• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 인터뷰
  • 인사•부음
  • 글로벌뉴스
창간특집
인공지능
배터리
컨퍼런스
칼럼•연재
포토•영상

ZDNet 검색 페이지

'북미영상의학회'통합검색 결과 입니다. (1건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

딥노이드, AI 기반 폐 결절 진단 성과 'RSNA'서 발표

딥노이드(대표 최우식)가 미국 시카고에서 개최되는 2024년 북미영상의학회(RSNA 2024)에서 'AI 기반 폐 결절 진단 기술'에 대한 연구 성과를 발표한다. 딥노이드는 RSNA에서 '폐 결절의 국소화 및 Lung-RADS 범주를 고려한 AI 기반 CAD 시스템의 진단 성능'을 주제로한 초록을 통해 딥렁(DEEP:LUNG)의 진단 성능을 선보인다고 3일 밝혔다. 이번 임상 연구는 부산대학교병원, 양산부산대학교병원, 화순전남대학교병원의 2019년 1월부터 2023년 7월까지 외래와 응급실을 방문한 저선량 흉부 컴퓨터단층촬영(LDCT) 데이터 455건을 활용해 딥렁의 진단 성능을 평가했다. 폐 결절의 조직, 크기, 악성도 분류, Lung-RADS 카테고리화 및 결절 위치 국소화 등이다. 딥렁 활용 시 주요 평가 지표에서 민감도 91.38%, 특이도 93.08%, 악성도 분류 AUROC 89.62%라는 높은 정확도를 기록하며 우수한 결과를 보였다. AUROC는 분류 모델의 성능을 평가하는 지표로 AUROC 85% 이상이면 상당히 좋은 성능으로 간주된다. 렁-RADS 카테고리별 평가에서도 민감도와 특이도에서 안정적인 성능을 입증했다. 고형 결절과 간유리 음영 결절의 크기 측정에서도 각각 2mm 및 3mm 이내의 오차 범위를 유지하며 높은 정밀도를 보였다. 최우식 딥노이드 대표이사는 “본 연구를 통해 폐 결절 진단 및 악성 분류 분야에서 AI가 의료진에게 큰 도움을 줄 수 있음을 입증할 수 있었다”며 “2025년에는 뇌 질환 진단 솔루션과 함께 흉부 영역으로 AI 솔루션의 적용 범위를 확대할 계획으로, 의료 현장에 보다 포괄적인 AI 진단 지원 도구를 제공하는 것이 다음 목표”라고 덧붙였다.

2024.12.03 10:10남혁우

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

5천억 짜리 과제, 전화로 5분 평가..."이제 그만, 새 틀 짜자"

스마트폰 美 25% 관세 리스크…삼성 언팩 앞두고 '고심'

"2030년 기업용 PC 10대 중 1대는 AI 기반 워크스테이션"

日 다이소, '쓰리피' 이름으로 韓 시장 재진출하나

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현