'문서 AI'가 더 똑똑해졌다…"서류 속 문맥·구조까지 파악"
문서 인공지능(AI) 기술이 단순 텍스트 인식을 넘어 문맥·구조까지 이해하는 방향으로 진화했다. 복잡한 문서에서도 주요 정보를 자동 식별하고 고도화된 자동화 처리까지 가능해졌다. 11일 IT 업계에 따르면 최근 문서 처리 시장에서는 비전언어모델(VLM) 기반 광학 문자 인식(OCR) 기술이 주목받고 있다. 이 기술은 계약서, 보고서 등 여러 형식과 맥락으로 이뤄진 문서 속 표, 조항, 제목, 본문을 AI로 식별해 구조화된 데이터로 변환할 수 있다. VLM은 이미지와 언어 정보를 동시에 이해하는 AI 모델이다. 일종의 '이미지 전문가'와 '언어 전문가'가 한 팀처럼 협업하는 방식으로 작동한다. 우선 이 모델은 문서에서 표, 문장, 도장, 손글씨 등 다양한 이미지 요소를 구분한다. 이후 각 영역의 텍스트를 분석해 의미를 파악하고, 이를 종합적으로 해석한다. 이 과정에서 시각 정보와 언어 정보가 실시간으로 상호작용하며 정답을 조율한다. 정보 하나가 잘못 인식되면 다른 정보가 이를 보완하고, 누락된 부분은 이미지 단서를 활용해 추론하는 식이다. 예를 들어, 사용자가 계약서에 VLM 기반 OCR을 적용하면 '계약 당사자'와 '계약 기간' '주요 조항' '서명란' 등을 자동으로 식별해 체계적으로 정리할 수 있다. 이를 통해 문서 처리 자동화 수준을 높이고 반복 작업과 인적 오류를 줄일 수 있다. 기존 OCR은 이미지 속 텍스트를 디지털 문자로 바꾸는 데만 초점 맞췄다. 문서 레이아웃이나 의미적 맥락은 이해하지 못해 데이터 활용에 한계가 있었다. 이에 추가 인력이 이를 수작업으로 정리해야만 했다. VLM OCR, 정확도·사업성 모두 잡아 한국딥러닝은 '딥 OCR 플러스' 출시로 VLM OCR 서비스를 이미 상용화했다. 이 솔루션은 별도 학습 없이 여러 형식 문서를 처리할 수 있다. 한국어·영어·숫자·특수문자가 섞인 복잡한 구조도 정확하게 인식할 수 있도록 설계됐다. 딥 OCR 플러스는 문서의 표나 문단을 자동 분석해 핵심 정보를 요약하고, 추출 데이터를 표준 포맷으로 제공해 업무 시스템과 연동된다. 한국딥러닝은 이 솔루션으로 문서 검토 시간을 최대 80% 줄이고, 일관된 데이터 품질을 유지할 수 있다고 강조했다. 앞서 업스테이지도 AI 기반 문서 구조화 솔루션 '다큐먼트 파스'를 출시해 보험, 금융, 의료 등 산업 현장에서 문서 자동화를 지원하고 있다. 고정밀 벤치마크에서 아마존·마이크로소프트 모델보다 높은 정확도를 기록한 것으로 전해졌다. 올해 6월 모델 '솔라'를 결합한 '솔라 다큐브엘엠'도 출시한다. 솔라 타큐브엘엠은 시각 정보와 언어 정보 통합 처리 역량을 강화해 문서 기반 요약, 질의응답, 자동 분류까지 수행할 수 있도록 구성됐다. 특히 비정형 문서나 복잡한 레이아웃 문서에서도 높은 인식률을 보일 것이란 평가를 받고 있다. 김지현 한국딥러닝 대표는 "비전 OCR은 돈 버는 AI"라며 "정확도와 사업성을 모두 잡을 수 있는 실용 기술"이라고 강조했다.