• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 문화
  • 인사•부음
  • 글로벌뉴스
인공지능
배터리
양자컴퓨팅
컨퍼런스
칼럼•연재
포토•영상

ZDNet 검색 페이지

'머신러닝 운영'통합검색 결과 입니다. (3건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

[현장] "AI 도입 비용 0"…슈퍼브에이아이, 산업용 비전 파운데이션 모델 '제로' 공개

슈퍼브에이아이가 인공지능(AI) 도입 비용과 시간을 대폭 줄인 산업용 비전 파운데이션(VFM) 모델을 통해 전 산업의 디지털 전환 가속화에 나선다. 기술 부담 없이 누구나 AI를 쓸 수 있도록 만들겠다는 전략이다. 슈퍼브에이아이는 24일 서울 콘래드호텔에서 기자간담회를 열고 산업 특화형 비전 파운데이션 모델 '제로(ZERO)'를 공개했다. 이날 행사에는 김현수 최고경영자(CEO)를 비롯해 차문수 최고기술책임자(CTO), 김진회 최고사업책임자(CBO)가 참석해 슈퍼브에이아이의 기술 전략과 시장 계획을 상세히 밝혔다. 김현수 CEO는 "AI 도입 비용을 완전히 '0'으로 만들겠다"는 선언과 함께 슈퍼브에이아이가 개발한 '제로'를 소개했다. 회사에 따르면 '제로'는 학습 데이터 없이도 즉시 활용 가능한 영상 AI 모델로, 기존 AI 개발에 요구되던 데이터 구축과 모델 학습 과정 자체를 생략할 수 있는 것이 핵심이다. 영상 속 객체 탐지, 추적, 질의응답까지 다양한 작업을 단일 모델로 처리할 수 있어 산업 적용성도 강조됐다. 산업용 범용 기반 모델 '제로'…AI 도입 병목 해소한다 이날 행사를 시작하며 김 CEO는 슈퍼브에이아이가 AI 도입에 있어 ▲전문 인력 부족 ▲데이터 부족 ▲기술 인프라 부재라는 세 가지 병목을 확인했다고 설명했다. 이를 해결하기 위해 이미 개발한 것이 머신러닝 기반의 'MLOps 플랫폼'과 '버티컬 솔루션'이다. 데이터 라벨링 자동화와 AI 개발 전 과정을 하나의 플랫폼에서 처리할 수 있는 이 플랫폼은 AI 개발 기간을 6개월에서 2주로 줄이는 데 성공했다. '버티컬 솔루션'은 개발 역량이 부족한 산업 현장에서 AI를 즉시 활용할 수 있도록 만든 제품군이다. CCTV 기반 화재 감지, 안전 모니터링 솔루션은 실제로 발전소, 공항, 지자체 등에서 쓰이고 있다. 김 대표는 "이제는 더 높은 목표를 설정할 시점"이라며 "이에 '제로' 모델을 개발할 필요성을 느꼈다"고 강조했다. 슈퍼브에이아이에 따르면 '제로'는 마치 '챗GPT'처럼 프롬프트 입력만으로 다양한 작업을 실행하는 멀티모달 인터페이스를 갖췄다. 예시 이미지 하나로 생산 현장의 결함 탐지나 수량 계산이 가능하고 프롬프트를 통해 다양한 산업 과업을 정의할 수 있다. 기존 AI의 한계였던 '사전 정의된 카테고리만 인식 가능' 문제도 해결한다는 설명이다. 김 대표는 제로가 지닌 '제로샷' 능력을 핵심 경쟁력으로 꼽았다. 학습 없이도 기존 지식만으로 새로운 상황을 추론할 수 있는 점은 제조업 기반이 강한 한국이 비전 AI 분야에서 세계 시장을 주도할 수 있는 전략적 교두보가 될 수 있다는 의미이기도 하다. 산업용 비전 데이터는 대부분 기업 내부에 있고 공개되지 않는다. 텍스트 기반의 언어 모델과 달리 접근이 어렵다. 김 대표는 "바로 이 점이 우리가 경쟁력을 가질 수 있는 이유"라며 "한국의 제조·조선·방산 같은 고도화된 산업 인프라 위에서 비전 파운데이션 모델은 세계 1등을 노릴 수 있다"고 말했다. 김 대표는 "AI의 3대 축으로 거대언어모델(LLM), 비전 파운데이션 모델(VFM), 피지컬 AI(로보틱스 등)가 제시된다"며 "이 가운데 비전 AI가 산업 현장의 눈이 될 것"이라고 말했다. 이어 "산업용 비전 AI가 한국의 국가 경쟁력에 기여하도록 '제로'를 통해 AI 민주화와 함께 산업 혁신의 속도를 끌어올리겠다"고 밝혔다. 구글·MS·중국 모델 제쳤다…국산 비전 '제로'로 CVPR 2위 이어 차문수 CTO는 '제로'의 기술적 배경과 성능 성과를 설명했다. 그는 기존 비전 AI의 구조적 한계부터 짚으며 제로가 어떤 기술 혁신을 통해 이를 극복했는지를 순차적으로 소개했다. 차 CTO는 기존 비전 AI가 ▲새 객체 인식 불가 ▲환경 변화에 취약 ▲작업마다 별도 모델이 필요한 복잡성 등 세 가지 태생적 한계를 안고 있다고 설명했다. 산업 현장에서는 이 같은 제약이 반복적인 데이터 수집과 학습 비용으로 이어졌고 AI 도입 자체를 가로막아 왔다고 진단했다. 그는 슈퍼브에이아이가 이 같은 구조적 병목을 해결하기 위해 '제로'를 설계했다고 밝혔다. 제로가 가진 '제로샷'이란 대규모 언어 데이터와 이미지 데이터를 함께 학습해 학습되지 않은 객체도 추론 가능한 능력이다. 더불어 정해진 분류 없이도 작동하는 '오픈월드' 구조로 설계됐다. 이미지나 텍스트 등 다양한 형태의 프롬프트를 지원하는 멀티모달 인터페이스와 수십 개의 태스크를 하나의 모델로 처리할 수 있는 멀티태스크 구조를 채택했다. 무엇보다도 산업현장에서 필요로 하는 문제를 곧바로 다룰 수 있도록 퍼블릭 웹 데이터 외에 슈퍼브에이아이 자체 구축 데이터와 국내 AI허브 데이터 등 산업용 특화 데이터를 중심으로 학습시킨 점이 특징이다. 추가 학습 없이 바로 제조, 유통, 건설 등 다양한 분야에서 사용 가능한 형태로 만들었다는 점에서 기술적 실용성이 강조됐다. '제로'는 벤치마크에서도 뚜렷한 성과를 냈다. 산업용 영상 AI 벤치마크에서 경쟁 모델들을 제치고 1위를 기록했다. 글로벌 비전학회인 국제 컴퓨티 비전 및 패턴 인식 학회(CVPR)의 객체 탐지 및 퓨샷 챌린지에서도 각각 2위, 4위를 기록했다. 중국의 '티렉스-2(T-Rex2)', 마이크로소프트의 '플로센스-2(Florence-2)', 구글 '오더블유엘브이2(OWLv2)' 등과 비교해도 성능 격차를 크게 벌린 것으로 나타났다. 또 차 CTO는 '제로'가 적은 리소스로 고성능을 구현한 점을 강조했다. 'A100' 그래픽 처리장치(GPU) 8장만으로 학습했으며 수집한 1억 장 규모의 데이터에서 약 90만 장만을 선별 학습에 사용했다. 이를 가능하게 한 것은 슈퍼브가 보유한 MLOps 플랫폼의 데이터 선별 기술이었다는 설명이다. 모델 경량화도 특징이다. 10억 파라미터 미만으로 설계돼 연산량이 작아 엣지 디바이스나 클라우드 등 다양한 환경에서 가볍게 배포 가능하다. 응용 프로그램 인터페이스(API) 호출 방식뿐 아니라 엣지AI 형태로도 쉽게 연동 가능하며 실제 산업 환경에서의 AI 도입을 빠르고 간편하게 만든다는 것이 슈퍼브에이아이의 설명이다. 차 CTO는 "'제로'는 단일 모델에 그치지 않는다"며 "하드웨어-플랫폼-모델-버티컬 솔루션을 포괄하는 '제로 스택'으로 풀스택 생태계를 구성하겠다"고 밝혔다. '제로'로 200조 시장 노린다…"지능형 비전, 모든 산업의 표준 될 것" 이어 김진회 CBO는 '제로'가 실제 비즈니스 현장에 어떻게 가치를 창출하는지 설명하며 기술 중심 전략에서 '고객 중심 전환'으로의 구체적 비전을 제시했다. 그는 '제로'의 활용이 단순한 AI 도입을 넘어 산업 전체의 운영 구조를 바꾸는 촉매가 될 수 있다고 강조했다. 김 CBO는 "AI가 중요한 게 아니라 여러분의 자연지능이 중요하다"며 기존 AI 도입 방식의 비효율성과 제로의 실용적 전환 능력을 대비해 설명했다. 학습 없이도 객체 탐지, 결함 검출, 수량 카운팅이 가능한 '제로샷'의 현장 데모를 통해 복잡한 모델 설계와 라벨링 없이도 AI 도입이 가능함을 시연했다. 데모에서는 리테일 환경에서는 변화가 잦은 제품군을 사전 학습 없이도 인식하고 분류할 수 있는 능력도 선보였다. 영상 속 인물의 행동을 추론하고 사고 현장을 이해해 답변을 제공하는 지능형 에이전트 형태로 확장된 기능도 함께 시연됐다. 김 CBO는 '제로'가 기존 AI 도입에서 필연적으로 요구되던 '문제 정의→데이터 수집→라벨링→모델 학습→배포'의 전 과정을 무력화했다고 밝혔다. 그는 "이제는 아이디어만 있으면 AI를 바로 쓸 수 있게 된다"며 "기술검증(PoC)에 수천만 원을 쓰지 않아도 된고 전문가를 고용하는데 소요되는 시간도 필요 없게 하는 것이 우리의 궁극적 목적이었다"고 말했다. 시장 확장 전략으로는 '플랫폼 중심 생태계 공급' 구조를 제시했다. 아마존웹서비스(AWS) 같은 글로벌 플랫폼에서 손쉽게 제로를 호출할 수 있는 구조를 갖춰 사용자가 가장 익숙하고 신뢰하는 환경에서 AI를 접할 수 있도록 하겠다는 것이다. 실제로 제로는 이날 오후부터 AWS를 통해 공개될 예정이다. 그는 궁극적으로 '제로'가 모든 산업 장비·시스템에 탑재되는 표준이 되겠다는 포부를 밝혔다. 20조원 규모의 기존 컴퓨터 비전 시장을 넘어 200조원에 달하는 글로벌 영상 관제 시장, 290조원 규모의 스마트팩토리 시장 등으로 진출하겠다는 계획이다. 김진회 CBO는 "의사는 의료 AI, 농업 전문가는 농업 AI를 만드는 시대를 '제로'가 열 것"이라며 "지금까지의 AI가 기술을 위한 것이었다면 이제는 사람을 위한 AI로 전환해야 한다"고 말했다.

2025.06.24 14:21조이환

"AI 툴 연결, 한 줄로 끝"…베슬AI, 오픈소스 툴콜링 플랫폼 '하이퍼포켓' 공개

베슬AI가 인공지능(AI) 에이전트를 위한 오픈소스 툴콜링 플랫폼을 통해 에이전트의 외부 도구 연동을 지원한다. 고객사의 멀티 에이전트 시스템 구축 부담을 줄여 시장을 선점하려는 조치다. 베슬AI는 지난달 6일 실리콘밸리에서 열린 '라마라운지' 행사에서 '하이퍼포켓'을 최초로 공개했다고 4일 밝혔다. '하이퍼포켓'은 플러그앤플레이 방식의 오픈소스 플랫폼으로, 깃허브 URL만으로 AI 에이전트와 다양한 툴을 즉시 연결할 수 있다. 또 랭체인, 라마인덱스를 포함한 여러 애플리케이션 프로그램 인터페이스(API)와 서드파티 툴을 지원하며 보안 인증 시스템을 갖춰 높은 비용 문제를 해결한 것이 특징이다. 베슬AI는 '하이퍼포켓'을 통해 AI 에이전트와 외부 데이터 간의 상호작용을 강화하고 기업들이 손쉽게 멀티 에이전트 시스템을 구축할 수 있도록 돕겠다는 계획이다. 특히 멀티 에이전트가 핵심 경쟁력으로 떠오르는 상황에서 기업들이 보다 쉽게 AI 에이전트 네트워크를 확장할 수 있도록 지원할 수 있게 됐다. 베슬AI는 '라마라운지' 외에도 다양한 행사에 참가해 '하이퍼포켓'을 시연했다. 지난달 15일부터 이틀간 웨이츠&바이어스 본사에서 열린 '생성 AI 에이전트 멀티모달 해커톤'에도 참가해 음성·비디오 분석, 업무 자동화, 쇼핑·결제 시스템 개선 등 다양한 분야의 AI 에이전트를 구현하고 API와 외부 툴을 연계해 실질적인 문제 해결 방안을 제시했다. 또 지난달 19일에는 깃허브 오피스에서 'AI 에이전트 해커톤 나이트'를 개최했다. 벡터 데이터베이스 기업인 위비에이트, 서버리스 AI 인프라 기업인 파이어웍스AI, 멀티 에이전트 프레임워크 기업인 크루AI 등이 파트너로 참여해 AI 모델과 프레임워크 통합을 검증하고 공동 프로젝트 가능성을 모색했다. 안재만 베슬AI 대표는 "하이퍼포켓 출시와 글로벌 기업들과의 기술 교류는 멀티 에이전트 시장 확장의 중요한 전환점이 될 것"이라며 "복잡한 API 통합과 인증 문제를 해결하고 다중 언어 지원을 통해 자유롭게 확장·커스터마이징할 수 있는 AI 에이전트 개발을 지원할 것"이라고 밝혔다.

2025.03.04 15:56조이환

"오라클·엔비디아가 인정했다"…베슬AI, 엔터프라이즈 시장 공략 본격화

베슬AI가 오라클·엔비디아와 손잡고 엔터프라이즈 인공지능(AI) 시장 공략에 나선다. 기업 환경에 최적화된 AI 오케스트레이션과 프라이빗 거대언어모델(LLM) 솔루션을 앞세워 글로벌 시장에서 입지를 확대하려는 전략이다. 베슬AI는 오는 18일 미국 캘리포니아 레드우드시티에서 공동 AI 밋업을 개최한다고 13일 밝혔다. 회사는 현재 오라클 글로벌 파트너 네트워크(OPN) 멤버이자 엔비디아 인셉션 프로그램 참여 기업이다. 업계에서는 이번 행사를 두고 베슬AI가 실리콘밸리 AI 생태계에 성공적으로 안착했음을 보여주는 자리로 평가하고 있다. 행사에서는 오라클, 엔비디아, 베슬AI의 AI 전문가들이 차세대 AI 기술과 인프라 구축 전략을 발표할 예정이다. 오라클에서는 클라우드 인프라(OCI)의 생성형 AI 부문을 이끄는 수지스 라비 부사장이 연사로 나선다. 엔비디아는 AI 엔터프라이즈 제품을 총괄하는 아델 엘 할락 디렉터가 발표를 맡는다. 베슬AI에서는 AI 에이전트 플랫폼 개발을 담당하는 이재준 엔지니어링 매니저가 연단에 선다. 그는 멀티·하이브리드 클라우드 환경에서 AI를 최적화하는 오케스트레이션 기술과 기업 AI 도입 전략을 소개할 예정이다. 베슬AI의 머신러닝 운영(MLOps) 플랫폼 '베슬(VESSL)'은 AI 모델 개발 시간을 주당 200시간 이상 단축하고 배포 속도를 4배 향상한 것으로 알려졌다. 베슬AI는 이번 협력을 계기로 온프레미스·클라우드·하이브리드 환경 전반에서 AI 인프라 구축을 강화할 계획이다. 특히 오라클의 월 고정 요금제 클라우드 서비스와 엔비디아의 그래픽 처리장치(GPU) 최적화 기술을 결합해 기업의 AI 도입 비용을 절감하는 방안을 추진한다. 금융·의료 등 보안과 컴플라이언스가 중요한 산업군에서도 프라이빗 LLM을 활용해 AI 도입을 가속화할 전망이다. 안재만 베슬AI 대표는 "이번 밋업을 통해 최신 AI·ML 트렌드를 공유하고 글로벌 기업들과 협업 방안을 모색하는 자리가 될 것"이라며 "오라클과 엔비디아의 글로벌 역량과 시너지를 바탕으로 기업용 AI 시장의 혁신을 주도해 나가겠다"고 밝혔다.

2025.02.13 10:56조이환

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

한·미 관세협상 막판 총력전...정부·재계 총출동

직장 '꼰대'는 누가·언제·어떻게 될까...HR 전문가 5인의 생각

삼계탕 2만원 시대...복날 보양식 '가성비' 더 따진다

[기자수첩] 현대차그룹의 글로벌 1위 완성차 꿈은 왜 무산됐나

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.