallucination) ▲최신 정보 부족 ▲보안 문제를 생성형 AI의 주요 한계점으로 꼽았다. 생성형 AI가 확률 통계적으로 답변을 생성하는 방식 때문에 존재하지 않는 사실을 말하는 문제가 빈번히 발생하며 이는 AI 신뢰성을 저하시킨다. 이를 해결하기 위해 검색증강생성(RAG)이 기본적으로 적용되고 있으며 솔트룩스도 이를 기반으로 한 에이전트 AI 개발에 집중하고 있다고 밝혔다. 이 대표는 국내에서 초거대 모델을 구축하기에는 비용과 인프라 측면에서 현실적인 한계가 있다며 대안으로 ▲믹스오브엑스퍼드(MoE) ▲지식 증류(Knowledge Distillation) ▲양자화(Quantization) 등의 기술을 활용한 비용 절감 및 성능 최적화 전략이 필요하다는 점을 강조했다. MoE는 거대 모델 하나에 모든 기능을 몰아넣기보다 여러 개의 소형 특화 모델을 협업하게 만드는 방식이다. 이를 통해 비용을 절감하면서도 고성능 AI 서비스를 제공할 수 있다. 지식 증류는 이미 학습된 대형 모델에서 중요한 지식만을 추출해 더 작은 모델에 적용하는 기술로, 연산량을 줄이면서도 학습된 정보의 핵심을 유지할 수 있는 방식이다. 이를 통해 경량 모델이 대형 모델 수준의 성능을 갖추도록 만들 수 있다. 양자화는 AI 모델이 사용하는 수치 연산을 더 작은 비트(bit)로 변환해 메모리 사용량을 줄이고 연산 속도를 향상시키는 기법이다. AI 시스템의 전력 소모를 줄이는 동시에 제한된 컴퓨팅 자원에서도 보다 효율적인 추론이 가능해진다. 에이전트 AI가 차세대 기술로 부상하는 이유에 대해 그는 "단순 질의응답이 아닌 다단계 추론과 문제 해결이 가능한 AI가 필요하기 때문"이라고 설명했다. 기존 LLM 기반 서비스가 사용자의 질문에 바로 답하는 방식이었다면 에이전트 AI는 검색·추론·결정 과정을 거쳐 최적의 솔루션을 제공하는 구조다. 이에 따라 마이크로소프트(MS), 구글, 오픈소스 커뮤니티 등이 에이전트 AI 개발을 가속화하고 있다. 솔트룩스 역시 '구버(Guber)'라는 에이전트 AI 서비스를 개발하고 있다. 이 대표에 따르면 '구버'는 사용자의 질문을 받아 분석한 후 검색증강생성(RAG)과 다단계 추론을 거쳐 최적의 답변을 제공하는 시스템으로, 회사는 이를 챗봇을 넘어 전문적인 데이터 활용이 가능한 AI로 발전시킬 계획을 세우고 있다. AI 생태계에서 데이터의 중요성도 강조됐다. 이 대표는 "AI는 결국 데이터 산업"이라며 "모델은 알고리즘을 통과한 숫자 데이터 덩어리일 뿐으로, 이는 결국 데이터가 곧 AI 경쟁력을 좌우함을 의미한다"고 강조했다. 행사를 마치며 그는 한국 AI 산업이 글로벌 시장에서 생존하기 위한 조건으로 ▲GPU 인프라 확충 ▲도메인 특화 AI 사례 확보 ▲공공 부문 AI 국산화 가속화 ▲글로벌 AI 스타트업 지원 ▲AI 투자 환경 개선 등을 제안했다. 이 대표는 "AI 산업이 변화하는 속도가 매우 빠르다"며 "신속히 에이전트 AI 기반 서비스 및 데이터 최적화 전략을 도입하지 않으면 글로벌 경쟁에서 뒤처질 것"이라고 말했다.

2025.03.14 16:55조이환

MS, 타입스크립트 컴파일러 'Go'로 전환… 성능 10배 향상 기대

마이크로소프트가 타입스크립트의 성능을 근본적으로 개선하기 위해 컴파일러와 관련 도구를 재구성한다. 14일 마이크로소프트는 타입스크립트 컴파일러를 Go언어로 전환하는 프로젝트 코르사(Project Corsa)를 공식 홈페이지를 통해 발표했다. 마이크로소프트의 아네르스 하일스베르 수석 아키텍처는 타입스크립트의 성능 최적화를 위해 다양한 언어로 프로토타입을 테스트한 결과 최종적으로 Go를 선택했다고 밝혔다. 현재 타입스크립트 컴파일러(tsc)는 자바스크립트 기반의 타입스크립트 언어로 작성됐으며 노드.js에서 실행된다. 이러한 구조는 동적 언어의 특성상 네이티브 코드 기반의 컴파일러보다 성능이 떨어지는 한계를 지닌다. 대규모 프로젝트에서는 빌드 시간이 길어지고, 메모리 사용량이 증가하는 문제가 있었다. Go는 최적화된 네이티브 코드 생성을 지원하며, 노드js 같은 추가적인 런타임 환경 없이 독립 실행 파일을 제공할 수 있다. 아네르스 하일스베르 수석 아키텍처는 이번 전환을 통해 기존보다 최대 10배 이상 빠른 빌드 속도를 제공할 것으로 예상된다고 설명했다. 예를 들어 150만 라인의 코드로 구성된 VS 코드 프로젝트를 기존 타입스크립트 컴파일러로 빌드하면 약 77.8초가 소요된다. Go 기반의 새로운 컴파일러에서는 7.5초로 단축되어 10.4배의 속도 향상이 이루어졌다. 편집기에서 프로젝트 로드에 걸리는 시간도 약 9.6초에서 약 1.2초로 줄어드는 등 작업 속도를 향상시키며 전반적인 메모리 사용량도 현재 구현의 약 절반 준으로 줄어들 전망이다. 타입스크립트 컴파일러는 순환 참조를 포함한 복잡한 데이터 구조를 다루는데, Go는 이러한 데이터 구조를 효율적으로 관리할 수 있으며, 가비지 컬렉션 기능을 제공해 메모리 누수를 방지할 수 있다. Go의 병렬 처리 및 동시성 지원도 중요한 요소다. Go는 고루틴(goroutine)을 활용한 병렬 처리가 강력해 대규모 프로젝트의 빌드 시간을 단축하는 데 유리하며, 단순한 문법과 강력한 표준 라이브러리를 제공해 유지보수 및 개발 속도를 향상시킬 수 있다. 마이크로소프트는 2025년 중반까지 Go기반 타입스크립트 컴파일러(tsc)의 프리뷰 버전을 제공할 예정다. 이어 연말까지 프로젝트 빌드 및 언어 서비스에 대한 완전한 기능을 구현할 계획이다. 또한 향후 인공지능(AI) 기반 기능과의 연계를 고려해, 새로운 프로세스 간 API를 개발하고 있다. 아네르스 하일스베르 수석 아키텍처는 "우리는 이 엄청난 속도 향상이 만들어내는 기회에 대해 매우 흥분하고 있다"며 "전체 프로젝트에 걸쳐 즉각적이고 포괄적인 오류 목록을 제공하고, 더욱 진보된 리팩토링을 지원하는 등 한때 손이 닿지 않는 것처럼 보였던 기능이 이제 손이 닿는 곳까지 왔다"고 말했다. 이어 "이 새로운 기반은 기존 개발자 경험을 넘어서 차세대 AI 도구가 개발을 향상시키고, 코딩 경험을 학습하고, 적응하고, 개선하는 새로운 도구를 구동할 수 있는 기반이 될 것"이라고 비전을 제시했다.

2025.03.14 09:46남혁우

투비유니콘, NIPA 바우처 공급자로 선정…"원하는 기업에 AI솔루션 제공"

투비유니콘(대표 윤진욱)은 과학기술정보통신부와 정보통신산업진흥원(NIPA)이 주관하는 '2025년 AI 바우처 지원사업' 공급기업으로 선정됐다고 5일 밝혔다. 투비유니콘은 공공기관 및 산업군에 따라 수요맞춤형으로 소형언어모델(sLLM)을 구축한 후 서비스용 AI 솔루션을 공급할 계획이다. AI 바우처 지원사업은 AI 솔루션을 보유한 공급기업과 AI 도입을 원하는 중소·벤처·중견기업을 연결시켜주는 프로그램이다. 수요 기업 초기 비용 부담을 낮추고, 국내 AI 기술을 확산하자는 취지로 만들어졌다. 수요 기업에서는 최대 2억 원 상당의 바우처를 활용해 AI 솔루션 공급업체 제품이나 서비스를 도입하면 된다. 투비유니콘은 한국어를 기반으로 특정 도메인 비즈니스 응용 서비스가 가능한 파운데이션 모델(TBU-LLM)을 보유 중이다. 윤진욱 대표는 "이 모델을 위해 우리나라 중등교육과정 수준의 교과목별 다양한 지식 데이터에 문화체육관광부 국립국어원 언어정보나눔터와 위키피디아 등 7개 공개 데이터를 학습시켰다"며 "데이터 정제 및 증강과정을 거쳐 한국어에 특화된 국내 몇 안되는 원천기술"이라고 말했다. 윤 대표는 "'TBU-LLM'에 수요기관 특정 도메인 데이터와 실시간 획득 정보를 추가 학습시킨 후 사용자 프롬프트를 통해 창의적인 사고를 실현시킬 경우 분야별 전문가 수준의 답변이 가능하다"고 설명했다. 수요기관이나 기업은 'TBU-LLM'을 활용할 경우 특화된 sLLM으로 온프레미스(기업자체 데이터센터) AI를 구현할 수 있다. 또 AI 서비스형 소프트웨어(SaaS) 솔루션을 개발, 고객들에게 맞춤형 서비스도 제공할 수 있게 된다. 윤진욱 대표는 “AI 바우처 사업을 통해 보다 많은 공공기관 및 기업이 AI 기술을 도입하고, 이를 통해 업무 혁신과 디지털 전환을 가속할 수 있도록 적극 지원할 것" 이라고 말했다. 한편 AI 바우처 지원사업을 통해 자체 sLLM 구축을 희망하는 기관과 기업들은 투비유니콘의 홈페이지(www.tobeunicirn.kr)에서 상담 및 신청하면 된다.

2025.03.05 17:35박희범

MS, 첫 멀티모달 SLM 공개…저비용·고효율 AI 구현

마이크로소프트가 소규모 언어 모델(SLM) 제품군 파이(Phi)의 신규 모델 2종을 발표했다. 이번 모델들은 적은 컴퓨팅 자원으로도 멀티모달 처리와 경량화된 고성능 AI 모델의 가능성을 확대하는 데 중점을 두고 있다. 3일 마이크로소프트는 SLM 파이4 멀티모달과 파이4 미니를 공개했다고 공식홈페이지를 통해 밝혔다. 파이4 멀티모달은 56억 개의 파라미터를 갖춘 마이크로소프트의 최초 멀티모달 AI 모델로 텍스트, 이미지, 음성을 동시에 처리할 수 있다. 기존 멀티모달 AI가 각각의 입력 유형을 개별적으로 분석한 것과 달리 하나의 모델에서 통합적으로 이해하고 분석할 수 있도록 설계됐다. 이 AI모델은 LoRA 조합 기법(MoL)을 활용해 모델 크기를 최적화하면서도 고성능을 유지하는 것이 특징이다. 허깅페이스 오픈ASR 리더보드에서 6.14%의 단어 오류율(WER)을 기록하며 위스퍼 V2와 같은 오픈소스 음성 인식 모델보다 뛰어난 성능을 기록했다. 마이크로소프트는 파이4 멀티모달이 문서 이해, 차트 및 테이블 해석, 과학적 추론 등의 작업에서 탁월한 성능을 발휘하며, 향후 AI 비서, 음성 기반 서비스, 스마트 기기 등에 폭넓게 적용될 수 있을 것이라고 밝혔다. 이와 함께 파이4 미니는 이 모델은 38억 개의 파라미터를 갖춘 경량화된 고성능 AI 모델이다. 최대 12만8천 토큰 규모의 긴 컨텍스트를 한 번에 처리할 수 있어 코딩, 함수 호출, 과학적 계산, 명령어 실행 등 다양한 텍스트 기반 작업에서 보다 높은 성능을 제공한다 파이4 미니는 작은 규모에도 대규모 AI모델 수준의 성능을 제공할 수 있어 스마트폰, IoT 기기, 자동차, 로봇 등 엣지 디바이스에서 효율적으로 활용 가능하다. 마이크로소프트는 이를 통해 AI 모델을 보다 저렴한 비용으로 다양한 분야에서 효율적으로 운영할 수 있을 것이라고 설명했다. 이제 마이크로소프트는 AI 기술이 단순히 모델 크기를 키우는 방향에서 벗어나, 더 효율적이고 실용적인 모델을 바탕으로 AI사업을 확대할 전망이다. 마이크로소프트의 웨이주 첸 생성형AI 부사장은 "새롭게 선보인 2종의 AI 모델은 복잡한 작업을 효율적으로 처리하도록 설계돼 성능이 제한된 엣지컴퓨팅 환경 등에 이상적"이라며 "낮은 컴퓨팅 요구 사항은 더욱 낮은 대기 시간과 적은 비용을 요구하며 미세 조정이 쉬운 만큼 산업 전반에 걸쳐 다양한 분야에 활용될 수 있을 것"이라고 설명했다.

2025.03.03 09:16남혁우

앤트로픽, '클로드 3.7 소네트' 공개…하이브리드 AI 시대 연다

앤트로픽이 실시간 응답과 심층적인 추론을 하나로 통합한 인공지능(AI)을 출시해 거대언어모델(LLM)의 새로운 기준을 제시했다. 보다 직관적인 방식으로 인간과 상호작용하도록 함으로써 갈수록 치열해지는 AI 경쟁에서 우위를 점하려는 전략이다. 25일 테크크런치에 따르면 앤트로픽은 거대언어모델(LLM)과 추론 모델을 결합한 '하이브리드 AI'인 '클로드 3.7 소네트'를 공식 발표했다. 이 모델을 통해 사용자는 기존의 LLM을 활용했을 때처럼 즉각적인 응답을 받을 수도 있고 AI가 보다 깊이 사고하도록 추론을 하게 명령할 수도 있다. 앤트로픽은 '클로드 3.7 소네트'의 추론 기능을 유료 사용자에게만 제공한다고 밝혔다. 무료 사용자에게는 일반적인 답변 기능만 제공되나 전체적인 성능은 기존 모델인 '클로드 3.5 소네트'보다 개선됐다. 가격은 100만 개 입력 토큰당 3달러(한화 약 4천200원), 100만 개 출력 토큰당 15달러(한화 약 2만1천원)다. 오픈AI의 'o3-미니'나 딥시크의 'R1'보다 높은 수준이지만 '하이브리드 모델'이 업계에서 처음으로 도입된 점을 감안하면 향후 가격이 인하될 것으로 예측된다. '클로드 3.7 소네트'는 실전 활용성에도 초점을 맞췄다. 어려운 코딩 문제 해결과 에이전트 기반 작업에서 강력한 성능을 발휘하며 개발자가 추론 시간을 조절할 수 있는 기능도 포함됐다. 이 모델은 '소프트웨어 엔지니어링(Bench SWE)' 벤치마크 테스트에서 62.3% 정확도를 기록해 오픈AI의 'o3-미니'보다 높은 성능을 보였다. 또 AI의 애플리케이션 프로그램 인터페이스(API) 상호작용 능력을 측정하는 'TAU-벤치'에서도 오픈AI의 'o1'을 앞서는 성적을 거뒀다. AI 업계의 반응은 뜨겁다. 소셜미디어에서는 지금까지 출시된 AI 중 최고라는 업계 관계자들의 평가가 잇따르고 있다. 특히 개발자들은 클로드 3.7 소네트가 복잡한 코드베이스를 다루는 능력이 뛰어나다며 극찬하고 있다. 유명 AI 팟캐스터 렉스 프리드먼은 자신의 X 계정에서 "'클로드 3.7 소네트'는 프로그래밍에 가장 적합한 모델"이라며 "AI 경쟁이 정말 치열해지고 있어 살아 있는 것이 신나는 시대"라고 언급했다. '클로드 3.7 소네트'의 등장은 AI 산업의 새로운 흐름을 시사한다. 오픈AI 역시 최근 'GPT-5'를 마지막으로 추론모델인 'o' 시리즈를 폐기하고 기존 GPT 모델에 통합하는 방향을 예고했다. AI 업계가 '하이브리드 모델' 중심으로 재편될 가능성이 높아지고 있는 것이다. 테크크런치는 "앤트로픽의 모델 출시는 AI 연구소들이 신모델을 빠르게 내놓는 치열한 경쟁 속에서 이뤄진 결정"이라며 "오픈AI 등의 경쟁자들도 자체 하이브리드 모델을 내놓으려고 하는 상황에서 회사가 AI 경쟁에서 얼마나 오래 선두를 유지할 수 있을지는 지켜봐야 할 것"이라고 분석했다.

2025.02.25 09:42조이환

"앤트로픽, 클로드 새 모델 공개 임박?"…출시설에 AI 업계 촉각

앤트로픽이 추론과 신속 응답을 결합한 '하이브리드' 인공지능(AI) 모델을 개발하고 있는 것으로 보인다. 최근 AI 업계에서는 주요 기업들이 잇따라 신형 모델을 출시하며 기술 경쟁이 격화되고 있어 앤트로픽의 행보에도 관심이 집중되고 있다. 14일에 디인포메이션에 따르면 앤트로픽은 향후 몇 주 안에 차세대 AI 모델을 출시할 계획을 가지고 있는 것으로 알려졌다. 이번 모델이 도입할 가능성이 높은 핵심 기술 중 하나는 '슬라이딩 스케일' 기능이다. 이 기능을 활용하면 AI의 연산 모드를 조절해 성능을 최적화할 수 있다. 앤트로픽 내부 직원들은 신형 AI 모델이 일부 프로그래밍 작업에서 오픈AI의 'o3-미니-하이' 모델을 능가하는 성능을 보였다고 전했다. 이에 따라 이 모델은 대규모 코드베이스 분석 및 비즈니스 활용에서도 강점을 가질 것으로 예상된다. 앤트로픽의 이번 행보는 AI 업계의 치열한 경쟁 구도 속에서 나온 결정으로 보인다. xAI의 최고경영책임자(CEO)인 일론 머스크 역시 지난 13일 두바이에서 열린 행사에서 "우리 AI 모델 '그록 3'가 최종 개발 단계에 있다"며 "향후 1~2주 내 출시될 것"이라고 밝힌 바 있다. 다만 이번 보도는 내부 정보망을 기반으로 한 것으로, 출시 여부와 정확한 일정은 공식적으로 확인되지 않았다. 업계에서는 앤트로픽의 신형 AI 모델이 오픈AI, 구글, xAI를 비롯한 경쟁사들과의 기술 격차를 줄이는 계기가 될지 주목하고 있다. 다리오 아모데이 앤트로픽 대표는 최근 테크크런치와의 인터뷰에서 "우리는 자체적으로 더 차별화된 추론 모델을 만드는 데 집중하고 있다"며 "일반 모델과 추론 모델을 구분하는 기존 개념이 다소 이해하기 어렵다"고 밝혔다.

2025.02.14 10:04조이환

"업무 생산성 게임체인저"…코난테크놀로지, AI 기반 검색 플랫폼 'RAG-X' 공개

인공지능(AI) 기반 검색 기술이 기업 경쟁력의 핵심 요소로 떠오르는 가운데 기업 맞춤형 솔루션을 개발해온 코난테크놀로지가 자사 AI 검색 플랫폼의 본격적인 시장 진입을 예고했다. 코난테크놀로지는 기업용 AI 검색 플랫폼 '코난 검색증강생성(RAG)-X'의 베타 테스트를 진행 중이라고 13일 밝혔다. 이 솔루션은 기업 내부 데이터, 실시간 웹사이트, 고객 맞춤형 사이트까지 검색 결과를 통합해 AI가 즉각적인 답변을 제공하는 B2B형 플랫폼이다. '코난 RAG-X'는 단순 검색을 넘어 AI가 종합적이고 심층적인 답변을 생성하는 것이 특징이다. 기존 웹 기반 검색 서비스와 달리 검색 증강 생성(RAG) 기술을 활용해 내부 문서, 데이터베이스(DB), 외부 사이트 정보까지 아우르며 기업에 최적화된 정보를 제공한다. 일례로 사용자가 특정 산업 동향에 대한 최신 정보를 요청하면 AI가 내부 자료와 실시간 웹사이트 데이터를 분석해 핵심 변화를 정리하고 보고서 초안까지 생성한다. AI의 답변에는 모든 출처가 명확하게 표시되며 연관 검색어나 참고자료도 자동 추천된다. 이같은 기능을 통해 기업들은 수작업으로 정보를 찾을 필요 없이 원클릭 검색만으로 신속하고 정확한 답변을 제공받을 수 있다. 업무 생산성을 높이고 시장 분석·경쟁사 동향 파악·신제품 조사·정책 연구 등 다양한 분야에서 활용될 것으로 기대된다. 코난테크놀로지는 지난 1999년 설립 이후 AI 검색엔진 '코난 서치'를 포함해 2천900여 개 기업과 3천400건 이상의 프로젝트를 수행하며 기술력을 입증해왔다. 특히 자체 개발한 대규모 언어 모델 '코난 거대언어모델(LLM)'은 지난해 미국 스탠퍼드대학의 AI 생태계 분석 리포트 '에코시스템 그래프'에 포함되며 글로벌 경쟁력을 인정받았다. 현재 '코난 RAG-X'는 200여 명의 사내 인력과 일부 고객사를 대상으로 비공개 베타 테스트를 진행 중이다. 다음달 정식 출시를 목표로 서비스 안정성과 성능을 최적화하고 있다. 코난테크놀로지는 또 '코난 LLM'의 차세대 버전도 다음 달 공개할 예정이다. 최신 AI 연구 트렌드에 맞춰 추론 데이터와 인스트럭션 튜닝을 대폭 강화해 한층 업그레이드된 성능을 선보일 계획이다. 김영섬 코난테크놀로지 대표는 "검색 품질에 대한 기대가 높아지는 가운데 기업 맞춤형 검색 수요도 증가하고 있다"며 "새로운 생성형 AI 경험을 통해 고객의 비즈니스 혁신을 적극 지원하겠다"고 밝혔다.

2025.02.13 14:45조이환

"오라클·엔비디아가 인정했다"…베슬AI, 엔터프라이즈 시장 공략 본격화

베슬AI가 오라클·엔비디아와 손잡고 엔터프라이즈 인공지능(AI) 시장 공략에 나선다. 기업 환경에 최적화된 AI 오케스트레이션과 프라이빗 거대언어모델(LLM) 솔루션을 앞세워 글로벌 시장에서 입지를 확대하려는 전략이다. 베슬AI는 오는 18일 미국 캘리포니아 레드우드시티에서 공동 AI 밋업을 개최한다고 13일 밝혔다. 회사는 현재 오라클 글로벌 파트너 네트워크(OPN) 멤버이자 엔비디아 인셉션 프로그램 참여 기업이다. 업계에서는 이번 행사를 두고 베슬AI가 실리콘밸리 AI 생태계에 성공적으로 안착했음을 보여주는 자리로 평가하고 있다. 행사에서는 오라클, 엔비디아, 베슬AI의 AI 전문가들이 차세대 AI 기술과 인프라 구축 전략을 발표할 예정이다. 오라클에서는 클라우드 인프라(OCI)의 생성형 AI 부문을 이끄는 수지스 라비 부사장이 연사로 나선다. 엔비디아는 AI 엔터프라이즈 제품을 총괄하는 아델 엘 할락 디렉터가 발표를 맡는다. 베슬AI에서는 AI 에이전트 플랫폼 개발을 담당하는 이재준 엔지니어링 매니저가 연단에 선다. 그는 멀티·하이브리드 클라우드 환경에서 AI를 최적화하는 오케스트레이션 기술과 기업 AI 도입 전략을 소개할 예정이다. 베슬AI의 머신러닝 운영(MLOps) 플랫폼 '베슬(VESSL)'은 AI 모델 개발 시간을 주당 200시간 이상 단축하고 배포 속도를 4배 향상한 것으로 알려졌다. 베슬AI는 이번 협력을 계기로 온프레미스·클라우드·하이브리드 환경 전반에서 AI 인프라 구축을 강화할 계획이다. 특히 오라클의 월 고정 요금제 클라우드 서비스와 엔비디아의 그래픽 처리장치(GPU) 최적화 기술을 결합해 기업의 AI 도입 비용을 절감하는 방안을 추진한다. 금융·의료 등 보안과 컴플라이언스가 중요한 산업군에서도 프라이빗 LLM을 활용해 AI 도입을 가속화할 전망이다. 안재만 베슬AI 대표는 "이번 밋업을 통해 최신 AI·ML 트렌드를 공유하고 글로벌 기업들과 협업 방안을 모색하는 자리가 될 것"이라며 "오라클과 엔비디아의 글로벌 역량과 시너지를 바탕으로 기업용 AI 시장의 혁신을 주도해 나가겠다"고 밝혔다.

2025.02.13 10:56조이환

삼성전자 최연소 임원 출신이 만든 '이곳'…新 AI 모델로 中 딥시크 뛰어 넘나

투플랫폼이 50개 이상의 언어가 가능한 추론형 생성형 인공지능(AI) 모델을 새롭게 선보이며 글로벌 사업 확대에 본격 나선다. 투플랫폼은 최근 해당 모델에 독자적인 듀얼 트랜스포머 아키텍처를 적용한 '수트라-R0'를 공식 출시했다고 12일 밝혔다. 지난해 다국어 특화 생성 AI 모델 '수트라'를 공개한 데 이어 이번에는 복잡한 문제를 해결할 수 있는 추론형 AI로 라인업을 확장했다. 지난 2021년 설립된 투플랫폼은 실리콘밸리에 본사를 두고 한국과 인도를 거점으로 사업을 전개하고 있다. 삼성전자 최연소 임원 출신 프라나브 미스트리가 창업한 이 회사는 지난해 AI 소셜 앱 '재피'를 선보이며 50만 명의 사용자를 확보했다. 이후 AI 전환을 원하는 기업을 대상으로 독자 기술 기반의 AI 모델을 제공하며 빠르게 성장했다. '수트라-R0'는 비용 대비 성능을 극대화한 것이 특징이다. 자체 개발한 다국어 토크나이저와 듀얼 트랜스포머 아키텍처를 통해 낮은 사양의 그래픽 처리 장치(GPU)에서도 구동이 가능하며 토큰 처리 비용을 줄여 기업들의 운영 부담을 최소화했다. 이에 따라 한국의 금융 기업, 인도의 대형 소매 기업 등 여러 엔터프라이즈 고객을 유치하는 데 성공했다. 추론 성능도 대폭 향상됐다. '수트라-R0'는 금융 리스크 평가, 시장 분석, 의료 데이터 해석, 고객 서비스 자동화 등 다양한 분야에서 활용될 수 있다. 특히 힌디어·구자라트어 등 여러 언어의 벤치마크 테스트에서 오픈AI, 딥시크, 라마 등 경쟁 모델을 뛰어넘는 성능을 기록했다. 한국어 성능도 딥시크 'R1', '라마 3.3 70B' 모델보다 우수한 것으로 나타났다. 투플랫폼은 인도 최대 통신사 지오 플랫폼, 한국 네이버 스노우 등으로부터 투자를 유치하며 성장세를 이어가고 있다. 독자 모델을 공개한 지난해 약 100억원의 매출을 기록했으며 올해는 이를 대략 세 배 늘려 280억원을 목표로 잡았다. 향후 투플랫폼은 AI 모델을 더욱 고도화할 계획이다. 후속 모델로 산업 트렌드 예측, 이상 탐지, 선제적 의사 결정을 지원하는 '수트라-P0'도 준비 중이다. 프라나브 미스트리 투플랫폼 대표는 "한국과 미국에서의 비즈니스 경험과 인도의 언어·문화적 이해를 바탕으로 다국어 성능이 우수한 AI 모델을 만들었다"며 "'수트라-R0'를 통해 전 세계 기업들의 AI 활용 격차를 해소하는 데 기여하겠다"고 밝혔다.

2025.02.12 15:11조이환

"너도 나도 차단인데"…검색 시장 노린 이스트소프트, 앨런에 中 딥시크 적용 괜찮을까

보안 우려로 국내외서 중국 딥시크에 대한 경계령이 내려진 가운데 이스트소프트가 자사 인공지능(AI)에 이를 적용해 주목된다. 보안 기술을 강화한 만큼 검색 품질과 정보 신뢰도에 문제가 없다는 입장으로, 이번 일로 AI 검색 엔진 시장에서 존재감을 끌어올린다는 목표다. 이스트소프트는 자사 AI 검색 엔진 서비스 '앨런'에 딥시크가 지난달 20일 발표한 추론 특화모델인 'R1'을 적용했다고 10일 밝혔다. '앨런'은 사용자가 원하는 정보를 빠르고 정확하게 제공하는 AI 검색 엔진으로, 멀티 거대언어모델(LLM)을 기반으로 한 서비스 구조를 지향하면서 이번 'R1' 적용을 통해 검색 결과의 정교함을 한층 높였다. 이스트소프트가 운용하는 'R1'은 오픈소스를 기반으로 중국 본토의 딥시크와 완전히 분리돼 독립적인 클라우드 환경에서 구동된다. 이로 인해 정보 왜곡이나 외부 유출 우려 없이 안정적인 AI 추론 기능을 활용할 수 있다. 특히 이스트소프트의 보안 자회사 이스트시큐리티가 개발한 '알약xLLM'을 기반으로 데이터 유출 방지 기능을 강화했다. 이번 'R1' 적용으로 '앨런'은 기존보다 정밀한 검색 결과를 제공할 수 있게 됐다. 일례로 '맨해튼이 여의도의 몇 배인지' 묻는 질문에 기존 버전은 단순 계산 값을 제공했지만 새 버전은 여의도의 다양한 면적 기준을 고려한 비교 분석까지 제시한다. 딥시크 'R1'은 직접 사용할 때보다 앨런을 통해 활용할 경우 검색 품질이 더욱 향상되는 것이 특징이다. 오늘 저녁 메뉴 추천 요청 시 딥시크는 한식·중식·일식 등 음식 종류만 나열하지만 '앨런'의 'R1'은 날씨와 영양 정보까지 고려해 맞춤형 추천을 제공한다. 정보 왜곡 문제에서도 '앨런'의 'R1'은 강점을 보인다. 김치가 어느 나라 음식인지에 대해 한국어와 중국어로 각각 질문한 결과 '앨런'의 'R1'은 모두 한국의 전통 음식이라고 답했다. 이와 반대로 기존 딥시크는 중국어 질문에 대해 '동아시아 전통 음식'이라고 답하며 정보 해석에서 차이를 보였다. 또 정치적으로 민감한 질문에도 앨런의 'R1'은 중립적인 사실 기반의 답변을 제공했다. 현재 '앨런'은 검색창에서 LLM 선택 기능을 제공해 사용자가 직접 R1을 선택할 수 있도록 한다. 이스트소프트는 비용 효율성이 높은 'R1' 적용을 계기로 무료 기능을 확장하고 회원 가입 없이도 앨런을 사용하게끔 지원할 계획이다. 정상원 이스트소프트 대표는 "앨런은 글로벌 LLM 기술 경쟁을 기회로 삼아 서비스 품질과 비용 효율성을 동시에 개선하고 있다"며 "앞으로 AI 검색 엔진 서비스로서 글로벌 AI 기술을 가장 빠르게 접할 수 있는 플랫폼이 될 것"이라고 밝혔다.

2025.02.10 18:18조이환

코난테크놀로지, 의료분야 국내 첫 LLM 기반 진료 플랫폼 개발

코난테크놀로지(대표 김영섬)가 생성형인공지능(AI) 기술을 기반으로 의료 분야에 특화된 대규모언어모델(LLM)을 선보인다. 코난테크놀로지는 한림대학교 의료원과 '생성형AI기반 입원환자 전주기 기록지 작성 및 의료원 지식상담 플랫폼 구축' 사업을 계약했다고 5일 밝혔다. 이 사업은 한림대학교의료원과 협력하여 국내 의료 분야에 특화된 생성형 AI 플랫폼을 개발하고 적용하는 것을 목표로 하며, 양 기관은 오는 7월까지 의료 AI 솔루션 공동 개발에 나서게 된다. 입원환자 전주기 의무기록은 접수부터 진료, 검사, 경과 기록, 퇴원까지 모든 과정을 아우르는 통합 기록 시스템으로, 의료 기록 전 과정에 LLM 기술을 적용하는 사례는 국내 최초다. 이에 따라 의무기록 작성에 소요되는 시간이 연간 최대 절반까지 단축될 것으로 예상되며, 실시간 데이터 분석과 함께 입력 오류도 줄어들어 의료기록의 정확성이 한층 높아질 전망이다. 생성형 AI가 의료 현장에 도입되면, 환자 관리와 케어에 더 많은 시간을 할애할 수 있는 환경이 조성되어 궁극적으로 의료 서비스의 품질 향상으로 이어질 것으로 기대된다. 양 기관은 의료 기록 시스템 외에도 검색 증강 생성(RAG) 기술을 활용한 지식 상담 플랫폼을 개발해 의료진과 교직원의 실시간 정보 검색과 상담을 지원할 계획이다. 윤리적 AI 설계와 안전 필터링으로 정보 신뢰성을 강화하며, AI 오남용 방지를 위한 대응 시스템도 구축한다. 김규훈 코난테크놀로지 사업부장은 "생성형 AI 기술을 적용해 병원 행정과 진료 과정에서 업무를 효율화하려는 시도가 늘어나는 만큼, 의무기록 작성 AI 서비스를 시작으로 의료 AI 시장의 수요에 민첩하게 대응하며 관련 모델 고도화와 제품화를 이어가겠다"고 포부를 전했다. 한림대학교의료원은 초기 개념검증(PoC) 단계부터 서비스 기획, 의료진 인터뷰, 방향성 도출까지 사업의 주요 과정을 주도적으로 이끌었다. 코난테크놀로지는 한림대학교의료원이 제공한 실무적 통찰과 피드백, 그리고 의료 AI의 특수성을 반영한 철저한 검증을 기반으로 안전하고 신뢰성 높은 의료 AI 솔루션을 고도화 해나갈 예정이다.

2025.02.05 16:46남혁우

오픈AI, 韓 기업 연쇄 회동…카카오·삼성 만나 '수익' 실현하나

샘 알트먼 오픈AI 최고경영자(CEO)가 한국을 방문해 카카오, SK, 삼성, 크래프톤 등 주요 대기업 및 스타트업과 연쇄 회동을 가졌다. 글로벌 인공지능(AI) 시장 경쟁이 치열해지는 가운데 수익성 강화를 위해 국내 기업들과의 협력·투자 유치를 추진하기 위함이다. 4일 업계에 따르면 알트먼 CEO는 이날 오전부터 빡빡한 일정을 이어갔다. 오전 8시부터 최태원 SK그룹 회장과 약 40분간 간담회를 진행했으며 9시에는 회사가 주최하는 개발자 행사 '오픈AI 빌더랩'에 참석했다. 이 자리에는 네이버, LG AI 연구원 등 IT 대기업과 뤼튼테크놀로지스, 와들, 포티투마루 등 국내 신생 AI 기업들의 개발자들이 대거 참석해 오픈AI의 기술과 전략에 대한 논의를 진행했다. 빌더랩 질의 응답에 참가한 알트먼 CEO는 오전 10시 40분부터 김창한 크래프톤 대표와 만나 AI 게임 캐릭터(CPC) 및 게임 특화 AI 모델 최적화 협력 방안을 논의했다. 이후 11시에는 카카오톡 미디어 간담회에 모습을 드러냈다. 이 자리에서는 카카오와 함께 '챗GPT' 기술을 카카오톡과 카카오의 새 AI 서비스 '카나나(Kanana)'에 통합한다고 전격 발표했다. 이에 따라 카카오는 '챗GPT' 엔터프라이즈를 회사 서비스에 전면적으로 적용하게 된다. 카카오와의 협력 발표가 끝난 후 그는 극비리에 방한한 손 마사요시 소프트뱅크 회장과 함께 삼성전자 서초사옥을 찾았다. 업계에서는 이 자리에서 AI 반도체, AI TV, AI 특화 디바이스 개발 등이 주요 의제로 다뤄졌을 것으로 본다. 특히 알트먼 CEO가 지난달 도널드 트럼프 전 미국 대통령이 발표한 대규모 데이터 센터 건설 사업인 '스타게이트 프로젝트' 참여를 삼성전자에 요청했을 가능성도 제기된다. 업계에서는 이처럼 알트먼 CEO가 동분서주하는 이유로 현금과 수익성 확보가 절실하기 때문이라고 분석한다. 현재 오픈AI는 세계 1위 AI 업체로 평가받으며 기업가치 1천570억 달러(한화 약 2천290조원)를 기록 중이지만 '챗GPT'의 B2C 수익만 놓고 보면 적자 상태인 것으로 알려졌다. 실제로 회사는 지난해 기준 매출 37억 달러(한화 약 51조원)에 적자 50억 달러(한화 약 68조원)를 기록한 상황으로, 올해 매출은 전년 대비 2배 이상 늘어날 것으로 전망됨에도 여전히 적자를 벗어나기 어려울 것으로 예상된다. 실제로 샘 알트먼 CEO는 지난달 자신의 X 계정에 "챗GPT '프로'를 발표한 뒤 너무 많은 사람이 사용해 적자를 보고 있다"며 "월 200달러(한화 약 30만원) 정도 구독료를 책정하면 수익을 낼 수 있으리라 봤다"고 언급했다. 이같은 상황 속에서 알트먼 CEO의 국내 방문과 협력 모색은 국내 IT·빅테크 업계와 협업 계획을 적극 추진하고 투자를 유치하면서 파트너 범위를 넓히려는 행보로 풀이된다. 특히 카카오와의 전면적인 협력은 오픈AI가 안정적 수익 창출원을 확보하기 위한 중요한 포인트로 해석된다. 이용자가 5천만 명에 달하는 카카오 플랫폼은 단숨에 대규모 사용자를 확보할 수 있는 통로이기 때문이다. 빌더랩 행사에 국내 주요 IT 대기업과 스타트업의 개발자들을 초청한 것도 같은 맥락으로 분석된다. 초대된 개발자들이 오픈AI 기술을 직접 체험하게 함으로써 잠재적인 파트너 풀을 확대해 API를 도입하게 함으로써 B2B 사업을 장기적으로 확장할 수 있다는 계산이다. 이날 빌더랩에 참석한 한 업계 관계자는 "질의응답 시간에 알트먼이 한국을 두고 AI 발전에 필요한 핵심 요소를 갖춘 장소'라고 강조했다"며 "오픈AI가 국내 IT 서비스 기업들에게도 경쟁력 있는 파운데이션 모델 API를 공급하려는 의지가 강하게 드러났다"고 설명했다. 이 같은 국내 협력 논의는 투자 유치와도 연결된다. 오픈AI는 B2B 확장을 통해 새로운 매출원을 발굴하는 동시에 글로벌 투자자들로부터 대규모 자금을 조달하려는 움직임을 보이고 있기 때문이다. 실제로 삼성전자와의 3자 대담에 동석한 손 마사요시 소프트뱅크 회장은 지난 3일 일본 도쿄에서 이미 알트먼 CEO와 별도로 회동해 투자 확대 방안을 논의했다. 소프트뱅크 그룹은 연간 30억 달러(한화 약 4조 원) 규모로 오픈AI의 도구를 자사 계열사에 도입하겠다는 계획을 발표했으며 지난달에는 '스타게이트' 프로젝트의 출자자로서 전면적인 지원을 아끼지 않겠다고 밝히며 사실상 오픈AI와 전략적 동맹 관계를 구축한 상태다. 오픈AI가 국내에서 투자 유치와 기업 협력을 강화하는 이유 중 하나는 최근 중국 AI 업계의 급부상이다. 중국 AI 스타트업 딥시크(DeepSeek)가 출시한 'R1' 모델이 업계에 거대한 지각변동을 일으키고 있기 때문이다. 지난달 20일 공개된 'R1'은 출력 토큰 100만 개당 2.19달러(한화 약 3천 원)로, 이는 오픈AI의 'o1' 모델 대비 97%나 저렴한 수준이다. 이미 아마존, MS, 퍼플렉시티 등 글로벌 IT 기업들이 딥시크 모델의 도입을 검토하거나 추진하면서 오픈AI 역시 비용 경쟁력을 확보하고 시장 대응 속도를 높이는 것이 시급해졌다. 다만 오픈AI의 한국 시장 내 입지는 오히려 더 강화될 가능성이 크다는 분석도 제기된다. 보안 문제로 인해 국내 IT 기업들은 중국산 LLM API 활용에 제약을 받을 가능성이 높으며 상대적으로 보안 신뢰도가 높은 오픈AI를 선호하는 기업이 많다는 점이 그 이유다. 이에 따라 오픈AI는 한국 시장을 AI 기반 B2B 사업 확장의 주요 거점으로 삼고 대기업과의 협력을 더욱 적극적으로 확대하려는 것으로 보인다. 한 업계 관계자는 "오픈AI가 기술 우위를 유지하는 동시에 보안 신뢰도와 파트너십을 빠르게 확대해 나간다면 국내에서의 장기적인 수익화에도 긍정적인 영향을 미칠 것"이라고 전망했다.

2025.02.04 17:43조이환

"가장 강력한 LLM은?"…올거나이즈, AI 에이전트 평가 플랫폼 첫선

올거나이즈가 거대언어모델(LLM) 성능 평가 플랫폼을 선보여 기업이 최적의 인공지능(AI) 모델을 선택하도록 돕는다. 올거나이즈는 문제 해결을 위해 자율적으로 행동하는 AI 에이전트의 성능을 평가하는 국내 최초 플랫폼으로서 '올인원 벤치마크'를 출시했다고 3일 밝혔다. 이는 지난해 선보인 금융 전문 LLM 리더보드에서 한 단계 발전한 형태로, LLM의 다양한 역량을 종합적으로 분석하고 대시보드 형태로 결과를 제공한다. 올인원 벤치마크는 LLM이 에이전트 역할을 수행하기 위해 필요한 도구 선택 및 활용 능력, 대화의 맥락 이해, 정보 수집 및 활용 능력 등을 평가한다. 현재 올거나이즈의 자체 소형언어모델(sLLM)을 비롯해 챗GPT, 엑사원, 큐원, 딥시크 등 총 12개의 LLM을 분석할 수 있다. 새로운 LLM 평가는 매우 간편하게 진행된다. 모델 이름을 입력하면 애플리케이션 프로그램 인터페이스(API)가 자동 구현돼 즉시 테스트가 가능하다. 또 기존 벤치마크 방식이 동일 작업을 반복 실행해야 하는 불편함이 있었던 데 비해 올인원 벤치마크는 대규모 데이터셋에서도 효율적인 평가가 가능해 시간을 대폭 단축했다. 최근 올거나이즈는 올인원 벤치마크를 활용해 오픈소스로 공개된 딥시크의 'V3' 모델을 평가했으며 그 결과 'GPT-4o 미니'와 유사한 성능을 보였다고 밝혔다. 'V3'는 기존 다양한 벤치마크에서 성능을 검증받았으나 에이전트로서의 성능 분석은 이번이 처음이다. 올인원 벤치마크는 에이전트 성능뿐 아니라 언어 이해력, 지식 수준, 명령 준수(Instruction Following) 등 LLM의 전반적인 역량을 평가한다. 평가에는 '아레나하드(ArenaHard)' '코베스트(Kobest)' '해래(HAERAE)' 등 12개의 공개 벤치마크가 활용되며 결과는 100점 만점 기준으로 소수점 4자리까지 수치화돼 제공된다. 이창수 올거나이즈 대표는 "기업들이 AI 도입 시 객관적인 데이터를 기반으로 최적의 LLM을 선택할 수 있도록 지속적으로 평가 플랫폼을 업데이트할 것"이라며 "에이전트 성능을 강화하기 위한 LLM 학습 방법도 심도 있게 연구 중"이라고 밝혔다.

2025.02.03 12:06조이환

"AI, 역사 시험은 빵점"…거대언어모델, 전문 시험서 한계 드러내

인공지능(AI)이 고급 역사 질문에서는 신뢰할 만한 답변을 내놓지 못한다는 연구 결과가 나왔다. 21일 테크크런치에 따르면 오스트리아 연구기관 복잡성 과학 허브(CSH)는 최근 발표한 연구에서 'GPT-4', '라마', 구글 '제미나이' 같은 거대언어모델(LLM)들이 역사적 전문성을 테스트하는 벤치마크인 '히스트-LLM(Hist-LLM)'에서 낮은 성과를 보였다고 밝혔다. 가장 높은 성과를 보인 'GPT-4 터보'도 정확도가 46%에 불과했다. 이번 테스트는 '세샤트 글로벌' 역사 데이터베이스를 바탕으로 진행됐으며 고대 이집트와 같은 특정 역사적 상황을 포함한 고급 질문을 포함했다. 이 질문에서 LLM은 대부분의 질문에 대해 부정확하거나 과장된 답변을 내놓으며 한계를 드러냈다. 일례로 연구진은 고대 이집트에 특정 시기에 찰갑 갑옷이 존재했는지 물었다. 'GPT-4'는 "예"라고 답했지만 실제로 찰갑은 해당 시기로부터 1천500년 뒤에 등장했다. 또 다른 질문에서는 고대 이집트에 상비군이 있었는지를 물었으나 모델은 잘못된 정보를 바탕으로 "있었다"고 답했다. 연구팀은 이런 오류의 원인으로 AI가 널리 퍼진 데이터를 우선적으로 학습하는 특성을 지적했다. 페르시아 같은 제국의 상비군에 대한 정보가 풍부한 반면 고대 이집트와 같은 특정 시기와 관련된 희귀 데이터는 학습이 부족하다는 것이다. 또 AI 모델은 특정 지역에 대한 역사적 지식의 성능이 더 낮은 경향도 보였다. 특히 사하라 이남 아프리카와 같은 지역에 대한 데이터의 부족과 편향이 더 큰 문제로 작용했다. 연구진은 이번 결과가 LLM의 역사적 한계와 개선 가능성이 있다는 점을 동시에 보여준다고 강조했다. 향후에는 대표성이 부족한 지역의 데이터를 추가하고 보다 복잡한 질문을 포함하는 방향으로 기준을 개선할 계획이다. 피터 투르힌 CSH 교수는 "AI는 기본적인 역사적 질문에는 유용하지만 고급 질문에서는 아직 전문성을 갖추지 못했다"며 "향후 기술 개선을 통해 역사 연구를 보조할 수 있는 가능성은 충분하다"고 말했다.

2025.01.21 09:57조이환

"LLM 추론비용 75% 절감"…스노우플레이크, '스위프트KV'로 AI 최적화 혁신

스노우플레이크가 생성형 인공지능(AI) 애플리케이션 비용 절감을 위한 새로운 최적화 기술을 선보여 거대언어모델(LLM)의 추론 처리 속도를 높이고 운영 비용을 대폭 절감할 수 있는 길이 열렸다. 17일 업계에 따르면 스노우플레이크의 최적화 기술인 '스위프트KV'는 LLM 추론 처리량을 최대 50%까지 향상시키고 추론 비용을 최대 75%까지 절감할 수 있다. 이 기술은 지난해 12월 오픈소스로 공개돼 주목받았다. '스위프트KV'는 LLM 추론 중 생성되는 키값(KV) 데이터를 효율적으로 관리해 메모리 사용량을 줄이는 기술이다. 이를 통해 AI 모델이 더 긴 컨텍스트를 처리하면서도 빠른 출력을 생성할 수 있다. 특히 기존 KV 캐시 압축 방식을 넘어 중복 계산을 최소화하고 메모리 사용량을 최적화했다. 스노우플레이크는 프롬프트 처리 시 계산 부담을 줄이기 위해 '스위프트KV'로 모델 재배선과 자체 증류 기술을 결합했다. 이는 입력 토큰 처리에서 불필요한 연산을 줄여 워크로드 효율성을 높이는 데 기여한다. 또 이 기술은 허깅페이스의 모델 체크포인트와 호환되며 코텍스 AI를 통해 '라마 3.3' 70B 및 '라마 3.1' 405B 모델에서 최적화된 추론이 가능하다. 스노우플레이크는 이를 통해 고객사가 기존 대비 최대 75% 저렴한 비용으로 AI를 활용할 수 있게 했다고 강조했다. 업계 전문가들은 스위프트KV의 개념이 프롬프트 캐싱이나 양자화 같은 기존 기술과 유사하다고 평가했다. 다만 복잡성, 정확도 유지, 성능 저하 여부 등이 기술 적용 시 해결해야 할 과제로 꼽힌다. 브래들리 심민 옴디아 수석 분석가는 "'스위프트KV'는 AI 추론 비용 절감의 한 방법일 뿐 개념 자체가 새로운 것은 아니다"면서도 "앞으로 다양한 AI 최적화 기술과 함께 사용될 가능성이 크다”고 예측했다.

2025.01.17 15:11조이환

  Prev 1 2 3 4 5 6 7 8 9 10 Next  

지금 뜨는 기사

이시각 헤드라인

SK하이닉스, 낸드 계열사 지분 中에 전량매각…고부가 메모리 집중

[지디 코믹스] 판교 대기업 다니는 김부장 딸 결혼식

아우디, F1 첫 진출 앞두고 '레이싱 머신' 디자인 콘셉트 공개

비아그라에 또 이런 효능이?..."선천성 난청 치료 도움 가능성 판명"

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.