• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
CES2026
스테이블코인
배터리
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'데이터 유출/침해 수준 인덱스'통합검색 결과 입니다. (1541건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

"소아천식 증상 '천명음', AI로 정밀 구분"

기관지가 좁아지면서 발생하는 이상 호흡음을 감지하는 인공지능(AI)이 학습된 환경에서만 높은 성능을 발휘하는 한계를 극복하고 새로운 환경에서도 성능을 일관되게 유지하는 고도화된 모델이 나왔다. 분당서울대병원 소아청소년과 김경훈 교수팀(제1저자 광주과학기술원 김준우 박사후연구원)은 기존 학습 환경과 의료기기, 환자 연령 등이 서로 다른 조건에서 수집된 호흡음에서도 천명음(쌕쌕거림)을 정밀하게 구분할 수 있는 AI 모델을 개발했다고 밝혔다. 천명음은 천식 환자에서 흔히 나타나는 증상으로, 공기의 통로인 기도가 좁아져 압력에 의해 숨을 쉴 때마다 나는 고음의 쌕쌕거리는 호흡음이다. 특히 소아의 경우 성인보다 구조적으로 기도가 좁아 호흡기질환에 취약한 만큼 천명음을 정확하고 신속하게 감지해 천식 등 호흡기질환을 조기 진단하는 것이 매우 중요하다. 이에 AI 기술의 비약적인 발전과 함께 환자의 호흡음을 분석해 천명음과 같은 비정상적 숨소리를 가려내는 인공지능 모델이 잇달아 등장하고 있다. 문제는 호흡음이 의료기기, 청진 위치, 환자 연령 및 성별 등 환경적 요소인 '메타데이터'에 따라 크게 변동될 뿐 아니라 각 요소가 미치는 영향이 다른데도 불구하고, 기존의 AI 모델들은 이를 충분히 고려하지 않았다는 점이다. 이로 인해 AI가 이상 호흡음의 본질적 특성을 제대로 학습하지 못해 환경이 바뀌면 성능이 떨어지는 한계가 있었다. 이를 해결하기 위해 연구팀은 메타데이터의 영향력 차이를 훈련 과정에 효과적으로 반영하는 두 가지 기법을 제시했다. 하나는 메타데이터별 중요도를 AI가 자동으로 판단해 학습 비중을 조정하는 '적응형 메타데이터 모델'이며, 다른 하나는 해당 작업을 연구자가 수동으로 수행하는 '메타데이터 활용 모델'이다. 연구팀은 자체 개발한 두 모델이 메타데이터가 완전히 다른 상황에서도 성능을 안정적으로 유지하는지 검증하고자 했다. 소아 환자만을 대상으로 하는 분당서울대병원 호흡음 데이터(총 2134개)와 환자 연령 등이 다양한 국제 공공데이터(ICBHI, 총 6898개)를 훈련용 및 테스트용으로 나눠 AI에 학습시킨 다음 천명음 감지 정확도를 평가했다. 그 결과 적응형 메타데이터 모델의 평균 정확도는 84.97%로 기존 모델(79.14%) 대비 약 7.37% 높게 나타났으며, 메타데이터 활용 모델은 84.58%로 확인됐다. 이는 AI가 환경에 따라 동적으로 가중치를 조정하는 적응형 메타데이터 모델이 효율성과 실용성은 물론 성능 측면에서도 우수함을 입증한다. 이번 연구는 새로운 데이터가 끊임없이 유입되는 현실을 반영해 환경 변화에 맞춰 학습 비중을 유연하게 조절하는 기술을 제시함으로써 실제 임상 현장에 적용 가능한 수준으로 AI 모델을 고도화했다는 점에서 의의가 크다. 김경훈 교수(교신저자)는 “청진은 이제 의사의 주관적 판단에 의존하던 단계에서 벗어나 AI 기반의 정량적 진단 체계로 전환되고 있다”며 “이번 연구는 의료 현장에서 소아 천식을 비롯한 호흡기질환을 조기 진단하고 모니터링할 수 있는 표준화된 AI 청진 시스템을 구축하는 데 기여할 것”이라고 밝혔다. 한편 이번 연구는 서울대학교에서 연구비를 지원받아 수행됐으며, 의료정보 분야 국제학술지 'IEEE Journal of Biomedical and Health Informatics(IF: 6.8)'에 게재됐다.

2025.12.28 13:27조민규

[ZD SW 투데이] 영림원소프트랩, 연말맞이 사회공헌 '앞장' 外

지디넷코리아가 소프트웨어(SW) 업계의 다양한 소식을 한 눈에 볼 수 있는 'ZD SW 투데이'를 새롭게 마련했습니다. SW뿐 아니라 클라우드, 보안, 인공지능(AI) 등 여러 분야에서 활발히 활동하고 있는 기업들의 소식을 담은 만큼 좀 더 쉽고 편하게 이슈를 확인해 보시기 바랍니다. [편집자주] ◆영림원소프트랩, 연말 사회공헌 영림원소프트랩이 연말을 맞아 취약계층 월동 준비 지원을 위한 김장나눔 봉사활동과 보육원 아동을 위한 크리스마스 선물 전달 등 다양한 사회공헌 활동을 전개했다. 지난 11월 14일 진행된 김장나눔 봉사활동에서는 영림원소프트랩 260가구, 가양5종합사회복지관이 240가구에 김장김치 총 5천 킬로그램(kg)을 지원했다. 영림원소프트랩 임직원 40명과 강서구 가양5종합사회복지관 복지사들로 구성된 자원봉사단은 직접 가정을 방문해 김치를 전달하며 지역사회와의 연대를 실천했다. 또 이번 크리스마스를 맞아 후원 중인 보육원 2곳의 아동을 위한 선물 전달 행사도 진행 중이다. 임직원들은 매년 어린이날과 크리스마스에 맞춰 아이들이 원하는 선물을 직접 준비하고, 일괄 전달하며 정서적 교류를 활발히 하고 있다. 보육원을 퇴소한 청소년과 대학생을 대상으로 한 장학 지원도 병행하고 있다. ◆굿어스데이터, 네이버클라우드 '2025 파트너 비즈데이'서 수상 굿어스데이터가 네이버클라우드에서 올해 개최한 '2025 파트너 비즈데이'에서 '2025년 최고 매출 성장률 파트너' '우수 파트너 영업 대표 – 매출 기여 우수(교육 분야)' 부문서 수상했다. 성장률 파트너'부문은 네이버클라우드 사업 전반에서 지속적인 성과를 창출하며 안정적인 성장세를 기록한 파트너에게 수여되는 상이다. 굿어스데이터는 민간·공공·교육·금융 등 다양한 분야에서 네이버클라우드 기반 사업을 수행하며 약 350여 개의 고객 레퍼런스를 확보하는 등, 장기간에 걸친 안정적인 사업 수행과 매출 성장을 이어온 점에서 높은 평가를 받았다. 우수 파트너 영업 대표 – 매출 기여 우수(교육 분야) 부문은 교육 분야에서 네이버클라우드 사업 확대와 매출 성장에 기여한 영업 대표에게 수여되는 상이다. 교육기관·기업 대상 클라우드 사업을 담당한 박진종 과장이 수상했다. ◆에이비씨랩스, 스마트팜 통합 관제·관리 솔루션 출시 에이비씨랩스가 농업 시설의 효율적인 운영을 지원하는 스마트팜 통합 관제·관리 솔루션 '데이터포닉 v1.0'을 출시했다. 데이터포닉 v1.0은 웹 기반 서비스형 소프트웨어(SaaS) 솔루션이다. 농장과 비닐하우스 등 재배 시설에 설치된 다양한 사물인터넷(IoT) 디바이스와 센서 데이터를 수집해 통합 관리한다. 원격 제어와 실시간 상태 모니터링까지 수행한다. ◆오핌디지털, '씬트' 베타서비스 종료 오핌디지털이 한국형 AI 플랫폼 '씬트' 베타서비스를 종료했다. 씬트는 영상 제작 시간을 10초 수준으로 줄인 것이 특징으로, 경쟁 서비스 대비 최대 60배 빠르다는 평을 받았다. 오핌디지털은 정식서비스 시 월 1만원 구독 플랜을 준비 중이며, 이를 통해 해외 플랫폼 대비 약 20% 저렴한 가격으로 제공할 예정이다. 이는 30초 영상 제작 비용이 약 3천원 수준이다. ◆노리스페이스, SBA 서울형 R&D 지원사업 표창 노리스페이스가 지난 17일 서울경제진흥원(SBA)이 주관하는 '서울형 연구개발(R&D) 지원사업' 과제에서 핀테크 기술사업화 부문 우수 성과로 선정돼 표창장을 수상했다. 이번에 우수 성과로 선정된 노리스페이스의 지능형 통합 문서 사기탐지 시스템은 AI와 이미지 포렌식 기술을 활용해 문서 내 위변조 여부를 탐지하는 솔루션이다. 문서 이미지의 특정 영역 변형, 합성·조작 흔적을 분석해 사람의 육안으로는 확인하기 어려운 위변조 가능성을 식별할 수 있도록 설계됐다.

2025.12.26 16:35김미정

AI, 서버용 SSD 시장도 바꾼다…'SLC' 존재감 부각

인공지능(AI) 산업이 데이터센터용 SSD 시장 판도를 바꿀 것으로 예상된다. 기존 데이터센터용 SSD는 고용량 구현에 초점을 맞춰 왔으나, 최근 주요 메모리 기업들은 데이터 처리 성능을 극대화하기 위한 SLC(싱글레벨셀) 기반의 차세대 SSD 개발에 집중하고 있다. 글로벌 빅테크인 엔비디아 역시 AI용 고성능 SLC SSD에 주목하고 있는 것으로 알려졌다. 26일 업계에 따르면 주요 메모리 기업들은 AI 데이터센터용 차세대 낸드로 SLC에 주목하고 있다. TLC·QLC가 주도 중인 서버용 SSD 시장 SLC는 데이터를 저장하는 최소 단위인 셀 하나에 1비트(Bit)를 저장하는 방식을 뜻한다. 2비트를 저장하면 MLC(멀티레벨셀), 3비트는 TLC(트리플레벨셀), 4비트는 QLC(쿼드레벨셀)로 불린다. 각 방식에 따라 SSD(낸드 기반 저장장치)의 주 적용처가 달라진다. 기존 데이터센터용 SSD 시장은 TLC, 혹은 QLC가 주류를 차지해 왔다. 각 셀에 더 많은 비트를 저장하므로, 단위면적 당 더 많은 데이터를 저장할 수 있기 때문이다. 특히 방대한 양의 데이터 처리가 필요한 AI 데이터센터에서는 수요가 더 늘어나는 추세다. SLC는 데이터 처리 속도가 빠르고 안정성이 높지만, 저장 용량이 적고 가격이 비싸 대규모 투자가 필요한 데이터센터 구축에는 적합하지 않다는 평가가 지배적이었다. AI가 바꾸는 패러다임…1억 IOPS SSD·HBF는 'SLC' 기반 그러나 최근 주요 메모리 기업들이 개발 중인 차세대 낸드에서는 SLC의 존재감이 커지고 있다. 대표적으로, SK하이닉스는 AI 데이터센터 시장을 겨냥해 AI-N P(성능)·AI-N B(대역폭)·AI-N D(용량) 등 세 가지 측면을 각각 강화한 'AIN 패밀리' 라인업을 개발 중이다. 이 중 AI-N P는 대규모 AI 추론 환경에서 발생하는 방대한 데이터 입출력을 효율적으로 처리하는 솔루션이다. AI 연산과 스토리지 간 병목 현상을 최소화해 처리 속도와 에너지 효율을 대폭 향상시킨다. 1세대 제품의 IOPS(1초당 처리할 수 있는 입출력 횟수)는 2천500만으로, 현존하는 고성능 SSD(최대 300만 수준) 대비 8~10배에 달한다. 2027년 말 양산 준비 완료를 목표로 한 2세대 제품은 1억 IOPS를 지원할 전망이다. 이를 위해 SK하이닉스는 낸드와 컨트롤러를 새로운 구조로 설계하고 있으며, 핵심 고객사인 엔비디아와 협업해 내년 말 첫 샘플을 선보일 계획이다. 회사에 따르면, AI-N P는 SLC 낸드를 기반으로 개발되고 있다. AI-N P가 데이터 처리 성능을 극대화하는 제품인 만큼, 용량은 후순위로 미루려는 전략으로 풀이된다. 일본 키오시아도 올 3분기 개최한 기술설명회에서 "엔비디아와 협력해 1억 IOPS 성능의 차세대 SSD를 오는 2027년 상용화할 것"이라고 밝힌 바 있다. SK하이닉스와 동일한 개념의 제품인 만큼, 키오시아도 SLC 낸드를 기반으로 할 것으로 관측된다. 업계에서 HBF(고대역폭플래시)라 불리는 AI-N B 역시 SLC 낸드 기반으로 개발되고 있다. HBF는 D램을 적층해 만든 HBM과 유사하게 낸드를 적층해, 데이터를 송수신하는 대역폭을 크게 확장한 제품이다. 현재 SK하이닉스는 미국 샌디스크와 협력해 HBF에 대한 표준화 작업을 진행하고 있다. 오는 2027년 PoC(개념증명) 단계의 샘플이 개발돼 본격적인 평가를 거칠 것으로 예상된다. 엔비디아, GPU와 SSD 직접 연결 구상 AI 산업을 주도하고 있는 엔비디아도 SLC 낸드의 필요성에 공감하고 있다는 분석이다. 현재 엔비디아는 주요 메모리 기업들과 AI 낸드 협력망을 구축함과 동시에, 이를 활용하기 위한 소프트웨어 'SCADA(SCaled Accelerated Data Access)'를 개발하고 있다. SCADA는 AI 데이터 처리의 핵심 요소인 GPU가 CPU를 거치지 않고 스토리지(SSD)에 직접 접근해 데이터를 읽고 쓸 수 있도록 하는 기술이다. CPU가 SSD에서 데이터를 읽고 GPU로 전송하는 기존 구조 대비 데이터 처리 과정을 줄여, 학습 및 추론 속도와 효율성을 높일 수 있다. 엔비디아 SCADA 솔루션의 구현을 위해서는 SSD도 데이터 처리 속도를 크게 끌어올려야 한다. 현재 주요 메모리 공급사들이 1억 IOPS 이상의 차세대 SSD를 개발하는 이유도 여기에 있다. 반도체 업계 관계자는 "데이터센터용 SSD에서 아직 주류는 아니지만, 차세대 스토리지 솔루션에서는 SLC 기반의 AI용 SSD가 각광을 받을 가능성이 있다"며 "다만 실제 상용화 시기를 아직까지 예측하기는 힘든 상황"이라고 설명했다.

2025.12.26 10:49장경윤

"제조 특화 피지컬AI 우선 집중…'로봇 데이터센터' 구축 필수"

"글로벌 인공지능(AI) 경쟁이 피지컬AI로 집중될 전망입니다. 한국은 제조업에 강한 만큼 제조 특화 피지컬AI 구축을 우선 과제로 삼아야 합니다. 중장기적으로는 로봇 행동 데이터를 수집·활용할 수 있는 '로봇 데이터센터'를 국가 차원에서 마련해야 합니다." LG AI연구원 김승환 상무는 최근 지디넷코리아 인터뷰에서 한국형 피지컬AI 글로벌 경쟁력 확보를 위한 전략을 이같이 제시했다. 김 상무는 지난 9월 출범한 '피지컬AI 글로벌 얼라이언스'에서 기술분과장을 맡고 있다. 피지컬AI 글로벌 얼라이언스는 제조·로봇·AI·데이터·클라우드 등 다양한 분야의 기업과 연구기관, 대학이 참여하는 협의체다. 피지컬 AI 기술의 정의와 방향성을 정리하고, 산업 현장에서 실제로 작동하는 기술과 정책 과제를 도출하는 것을 목표로 한다. 단순한 기술 논의에 그치지 않고, 중장기 국가 전략과 연계된 실행 과제 발굴을 지향한다는 점이 특징이다. 총 10개 분과로 이뤄진 이 얼라이언스는 기술을 비롯한 솔루션, 거버넌스, 인재, 글로벌 협력 등 5개 생태계 분과와 AI정의차량(ADV), 완전자율로봇, 주력산업, 웰니스테크, AI컴퓨팅자원(ACR) 등 5개 도메인 분과로 구성됐다. 또 얼라이언스 공동의장은 과학기술정보통신부를 비롯한 산업통상자원부, 중소벤처기업부 등 각 부처별 장관과 더불어민주당 정동영 의원, 국민의힘 최형두 의원, 한국인공지능소프트웨어산업협회장(KOSA), 한국자동차모빌리티산업협회장 7인이 맡았다. 韓 피지컬 AI, 이제 막 태동…"방향·정의 설정 우선" 김 상무는 글로벌 AI 경쟁이 생성형 AI에서 물리 세계로 확장하는 피지컬AI 주도권 싸움이 될 것이라고 내다봤다. 그는 "세계 각국이 이를 차세대 산업 핵심 전략으로 점찍고 속도전에 나서고 있다"고 설명했다. 김 상무는 한국도 국가 차원 대응에 나서고 있지만 당장은 피지컬AI 개발 인프라가 부족하다는 점을 한계로 짚었다. 그는 "미국 등 해외 기업들은 피지컬AI 연구개발(R&D)에 투입할 수 있는 자본 여력이 커 선제적으로 움직일 수 있었다"며 "특히 구글 딥마인드는 수년간 축적한 로보틱스 데이터와 AI 모델링 기술을 결합해 '제미나이 로보틱스' 연구를 선도하고 있다"고 말했다. 김 상무는 현재 국내 산업계가 피지컬AI 경쟁력 확보를 전적으로 맡는 것도 무리라고 진단했다. 그는 "한국은 피지컬AI 기술과 데이터, 산업 적용까지 전 주기에 걸쳐 공통된 합의와 방향 설정을 하는 것이 급선무"라며 "이 과정이 정리되지 않으면 개별 기술 논의는 쉽게 흩어질 수 있다"고 당부했다. 김 상무는 우선적인 과제로 피지컬AI 용어 정의도 정리해야 한다고 봤다. 피지컬AI가 단순히 로봇에 국한된 개념이 아니라는 이유에서다. 그는 "피지컬AI는 우주, 해양, 의료 등 물리 세계 전반을 아우르는 매우 넓은 개념"이라며 "얼라이언스 역시 특정 영역에 국한하지 않는 방향으로 논의를 막 시작했다"고 말했다. 김 상무는 지식과 실제 행동을 결합한 형태를 피지컬AI라고 정의했다. 그는 "피지컬AI는 반드시 데이터 기반이어야 하며, 판단에 그치지 않고 실제 행동까지 이어져야 한다"며 "과제 이해부터 계획, 인식, 의사결정, 실행까지 전 과정이 작동할 때 비로소 피지컬 AI"라고 설명했다. "제조 특화 피지컬AI 공략…로봇 행동 데이터 확보 관건" 김 상무는 한국이 글로벌 피지컬AI 경쟁력 확보를 위한 전략을 제시했다. 단기적으로는 제조 특화 피지컬AI 개발에 우선 집중하고, 장기적으론 피지컬AI 전 주기 개발을 위한 로봇 데이터센터를 건설하는 것이다. 또 그는 한국 제조 현장에서 실제 효과가 검증되는 피지컬AI 사례부터 신속히 마련해야 한다고 주장했다. 김 상무는 "국가 경쟁력 관점에서 제조 분야는 한국이 가장 강점을 가질 수 있는 영역"이라며 "피지컬AI로 효과 볼 수 있는 첫 산업이라 판단했다"고 밝혔다. 제조 특화 피지컬AI 구현에 대해선 얼라이언스 참여 기업들이 제조 현장에서 쌓아온 경험을 기반으로 해야 한다고 강조했다. 실제 LG그룹 내부에서도 이미 비전 검사 자동화, 공정 최적화, 화학 공정 스케줄링 최적화 등 제조형 AI 개발 경험을 축적했다. 그는 "제조 AI 에이전트를 유기적으로 연결해 엔드 투 엔드로 구현하는 것이 진정한 제조 특화 피지컬AI 확보 시작점"이라고 강조했다. 김 상무는 중장기적으로 국가 차원 로봇 데이터센터 구축이 필요하다고 주장했다. 해당 센터는 로봇이 직접 움직이며 학습용 데이터를 생산하는 물리적 인프라를 의미한다. 이를 통해 피지컬AI의 가장 고질적 문제인 데이터 부족을 해결할 수 있다는 이유에서다. 그는 "한국은 피지컬AI 행동 데이터를 거의 축적하지 못한 상태"라며 "이를 로봇 데이터센터를 통해 해결할 수 있다"고 강조했다. 이와 함께 김 상무는 중국 피지컬AI 육성 방안을 예시로 들었다. 현재 중국 기업은 정부 지원을 통해 대규모 로봇 데이터 취득 시설을 운영하고 있다. 여기서 텔레오퍼레이션 방식으로 로봇 행동 데이터를 수집하고 있다. 사람이 원격으로 로봇을 조작하면서 움직임 전체를 학습용 데이터로 기록하는 식이다. 김 상무는 한국도 국가 차원에서 로봇 데이터 생산 센터를 구축하는 것이 매우 중요하다고 강조했다. 이를 통해 도메인 특화 로봇 파운데이션 모델을 구축하고, 중·장기적으로는 범용 로봇 파운데이션 모델을 지향하는 투트랙 전략을 추진해야 한다는 설명이다. 그는 "로봇 데이터센터에서는 로봇의 이동부터 물체 조작, 접촉 과정에서 발생하는 힘, 실패 사례까지 모두 데이터로 수집된다"며 "이는 텍스트·이미지 중심의 생성형 AI와 달리 물리 세계에서 작동하는 피지컬AI에 필수적인 학습 자산"이라고 설명했다. 이어 "로봇 데이터센터는 국내 기업과 연구기관이 함께 활용할 수 있는 기반이 될 것"이라며 "피지컬 AI 경쟁력은 결국 누가 더 빨리, 더 많은 현실 데이터를 확보하느냐에 달려 있다"고 강조했다.

2025.12.26 09:00김미정

글로벌 피지컬AI 패권 경쟁 시동…韓 전략은 '산업 연합'

생성형 인공지능(AI)이 언어와 이미지 영역에서 급속히 확산된 이후 글로벌 기술 패권 경쟁의 무게중심이 '행동하는 AI'로 빠르게 이동하고 있다. 텍스트를 생성하던 AI가 물리 세계를 인식하고 판단해 실제로 움직이는 단계, 이른바 '피지컬AI'가 차세대 경쟁 무대로 부상하면서다. 이 변화는 개별 기업 차원의 기술 실험을 넘어 미국과 중국을 중심으로 국가 전략 차원에서 가속화되고 있다. 로봇·자율주행·산업 자동화 등 실물 산업 전반에서 피지컬AI를 둘러싼 투자와 정책 드라이브가 동시에 진행되는 양상이다. 이러한 글로벌 경쟁 구도 속에서 한국 역시 선택의 기로에 서 있다. 초거대 모델 중심 경쟁에서는 후발주자지만, 제조·모빌리티·로봇 등 실물 산업과 결합된 피지컬AI 영역에서는 다른 접근이 가능하다는 기대도 나온다. 올해 정부가 '피지컬AI 글로벌 얼라이언스'를 출범시키며 산업과 정책을 잇는 논의 구조를 만든 배경도 여기에 있다. 美·中, 피지컬AI를 국가 전략으로 끌어올리다 미국은 피지컬AI를 차세대 산업 경쟁력의 핵심 축으로 보고 있다. 오픈AI·구글·엔비디아·테슬라 등 빅테크를 중심으로 로봇 행동 모델, 시뮬레이션 기반 학습, 자율 시스템 연구가 빠르게 확산되고 있다. 특히 민간 기업이 주도하고 정부는 규제·표준·연구 환경을 뒷받침하는 구조가 특징이다. 미국의 강점은 소프트웨어(SW)와 플랫폼이다. 대규모 멀티모달 모델과 이를 실제 환경에 적용하기 위한 월드모델, 로봇 행동 API 등이 핵심 경쟁력으로 부상하고 있다. AI를 움직이는 산업 생산성으로 전환하려는 시도가 본격화되고 있다는 평가다. 중국은 중앙집중식 접근 방식을 추진 중이다. 정부 주도의 로봇·AI 산업 육성 정책을 통해 피지컬AI를 빠르게 현장에 투입하는 전략이다. 대규모 제조 인프라를 기반으로 로봇과 자율 시스템을 대량 배치하며 데이터를 축적하면서 기술의 완성도보다 확산 속도와 현장 적용을 중시하는 상황이다. 이처럼 미국은 SW·플랫폼 중심, 중국은 제조·배포 중심 전략을 펼치며 피지컬AI를 국가 경쟁력 차원에서 끌어올리고 있다. 글로벌 빅테크, 피지컬AI 패권 경쟁 '시동' 기업 차원에서는 오픈AI·테슬라·구글·메타, 여기에 그래픽처리장치(GPU) 패권을 지닌 엔비디아까지 더해져 글로벌 피지컬AI 경쟁을 이끄는 핵심 축으로 꼽힌다. 오픈AI는 로봇 스타트업들과 협력해 범용 로봇 행동 모델(RFM) 개발에 주력하고 있다. 자연어 명령을 실제 행동으로 전환하는 범용 지능을 목표로 하며 특정 하드웨어(HW)에 종속되지 않는 두뇌 중심 전략을 택했다. 로봇을 위한 범용 AI 모델을 통해 피지컬AI 생태계 전반에 영향력을 확대하려는 구상이다. 테슬라는 수직 통합 전략을 고수한다. 옵티머스 휴머노이드 로봇과 완전자율주행(FSD)에서 축적한 데이터를 결합해 HW와 SW를 동시에 통제하는 방식이다. 실제 공장과 도로 환경에서 데이터를 축적하며 모델을 고도화하는 선순환 구조가 강점으로 꼽힌다. 구글은 장기 전략에 무게를 둔다. 딥마인드를 중심으로 로봇 공학 및 임베디드 AI 계열 모델인 RT-X, PaLM-E 등을 발전시키며 로봇의 추론·일반화 능력을 강화하고 있다. 소량의 데이터로도 다양한 작업을 수행할 수 있는 범용성 확보가 목표다. 메타는 오픈 생태계를 강조한다. 로보틱스 연구 결과와 도구를 공개하며 개발자와 연구자 중심의 생태계 확장에 집중 중이다. 직접적인 상용화보다는 플랫폼과 연구 영향력을 통해 장기적인 기술 주도권을 확보하려는 행보다. 엔비디아는 피지컬AI 경쟁에서 플랫폼과 인프라를 모두 장악하려는 전략을 펼치고 있다. 자사 GPU와 AI 가속기를 기반으로 로봇 학습용 시뮬레이션 플랫폼과 월드모델을 결합해 피지컬AI 개발의 표준 환경을 구축하는 데 초점을 맞췄다. 개별 로봇이나 서비스보다는 다양한 기업과 연구기관이 엔비디아 생태계 위에서 피지컬AI를 개발하도록 유도하는 방식이다. SW·데이터가 승부처…한국형 피지컬AI 전략은 피지컬AI 경쟁의 핵심으로는 HW보다는 SW와 데이터가 꼽힌다. 로봇을 어떻게 인식·판단·행동하게 만들 것인지에 대한 행동 모델과 이를 외부에 제공하는 로봇 행동 API가 새로운 경쟁 영역으로 떠오르고 있다. 이 과정에서 폐쇄형 생태계와 개방형 생태계 간 전략 차이도 뚜렷하다. 모든 스택을 직접 통제하려는 테슬라식 접근과 플랫폼 및 표준을 통해 생태계를 키우려는 엔비디아·구글식 접근이 맞선다. 무엇보다 중요한 요소는 대규모 행동 데이터다. 실제 산업 현장에서 축적된 데이터 없이는 모델 고도화가 어렵기 때문이다. 이 지점에서 제조·모빌리티 산업 기반이 탄탄한 국가가 상대적 강점을 가질 수 있다는 분석이 나온다. 이 가운데 우리 정부와 기업이 글로벌 빅테크와 동일한 방식으로 경쟁하기는 쉽지 않다는 평가가 나온다. 초거대 모델과 대규모 컴퓨팅 인프라 중심의 경쟁은 현실적인 부담이 크다는 이유에서다. 대신 경쟁의 초점을 모델 성능이 아닌 도메인 데이터와 산업 결합으로 옮겨야 한다는 제언이 제기되고 있다. 한국이 강점을 지닌 제조·조선·자동차·로봇 산업 현장에서 축적되는 데이터를 기반으로 특화된 피지컬AI 모델과 솔루션을 만드는 전략이다. 이런 문제의식 속에서 등장한 것이 바로 정부 주도 '피지컬AI 글로벌 얼라이언스'다. 개별 기업이 단독으로 해결하기 어려운 데이터·실증·규제·표준 문제를 산업 전체 관점에서 논의하고 조율하는 협업 구조다. 산업·정책 잇는 조율의 장, 피지컬AI 글로벌 얼라이언스 피지컬AI 글로벌 얼라이언스는 피지컬AI 집중 투자와 글로벌 주도권 확보를 목표로 산·학·연·관 협업 생태계를 구축하기 위해 지난 9월 출범했다. 얼라이언스는 총 10개 분과로 구성되며 기술과 산업을 동시에 아우르는 구조가 특징이다 . 5개 생태계 분과는 ▲기술(모델·데이터) ▲솔루션(실증·사업화) ▲거버넌스(표준·안전·신뢰) ▲인재(인력양성) ▲글로벌 협력으로 구성된다. 기술 분과는 LG AI연구원, 솔루션 분과는 네이버클라우드, 거버넌스 분과는 한국정보통신기술협회(TTA), 인재 분과는 카이스트, 글로벌 협력 분과는 아마존웹서비스(AWS)가 각각 분과장을 맡는다. 여기에 5개 도메인 분과로 ▲자율주행(ADV) ▲완전자율로봇 ▲주력산업(조선·방산·제조) ▲웰리스테크 ▲AI 컴퓨팅 자원(ACR)이 참여한다. 현대자동차, 두산로보틱스, HD현대중공업, 카카오헬스케어, 퓨리오사AI·리벨리온 등이 각 분과를 이끈다. 얼라이언스는 산업 현장의 수요를 기반으로 기술·규제·사업화 과제를 정리하고 이를 향후 정부 연구개발(R&D)과 실증 과제로 연결하는 역할을 수행할 계획이다. 단기 성과보다는 중장기 전략 백서 도출과 정책 제언에 초점이 맞춰져 있다. 얼라이언스 출범 당시 임문영 국가AI전략위원회 부위원장은 "국가 AI 전략 컨트롤타워로서 피지컬AI를 주요 과제로 선정하고 대한민국이 세계 시장에서 선도적 위치를 확보하도록 정책 지원을 아끼지 않겠다"고 말했다. 배경훈 부총리 겸 과학기술정보통신부 장관도 "AI 3대 강국을 달성하기 위해 글로벌 피지컬AI 주도권 선점은 중요하다"며 "정부 역량을 결집해 기업·대학 등과 함께 피지컬AI 생태계를 구축하고 세계로 뻗어나갈 수 있도록 적극 지원할 것"이라고 밝혔다. 피지컬AI 글로벌 얼라이언스 출범을 계기로 업계에서는 한국형 피지컬AI 전략에 대한 기대감도 높아지고 있다. 제조·모빌리티·로봇 등 국내 산업 현장에 특화된 데이터와 SW를 결합해 미국·중국과 차별화된 경쟁력을 확보할 수 있는 구조가 마련됐다는 평가다. 데이터 축적, 실증, 규제·표준 논의를 정부와 산업계가 함께 하는 생태계가 활성화될 것이라는 전망이다. AI 업계 관계자는 "피지컬AI는 단순한 기술 경쟁이 아니라 산업 구조와 데이터 주도권 경쟁"이라며 "우리나라가 강점을 지닌 산업 현장을 중심으로 전략적으로 접근한다면 글로벌 시장에서 충분히 승부를 걸 수 있을 것"이라고 강조했다.

2025.12.25 09:00한정호

연말연시 노린 '쇼핑 계정 탈취' 급증…"기본 보안 수칙 지켜야"

네트워크 보안 기업 포티넷(최고경영자 켄 지)이 연말연시를 앞두고 157만건 이상의 탈취된 데이터가 다크웹을 통해 유통되고 있다고 경고했다. 이런 데이터가 인증을 우회해 사기, 계정 악용 등의 피해를 낳을 수 있는 만큼 각별한 주의가 필요한 상황이다. 포티넷은 이같은 내용을 골자로 한 '2025년 연휴 시즌 사이버 위협 보고서'를 발간했다고 24일 밝혔다. 보고서에 따르면 최근 3개월간 전자상거래 플랫폼과 연관된 '스틸러 로그' 데이턴 157만건 이상이 다크웹을 중심으로 유통된 것으로 분석됐다. 스틸러로그는 공격자가 악성코드 감염 등을 통해 사용자의 데이터를 탈취한 데이터 세트를 말한다. 사용자 ID, 비밀번호 등 계정정보를 비롯해 로그인 쿠키, 세션 토큰, 자동완성 정보 등 계정 접근에 필요한 데이터가 포함돼 있다. 이 데이터들이 공격자의 손에 넘어가게 되면, 계정 탈취서부터 사기, 피싱, 자격증명 스터핑, 세션 하이재킹(가로채기) 등 다양한 공격에 악용될 우려가 나온다. 특히 로그인 상태가 유지된 활성 세션 쿠키가 보함된 경우 공격자는 비밀번호나 2단계 인증(2FA) 없이 계정에 접근할 수 있기 때문에 기존 로그인 보안 체계를 완전히 무력화시킬 수 있다. 계정이 탈취되면 공격자가 어떻게 악용하느냐에 따라 사기성 거래에 직접 사용하는 등 금전적 피해도 우려된다. 특히 연말연시 쇼핑 시즌이 다가오고 있는 만큼 전자 상거래 플랫폼이 활성화되면 활성화될수록 이같은 공격에 취약하다. 다크웹에서는 연말연시 쇼핑 성수기에 접어든 만큼 공격자들이 탈취 데이터를 할인해 판매하는 등 위협은 더욱 고도화되고 있다. 다크웹에서 정보가 활발하게 거래되면 거래될수록 공격은 더욱 많아질 수밖에 없고 피해는 커질 가능성이 크다. 포티넷은 한 번 침해된 계정 정보가 단발성 공격에 그치지 않고 지속적으로 악용될 수 있다는 점에서, 연말 연시 기간 전자상거래 생태계 전반에서 보안에 주의를 기울여야 한다고 경고했다. 구체적으로 ▲피싱 사이트 방지를 위한 웹사이트 주소 꼼꼼히 확인하기 ▲이메일이나 문자 메시지에 포함된 링크 클릭하지 않기 ▲다단계 인증(MFA) 활성화 ▲사기 피해 보호 기능이 있는 결제 수단 이용 ▲공용 와이파이 환경에서 온라인 결제 금지 등 기본적인 보안 수칙을 지켜야 피해를 예방할 수 있다고 당부했다. 전자상거래 플랫폼을 운영하는 기업 역시 플랫폼과 플러그인을 최신 상태로 유지하고, 사기 탐지 체계를 강화해야 한다고 주문했다.

2025.12.24 16:31김기찬

강북삼성병원, 의료분야 마이데이터 '특수전문기관' 최초 지정

성균관의대 강북삼성병원은 국내 기관 중 1호로 보건의료 분야 개인정보 관리 전문 기관(이하 특수전문기관)으로 지정됐다고 밝혔다. 특수전문기관은 의료기관 및 건강보험공단, 심평원 등 공공기관이 보유한 개인 의료정보를 안전하게 수집·활용할 수 있는 자격을 부여하기 위해 정부가 보안, 인프라, 운영체계, 서비스 등 전반의 요건을 충족한 기관에 지정하는 제도다. 이번 지정을 통해 강북삼성병원은 의료 데이터 보호 역량과 디지털 헬스케어 분야의 전문성을 공식적으로 인정받았으며, 의료 마이데이터 연계한 정신건강 라이프로그·약료 서비스인 '메디박스 플랫폼'을 2026년 1분기 출시할 예정이다. 해당 플랫폼은 의료 마이데이터를 자동 연동하고 웨어러블 디바이스 및 감정 일기 등을 통해 수집된 다양한 라이프로그를 통합 분석해 개인 맞춤형 생활 습관 개선을 위한 AI 코칭을 제공한다. 또 개인의 의약품 복용 이력을 임상결정지원시스템(CDSS)과 연계해 약물 상호작용 및 부작용 위험을 예측해 체계적인 정신건강 관리 솔루션을 구현할 예정이다. 신현철 강북삼성병원 원장은 “의료 데이터는 그 자체로 공공성과 민감성을 동시에 지닌 영역인 만큼 신뢰 기반의 관리 체계가 무엇보다 중요하다”며 “이번 특수전문기관 지정은 단순히 기술적 우위를 넘어 환자의 소중한 정보를 가장 안전하게 관리하고 가치 있게 활용할 수 있는 역량을 인정받은 결과”라는 소감을 전했다. 한편 강북삼성병원은 2024년 미래헬스케어본부를 발족해 의료 데이터 기반 헬스케어 R&D를 주도하는 등 다양한 디지털 헬스케어 분야를 선도하고 있다. 이번 특수전문기관 지정을 계기로 의료 마이데이터, AI, 디지털 헬스케어를 아우르는 핵심 R&D 허브 병원으로 자리매김할 전망이다.

2025.12.24 14:08조민규

가톨릭중앙의료원, 복지부 '의료 마이데이터 개인정보관리 전문기관' 지정

가톨릭대학교 가톨릭중앙의료원은 보건복지부로부터 '보건의료 분야 개인정보관리 전문기관(특수전문기관)'으로 지정됐다. 이번 지정은 개인정보관리 전문기관 지정심사 제도가 시행된 이후 보건의료 분야에서 처음으로 이루어진 사례로, 보건의료 데이터와 의료 마이데이터를 안전하고 책임 있게 활용할 수 있는 전문 역량을 국가로부터 공식 인정받았다는데 큰 의미를 지닌다. 의료 마이데이터란 개인정보보호법에 따라 개인이 자신의 의료·건강 정보를 직접 열람하고, 필요할 경우 다른 기관으로 전송하도록 요구할 수 있는 제도다. 예를 들어 여러 병원에 흩어져 있던 진료 기록과 검사 결과를 하나로 모아, 개인 맞춤형 건강관리나 질병 예방 서비스에 활용할 수 있다. 이 과정에서 핵심 역할을 하는 기관이 바로 개인정보관리 전문기관으로, 중계전문기관을 통해 전달받은 의료정보를 안전하게 저장하고, 가공·분석해 맞춤형 디지털 헬스케어 서비스로 제공한다. 의료정보는 매우 민감한 개인정보이기 때문에 해당 기관은 기술 수준, 개인정보 보호 체계, 법·제도 준수 여부, 재정 능력 등을 종합적으로 평가받아야 한다. 가톨릭중앙의료원은 이번 심사에서 보건의료 정보의 특수성을 반영한 개인정보 보호 관리 체계, 데이터 접근을 엄격히 제한하는 기술적·관리적 보호 조치, 대규모 의료 데이터를 안정적으로 운영해 온 풍부한 경험과 전문 인력, 의료·개인정보보호 관련 법령을 충실히 준수한 운영 역량 등을 두루 인정받았다. 이번 지정을 통해 가톨릭중앙의료원은 정보주체(환자)의 동의에 따라 의료 마이데이터를 활용해 보다 정교한 개인 맞춤형 건강관리 서비스를 제공할 수 있게 됐다. 특히 이미 개발·운영 중인 마이데이터 기반 건강관리 서비스 'MyWell+'를 중심으로, 만성질환 예방 및 관련 건강지표 제공 등 실질적인 의료 현장 활용을 단계적으로 확대할 계획이다. 가톨릭중앙의료원 정보융합진흥원장 김대진 교수는 “이번 특수전문기관 지정은 보건의료 데이터 활용이 확대되는 시대에 가톨릭중앙의료원이 개인정보 보호에 대한 국민의 신뢰를 확보한 기관임을 공식적으로 인정받은 것”이라며 “앞으로도 개인정보 보호와 정보주체의 권리를 최우선 가치로 삼아, 의료 현장에서 실제 도움이 되는 마이데이터 기반 디지털 헬스케어 서비스를 지속적으로 발전시켜 나가겠다”고 말했다.

2025.12.24 14:02조민규

[기고] AI 시대 데이터센터, 기술 혁신과 ESG 사이 균형점 찾아야

생성형 인공지능(AI)의 급격한 확산은 데이터센터를 단순한 디지털 저장 공간이 아닌 국가 경제와 산업 경쟁력을 좌우하는 전략 인프라로 변화시키고 있다. 현재 고성능 그래픽처리장치(GPU) 기반 연산은 과거보다 훨씬 높은 전력과 냉각 성능을 요구하며, 일부 데이터센터는 도시 한곳 전력 소비량에 가까운 규모를 필요로 한다. 이런 상황에서 데이터센터는 에너지와 환경 문제와 밀접하게 연결되는 산업으로 자리 잡았고, 앞으로의 성장은 물리적 확장을 넘어 지속가능성과 기술 혁신을 균형 있게 고려해야 한다는 인식이 강해지고 있다. 이런 환경에서 환경·사회·지배구조(ESG) 중요성은 더욱 커지고 있다. 급증하는 에너지 수요는 국가 탄소 감축 목표와 맞닿았고, 기업들은 재생에너지 사용과 탄소중립 이행을 공급망 관리의 핵심 원칙으로 삼고 있다. ESG는 단순 규제 준수나 이미지 관리 차원을 넘어 투자사들이 기업을 평가하는 핵심 기준으로 자리 잡았다. 글로벌 투자사들은 ESG를 리스크 관리와 장기 성장 가능성 판단의 필수 요소로 보고 있으며, ESG 실행력이 기업의 자본 조달 비용과 기업 가치에 직접적인 영향을 미친다. 결국 데이터센터의 지속가능성 역량은 고객과의 파트너십뿐 아니라 투자 유치 경쟁력까지 좌우하는 기본 자격이 됐다. 데이터센터 투자와 관련된 글로벌 금융·투자 시장에서도 ESG 영향력은 점차 확대되고 있다. 해외에서는 ESG 목표 달성 여부에 따라 금리가 달라지는 지속가능성 연계 금융(Sustainability-Linked Financing)이 확산하고 있으며, 이는 투자사들이 ESG를 실질적 가치로 평가하고 있다는 증거다. ESG를 충실히 이행하는 기업과 투자하는 기업 모두 금융 혜택을 받는 구조가 자리 잡았고, 이는 데이터센터 산업에도 적용되고 있다. 한국에서도 ESG 기반 금융 인센티브를 도입해 지속가능한 성장을 촉진할 필요가 있다. STT GDC는 이런 글로벌 흐름에 발맞춰 ESG 전략을 재무 구조에 연결한 선도적 사례를 만들었다. 2024년 발행한 지속가능성 연계 영구채(SLP)는 ESG 목표 달성 여부에 따라 금리가 달라지는 구조로 설계됐다. 당초 3억 싱가포르 달러에서 5억 달러로 확대된 것은 시장의 ESG 수요를 보여준다. 이는 ESG가 더 이상 선언적 가치에 머무르지 않고 투자사 신뢰와 기업 가치, 금융 경쟁력에 직결되는 시대가 도래했음을 시사한다. 그러나 ESG는 선언만으로 완성되지 않는다. 실제 운영에서 이를 뒷받침하는 성과가 나타나야 한다. STT GDC 그룹은 아시아 최초로 2030년까지 탄소중립 운영 달성을 선언했으며, 지난해 발표한 ESG 보고서에 따르면 글로벌 데이터센터에서 탄소집약도 개선, 재생에너지 사용 확대, 에너지 효율 향상 등 다양한 영역에서 성과가 나타나고 있다. 특히 고효율 냉각 기술, AI 기반 에너지 최적화, 고밀도 설계 등 기술 혁신을 통해 지속가능성과 성능을 동시에 강화해 왔다. 예를 들어 전력사용효율(PUE) 최적화와 실시간 에너지 소비량을 AI로 분석·제어하는 파일럿 프로젝트는 ESG 목표 달성에 기여하는 대표 사례다. 이런 기술적 혁신은 ESG를 실행 가능한 전략으로 전환하는 핵심 동력이 되고 있다. AI는 앞으로 산업 전반 구조를 바꿀 큰 잠재력을 지니고 있다. 그리고 그 기반이 되는 데이터센터는 기술적 안정성과 환경적 책임을 동시에 요구받는다. 각국 정부가 데이터센터를 전략 인프라로 바라보기 시작한 것도 이런 변화의 연장선이다. 기술 고도화와 환경 책임이 균형을 이룰 때 데이터센터는 국가 디지털 경쟁력을 뒷받침하는 핵심 인프라로 자리 잡을 수 있다. AI 인프라 수요가 빠르게 증가하는 지금, 한국 데이터센터 산업은 중요한 전환점에 서 있다. 앞으로의 성장은 물리적 규모 확장을 넘어 에너지 효율과 환경 책임, 기술 혁신을 균형 있게 고려한 방향으로 나아가야 한다. 이런 토대가 탄탄하게 마련된다면 한국은 글로벌 디지털 경쟁력을 한층 강화하고, 지속가능한 AI 인프라 생태계를 선도하는 국가로 도약할 수 있을 것이다.

2025.12.24 13:57허철회

M.AX 얼라이언스, 3개월 만에 1300곳 돌파…가시적 성과도 속속

제조업의 인공지능(AI) 대전환을 위해 1천 여 산·학·연·관 기관이 참여한 제조 AI전환(M.AX) 얼라이언스가 출범 3개월 만에 1천300곳 이상으로 늘어났다. 또 AI팩토리 사업이 누적 100개를 넘어서고 연료비용이나 생산성이 개선되는 등 구체적인 성과가 나타나기 시작했다. 산업통상부는 24일 김정관 장관이 참석한 가운데 'M.AX 얼라이언스 제1차 정기총회'를 개최하고 제조 데이터 공유사업 등 내년도 5대 중점 추진과제를 발표했다. 산업부는 M.AX 얼라이언스를 지원하기 위해 내년 AI 예산 가운데 7천억원을 집행할 계획이다. M.AX 얼라이언스 출범 후 구체적인 성과들이 나오고 있다. 출범 당시 삼성전자·현대자동차·레인보우로보틱스 등 1천여 개 기관에서 SK주식회사·롯데호텔·코넥 등 300여 개 기관이 추가 합류하며 참여기관이 1천300개로 늘어났다. 양적 성장외에도 협력 사업도 순항 중이다. AI 팩토리는 삼성전자·현대자동차·삼성중공업 등이 새롭게 참여해 누적 사업이 102개로 늘어났고 생산성 향상 등의 성과도 나오고 있다. GS칼텍스는 AI로 원유증류 과정에서 발생하는 불완전연소를 최소화해 연료비용을 20% 감축했다. HD현대미포는 AI 로봇을 투입해 용접검사 등 작업시간을 12.5% 단축했다. 농기계업체 티와이엠은 AI가 제품 누유·스크래치·결함 등을 검사해 생산성을 11% 개선했다. 또 올해부터 휴머노이드가 디스플레이·조선 등 제조현장과 유통물류·병원·호텔 등 서비스 현장에 투입됐다. 올해 10개를 시작으로 2027년까지 100개 이상 실증사업을 통해 제조 핵심 데이터를 모으고 AI와 로봇을 학습시킬 계획이다. 이밖에 10개 분과는 2030년까지 기술 개발과 산업 생태계 조성을 위한 로드맵을 마련하고 이날 총회에서 발표했다. 산업부는 이날 M.AX 얼라이언스를 중심으로 내년에 7천억원을 투입해 5대 과제를 추진하기로 했다. 산업부는 제조 AX의 핵심이자 출발은 제조 데이터의 확보와 공유, 활용으로 보고 우선 분야별로 데이터 생성·공유·활용사업을 본격 개시한다. 이를 위해 2030년까지 1천억원 이상의 예산을 투입해 AI 팩토리·AI 로봇 등 분과별로 양질의 데이터를 확보하고 활용하기 위한 사업을 추진한다. 부문별 AI 모델 개발에도 속도를 낸다. 올해부터 시작한 AI 팩토리·AI 미래차·AI 로봇 분과의 AI 모델·제품 개발에 이어, 내년부터는 자율운항선박·AI 가전·AI 바이오 등의 분과까지 AI 모델과 제품 개발사업을 확대한다. 산업부는 2032년까지 7천억원 이상의 예산을 투입할 계획이다. 온디바이스 AI 반도체 개발사업도 착수한다. 올해 1조원 규모 프로젝트가 예타 면제됨에 따라 내년부터는 자동차·로봇·무인기·가전 등의 4대 업종을 중심으로 첨단 제품에 탑재할 AI 반도체 개발에 나선다. AI 반도체 분과와 AI 미래차·AI 로봇·AI 방산·AI 가전 분과 간 긴밀한 협력이 기대된다. 2028년에 시제품을 출시하고, 2030년까지 온디바이스 AI 반도체 10개의 개발을 추진할 계획이다. AI 팩토리 수출 기반을 마련한다. 특히 최고 수준의 자율공장인 다크팩토리 구현을 위해 AI 팩토리 분과를 통해 공정 설계, 공정 효율화, 공급망 관리, 물류 최적화 등 제조 전단계를 아우르는 풀스택 AI 기술을 개발할 계획이다. 산업부는 내년 AI 팩토리 분과를 중심으로 세계 최고의 AI 팩토리 수출국으로 성장하기 위한 전략을 수립할 계획이다. 지역 AX도 본격 확산한다. 5극 3특 성장엔진과 연계해 지역 AX를 확산하고, 지역별 주력 산단을 AI·로봇 기반 M.AX 클러스터로 전환할 계획이다. 산업부는 M.AX 얼라이언스의 기업·연구소·대학 등을 주요 사업에 적극 참여시켜 M.AX 얼라이언스와 지역 AX 정책간 연계를 강화할 예정이다. 한편, 이날 M.AX에 기여한 유공자 50명에게 산업부 장관 표창을 수여했다. AI 팩토리 등 10개 분과를 이끌고 있는 위원장과 자율운항선박 구현을 위한 데이터 수집·교환 및 원격제어 플랫폼을 개발한 마린웍스, E2E 자율주행에 필요한 인식·제어시스템 개발을 선도하는 HL클레무브 등이 장관상의 영예를 안았다. 김정관 산업부 장관은 “M.AX 얼라이언스는 출범 100일 만에 대한민국 제조 AX의 중심축으로 빠르게 자리매김하고 있다”며 “제조 AX는 미래 생존이 걸린 문제이고, 누구도 혼자서는 해결할 수 없어 서로 믿고 함께 가야한다는 공감대와 진심이 통한 결과”라고 말했다. 김 장관은 이어 '승리하지 못하면 생존조차 없다'는 윈스턴 처칠의 말을 인용하며 “총성 없는 제조업 전쟁 속에서 승자와 패자만 있을 것이고 승패를 가르는 단 하나의 열쇠는 제조 AX, M.AX”라고 강조했다.

2025.12.24 11:17주문정

"AI 학습, 사진 2장이면 충분"…스누아이랩, 국제 권위 학회서 기술력 입증

단 2장의 사진으로 인공지능(AI)을 학습시킬 수 있는 방법을 제시한 국내 기업의 기술이 국제 권위 학회에서 인정받았다. 그동안 적게는 수천, 수만장의 데이터가 필요했던 AI 학습과정의 비용을 낮출 뿐 아니라 데이터가 부족한 분야도 보다 원할하게 AI를 도입할 수 있을 것으로 주목 받고 있다. 스누아이랩은 24일 이미지 노이즈 합성 모델 연구 논문이 '전미인공지능학회 2026(AAAI 2026)'에 채택됐다고 밝혔다. AAAI는 미국인공지능협회가 주관하는 학회 시리즈로, 전 세계 연구자와 기업이 최신 AI 연구 성과를 경쟁하는 대표 무대 중 하나로 꼽힌다. 이번 AAAI 2026에 2만3천680건의 논문이 제출됐고 4천167건이 채택돼 채택 비중이 약 18% 수준다. 단 2장의 이미지로 데이터 부족 해결…해법은 AI 합성 채택 논문 제목은 '가이드노이즈: 일반화된 노이즈 합성을 위한 단일 쌍 가이드 확산 모델(GuidNoise: Single-Pair Guided Diffusion for Generalized Noise Synthesis)'이다. 핵심은 원본이미지 한장과 노이즈가 발생한 사진 1장만 있으면 카메라와 촬영 환경에서 나타나는 불필요한 요소(노이즈)를 더한 학습용 데이터를 만들 수 있다는 점이다. 이를 통해 데이터가 부족해도 데이터를 만들어 학습을 진행할 수 있는 구조다. 현실 세계에서 발생하는 노이즈는 생각보다 복잡하다. 카메라 센서 특성, 이미지 신호 처리(ISP) 과정, ISO 감도, 조명, 촬영 온도 같은 조건이 겹치면서 노이즈의 형태가 달라진다. 같은 카메라라도 설정이 바뀌면 패턴이 바뀐다. 예를 들어 CCTV나 스마트폰 카메라로 촬영한 영상은 밤이 되거나 조명이 어두우면 충분한 빛을 확보하지 못해 화질 저하가 발생한다. 또한 태양광, LED 조명 등 광원의 종류나 피사체의 재질에 따라 카메라 센서가 받아들이는 노이즈의 패턴과 색감은 미세하게 달라진다. 스누아이랩이 제시한 기술은 원본 이미지의 반사광이나 명암을 인식해 그 환경에 맞는 현실적인 노이즈를 입혀줌으로써 AI가 다양한 조명 환경에 적응하도록 돕는다. 그동안 이를 해결위해 현장에서 수천 장의 사진을 일일이 찍어 데이터를 모아야 했다. 비용과 시간이 막대하게 드는 만큼 제조 라인, 보안 관제, 의료 영상처럼 촬영 조건이 다양하고 미세한 영역일수록 비용과 시간이 부담이 됐다. 스누아이랩은 논문을 통해 자체 개발한 가이드노이즈 기술을 이용해 원본사진과 노이즈가 있는 사진 한쌍으로 해당 환경의 노이즈 특성을 완벽하게 분석해낼 수 있음을 증명했다. 반면 가이드노이즈는 확산모델 기반 생성 방식을 활용해, 메타데이터 없이도 '가이드 이미지 1쌍'에서 노이즈의 질감과 분포를 읽어내고 이를 다른 이미지로 전이하는 방식을 제안했다. 이 기술을 적용하면 AI는 2장의 샘플을 가이드 삼아 특정 카메라로 찍은 것과 동일한 품질의 노이즈 이미지를 무한대로 합성해낼 수 있다는 구상이다. 논문은 이를 위해 두 가지 기술을 결합했다. 먼저 가이드 인식 변형 기술(GAFM)은 가이드 이미지에서 추출한 노이즈 특징을 신경망 내부의 특징 맵 수준에서 조정해 깨끗한 입력 이미지에 자연스럽게 반영한다. 노이즈 인식 정제 손실 기술은 합성 결과가 실제 노이즈의 분포와 더 가깝게 맞춰지도록 학습 목표를 추가한다. 연구지는 결과가 최종 이미지에 수렴하는 마지막 단계에서 정제를 집중해 미세한 차이를 줄이려 했다고 밝혔다. 진짜 같은 노이즈 생성…기존 모델 대비 15% 이상 우위 연구팀은 가이드노이즈의 성능을 검증하기 위해 세계적으로 통용되는 노이즈 데이터셋인 SIDD 등을 활용해 비교 실험을 진행했다. 논문에 따르면 노이즈의 실제 유사도를 나타내는 지표인 '평균 쿨백-라이블러 발산(AKLD)' 평가에서 가이드노이즈는 0.113을 기록했다. 이 평가는 수치가 낮을수록 생성된 노이즈가 실제와 유사함을 뜻한다. 가이드노이즈의 기록은 기존 최신 기술인 NA플로우가 기록한 0.131나 NeCA의 0.133 대비 오차를 약 15% 이상 줄인 수치로 현존하는 모델 중 가장 실제에 가까운 노이즈를 생성한 것이다. 특히 합성된 데이터의 실용성이 돋보였다. 연구팀이 합성 데이터만으로 학습시킨 AI 모델의 이미지 복원 성능(PSNR)은 37.07 데시벨(dB)**을 기록했다. 이는 실제 데이터를 사용해 학습했을 때의 성능인 37.16dB과 비교해 차이가 0.1dB 미만에 불과한 수준이다. 값비싼 실제 데이터 수집 없이 합성 데이터만으로도 상용화 수준의 고성능 AI를 개발할 수 있다는 가능성을 수치로 증명한 것이다. 스누아이랩 측은 이 기술이 데이터 확보가 어려운 산업 현장에서 빛을 발할 것으로 전망했다. 데이터 반출이 힘든 반도체 제조 공장이나 개인정보 문제로 데이터 수집이 까다로운 의료 영상 분야에서도 소량의 샘플만으로 고성능 AI 모델을 구축할 수 있을 것이란 예상이다. 더불어 비전 AI의 전처리, 복원 품질을 끌어올리는 기반 기술이 될 수 있다고 보고 있다. 노이즈가 줄면 객체 탐지, 결함 분류, 문자인식(OCR), 이상 징후 탐지 등 후속 모델의 정확도도 함께 개선될 여지가 크다는 분석이다. 유명호 스누아이랩 대표는 "이번 AAAI 논문 채택은 스누아이랩의 연구 성과가 글로벌 무대에서 경쟁력을 인정받은 결과"라며 "현실 제약이 큰 산업 현장에서 저비용, 고효율로 성능을 끌어올릴 수 있는 비전 AI 기술을 지속적으로 고도화하겠다"고 밝혔다.

2025.12.24 10:01남혁우

'K-당뇨 관리' 세계로…지투이, 스마트 인슐린 기기 필리핀 첫 수출

지투이가 독자 기술로 개발한 디지털 당뇨병 관리 플랫폼을 앞세워 필리핀 시장에 진출한다. 지투이는 24일 필리핀 현지 유통 파트너사와 계약을 맺고 스마트 인슐린펜 '디아콘 P8'(이하 P8) 1천대와 인슐린펌프 '디아콘 G8'(이하 G8) 50대를 공급한다고 밝혔다. 이번 초도 물량의 총계약 규모는 40만3382 달러(약 5억6천만원) 규모다. P8 스마트 인슐린펜은 기존 인슐린 펜에 블루투스 기능을 탑재, 투여 기록을 스마트폰으로 자동 전송해 체계적인 관리를 돕는 기기이며, G8 인슐린펌프는 신체에 부착해 지속적으로 인슐린을 주입해 주는 기기로 모바일 앱을 통해 정밀한 제어가 가능하다. 지투이가 첫 진출지로 낙점한 필리핀은 전체 인구 약 1억 1천만명 중 성인 당뇨환자만 500만명에 육박할 정도로 유병률이 높다. 하지만 급증하는 환자 수 대비 의료 인프라와 관리 시스템은 여전히 수기 기록에 의존하는 아날로그 방식에 머물러 있어 체계적인 혈당 관리에 대한 미충족 의료 수요(Unmet Needs)가 높은 국가로 꼽힌다. 이번에 수출되는 P8과 G8은 단순한 주입 기기를 넘어선 '커넥티드 헬스케어'(Connected Healthcare) 솔루션으로, 전용 모바일 앱(App)과 블루투스로 연동돼 ▲투여 이력 자동 저장 ▲볼러스(식사) 주입량 자동 계산 ▲혈당 데이터 통합 분석 ▲의료진 모니터링 기능 등을 제공한다고 회사 측은 설명했다. 이는 환자의 자가 관리 효율성 극대화는 물론, 현지 의료진에게 환자의 상태를 실시간 데이터로 제공함으로써 필리핀 당뇨치료 환경을 획기적으로 개선할 것으로 기대를 모은다. 지투이의 핵심 경쟁력은 스마트 인슐린 '펜'과 '펌프' 라인업을 동시에 보유하여, 경증부터 중증까지 모든 단계의 당뇨 환자에게 맞춤형 솔루션을 제공할 수 있다는 점이다. 특히 전 세계적으로 가장 보편적인 투여 방식인 인슐린 펜을 디지털화한 P8은 기존 사용자에게 익숙한 경험을 유지하면서도, 데이터 누락이나 오투여 문제를 기술적으로 해결해 현지 시장 진입 장벽을 낮출 전략 제품으로 평가받는다. 정창범 지투이 대표는 “이번 수출은 단순한 하드웨어 판매가 아니라, 지투이가 지향하는 데이터 기반의 당뇨 관리 생태계가 글로벌 시장에서 통할 수 있음을 입증한 것”이라며 “이번 필리핀 진출을 성공적인 교두보로 삼아 베트남, 태국 등 성장 잠재력이 큰 동남아시아(ASEAN) 전역으로 'K-당뇨 관리 시스템'을 확산시켜 나가겠다”고 포부를 밝혔다. 지투이는 이번 초도 물량을 필리핀 내 주요 거점 병원 및 당뇨 전문 센터에 우선 공급할 예정이며, 현지 파트너사와 협력해 의료진 대상 심포지엄 및 제품 교육 등 마케팅 활동을 강화해 시장 점유율을 빠르게 확대할 방침이다. 한편 지투이(G2E)는 국내 최초의 디지털 당뇨병 통합관리 플랫폼 '디아콘'(DIA:CONN)을 운영하는 스마트 헬스케어 전문기업이다. 연속혈당측정기(CGM)와 연동되는 스마트 인슐린펌프(디아콘 G8), 스마트 인슐린펜(디아콘 P8) 등 하드웨어부터, 환자용 모바일 앱(App) 및 의료진용 웹(Web) 서비스까지 아우르는 '당뇨 케어 솔루션'을 제공하고 있다.

2025.12.24 09:58조민규

알파벳, 재생에너지 개발사 첫 인수…AI 데이터센터 전력 확충

구글 모회사 알파벳이 인공지능(AI) 시대 데이터센터 전력 확보를 위해 사상 처음으로 대형 재생에너지 개발사를 인수했다. 23일 블룸버그통신에 따르면 알파벳은 청정에너지 개발업체 인터섹트 파워를 현금 47억5천만 달러(약 7조456억원)와 기존 부채를 포함한 조건으로 인수하기로 합의했다. 이번 거래는 알파벳이 AI 데이터센터 확장을 위해 대규모 전력 확보에 나선 전략적 결정으로, 미국 전력망이 지속 급증하는 상황에 대응하기 위한 조치로 풀이된다. 알파벳은 이번 인수를 통해 데이터센터에 필요한 전력을 유연하게 확보하고 신규 발전 설비 구축을 데이터센터 확장과 동시에 추진할 수 있을 것으로 전망했다. 앞서 구글은 지난해 인터섹트 파워와의 파트너십을 통해 데이터센터 인근 대규모 에너지 설비를 공동 구축하며 이미 소수 지분을 확보한 바 있다. 순다르 피차이 구글·알파벳 최고경영자(CEO)는 성명을 통해 "인터섹트 파워는 데이터센터 수요 증가에 맞춰 발전 용량을 확장하고 새로운 전력 생산을 보다 기민하게 구축할 수 있도록 도울 것"이라며 "미국의 혁신과 기술 리더십을 이끄는 에너지 해법을 재구상할 수 있을 것"이라고 밝혔다. AI 경쟁이 본격화되면서 최근 데이터센터와 전력 산업을 둘러싼 인수합병(M&A)이 빠르게 늘고 있다. 소프트뱅크그룹은 데이터센터 운영사 인수 가능성을 검토 중이며 전력 수요 증가에 대응해 관련 유틸리티 기업 인수 사례도 잇따르고 있다. 이번 거래는 빅테크 기업이 대형 재생에너지 개발사를 직접 인수한 첫 사례다. 구글은 아마존, 마이크로소프트와 함께 AI로 인한 전력 수요 증가와 탄소 감축 목표 간 균형을 맞추는 데 어려움을 겪어왔다. 실제 구글은 지난해 데이터센터 운영 확대 영향으로 지난 5년간 탄소 배출량이 48% 증가했다고 발표한 바 있다. 인터섹트 파워는 태양광과 에너지 저장장치(ESS)를 중심으로 대형 데이터센터 전력 공급에 특화된 청정에너지 프로젝트를 추진해 온 기업이다. 현재 약 7.5기가와트(GW)의 태양광 및 저장 설비를 운영 중이며 추가로 8GW 규모의 개발 파이프라인을 보유하고 있다. 이 중 상당수는 미국 텍사스 지역에 집중돼 있다. 이번 인수를 통해 알파벳은 인터섹트 파워의 전력 개발 플랫폼과 인력, 이미 구글과 계약된 개발 중 자산을 함께 확보한다. 다만 인터섹트 파워는 브랜드를 유지한 채 독립적으로 운영되며 구글 외 고객과 계약된 일부 전력 자산은 인수 대상에서 제외된다. 에너지 컨설팅 기업 우드 맥킨지의 벤 헤르츠-샤르겔 총괄은 "재생에너지 개발사를 직접 인수함으로써 구글은 단순한 전력 구매 계약을 넘어 필요할 때 원하는 곳에 전력을 공급할 수 있는 유연성을 확보하게 됐다"고 설명했다.

2025.12.23 16:40한정호

"고비용 AI 인프라는 지속 가능하지 않아"…하이퍼엑셀의 LPU 전략

생성형 AI 확산과 함께 데이터센터 전력 소모 문제가 산업 전반의 핵심 과제로 떠오르고 있다. LLM(대규모언어모델)을 돌리기 위한 연산 수요가 급증하면서, 데이터센터 유지에 랙당 수백 킬로와트(kW) 전력을 요구하는 구조로 빠르게 전환하고 있는 것이다. 그러나 전력 공급과 냉각, 인프라 구축 비용이 한계에 다다르면서 AI 인프라가 이 같은 전력 소모 구조를 계속 감당할 수 있을지에 대한 회의론도 확산되고 있다. 이 같은 상황에서 LLM 추론에 특화된 저전력·고효율 AI 반도체를 앞세운 하이퍼엑셀이 대안으로 주목받고 있다. 하이퍼엑셀은 GPU(그래픽처리장치) 중심의 기존 AI 인프라를 전면 대체하기보다는, 전력 효율과 비용 효율을 극대화한 새로운 가속기로 전체 시스템 차원의 총소유비용(TCO)을 낮추는 전략을 제시한다. 하이퍼엑셀은 LLM 추론에 특화된 AI 반도체 기업이다. 학습이 아닌, 이미 만들어진 모델을 실제 서비스 환경에서 효율적으로 구동하는 데 초점을 맞췄다. 챗GPT, 제미나이 등 생성형 AI 서비스의 핵심 연산 구간을 담당하는 영역이다. 김주영 하이퍼엑셀 대표는 "LLM 서비스의 병목은 더 이상 모델이 아니라, 이를 얼마나 효율적으로 돌릴 수 있느냐에 있다"며 "하이퍼엑셀은 LLM 추론에 맞게 처음부터 다시 설계한 칩을 만든다"고 설명했다. GPU와 다른 접근…저전력 강점 LPU의 차별성 하이퍼엑셀은 LPU(LLM Processing Unit)를 앞세워 시장 공략에 나선다. LPU는 LLM 추론에 특화된 AI 가속 칩으로, 학습과 추론을 모두 수행하는 범용 GPU와 달리 이미 학습된 모델을 서비스하는 데 필요한 연산만을 위해 설계된 전용 칩이다. 수천~수만 개의 작은 코어를 활용하는 GPU와 달리, LPU는 수십 개의 대형·특화 코어로 구성됐다. GPU가 절대적인 성능과 생태계 측면에서는 강점을 갖지만, 실제 LLM 추론 환경에서는 코어와 메모리 대역폭 활용률이 낮다는 한계가 있다. 하이퍼엑셀 LPU는 어텐션·피드포워드·노멀라이제이션 등 추론 연산을 코어 하나가 처음부터 끝까지 처리하는 구조로, 불필요한 데이터 이동을 줄여 같은 전력과 비용에서 더 많은 토큰을 처리할 수 있도록 최적화됐다. 김 대표는 "LPU는 GPU를 대체하기 위한 칩이 아니라, 추론 서비스에 가장 잘 맞는 역할을 수행하는 칩"이라며 "AI 서비스가 커질수록 전용 추론 가속기의 중요성은 더욱 커질 것"이라고 말했다. HBM 대신 LPDDR…비용·전력 효율을 겨냥한 전략 하이퍼엑셀의 또 다른 차별화 포인트는 HBM 대신 LPDDR 메모리를 채택한 전략이다. 업계에서는 LLM에는 초고속 HBM이 필수라는 인식이 강하지만, 하이퍼엑셀은 이와 다른 길을 택한 셈이다. LPDDR은 HBM 대비 속도는 느리지만 가격과 전력 소모가 크게 낮다. 하이퍼엑셀은 높은 유틸리제이션과 대규모 배칭(Batching) 기술을 통해 메모리 속도 한계를 보완했다. 한 번 모델을 읽어 여러 사용자를 동시에 처리하는 구조로, 토큰당 비용을 획기적으로 낮추는 방식이다. 김 대표는 "HBM을 쓰는 순간 모든 것이 고성능·고비용 구조로 간다"며 "우리는 충분한 성능을 유지하면서도 가격과 전력을 낮추는 쪽을 선택했다"고 말했다. LG전자와 온디바이스 LLM 협력…IP 확장성도 주목 하이퍼엑셀은 최근 LG전자와 온디바이스 LLM 가속기 협력으로도 주목받고 있다. 데이터센터용 칩뿐 아니라, 가전과 로봇 등 온디바이스 환경에서도 LLM을 효율적으로 구동할 수 있는 반도체를 공동 개발 중이다. 하이퍼엑셀의 LPU 아키텍처는 코어 크기와 전력, 성능을 요구사항에 따라 조정할 수 있도록 설계돼 IP 형태로도 확장 가능하다. 다만 회사의 주력 모델은 여전히 완성 칩을 중심으로 한 반도체 사업이다. 김 대표는 "고객과 단순히 칩을 사고 파는 관계가 아니라, 설계 단계부터 함께 제품을 만드는 전략"이라며 "데이터센터는 네이버클라우드, 온디바이스는 LG전자와 협업하고 있다"고 설명했다. "토큰 경제성을 높이는 칩"…하이퍼엑셀의 비전 하이퍼엑셀이 내세우는 비전은 명확하다. '토큰 경제성'을 극대화하는 AI 반도체를 만드는 것이다. 달러당 얼마나 많은 토큰을 생성할 수 있느냐를 기준으로, LLM 서비스의 비용 구조를 근본적으로 바꾸겠다는 목표다. 김 대표는 최근 기가와트(GW)급 데이터센터 논의를 언급하며 “AI 가속기가 지금처럼 랙당 수백 킬로와트의 전력을 요구하는 구조는 지속 가능하지 않다”고 지적했다. 그러면서 “결국 AI 인프라가 지속 가능해지려면, 가속기 자체가 더 에너지 효율적으로 바뀌어야 한다”며 “하이퍼엑셀의 칩은 그 방향을 겨냥하고 있다”고 말했다. 한편 김주영 대표는 한국공학한림원이 선정한 한국을 이끌어갈 젊은 과학자 29명에 선정된 바 있다.

2025.12.23 15:50전화평

AI 친화적 공공데이터 표준 확대된다…기관 시스템 호환성 강화

인공지능(AI)의 학습·활용률과 기관 간 데이터 호환성을 높이기 위한 '공공데이터 공통표준용어'가 1만3천여 개로 확대된다. 행정안전부는 공공기관이 시스템 구축 시 데이터를 같은 의미와 방식으로 이해·활용할 수 있도록 하는 공공데이터 공통표준용어를 확대 보급한다고 23일 밝혔다. 공통표준용어는 기관별로 제각각 작성되던 데이터베이스(DB) 컬럼명을 범정부 차원에서 한글명·영문명과 데이터 표현형식까지 통일해 표준화한 것이다. 행안부는 2020년에 최초로 제도를 도입한 이후 매년 표준용어를 확대해왔다. 올해는 4천132개 용어를 추가 확대해 공공서비스와 행정업무에 표준 적용이 가능하도록 추진했다. 현재 누적 1만3천159개에 달한다. 특히 올해는 행정 업무의 기반이 되는 법령 용어와 여러 기관에서 공통으로 사용하는 용어를 중점 발굴해 기관마다 달리 쓰이던 용어를 하나의 표준용어로 제정함으로써 데이터 연계·분석이 가능하도록 지원했다. 대표적으로 저수량·저수용량 등으로 각 기관에서 다르게 사용하던 용어를 '저수량'으로, 퇴직급여충당금·퇴직충당금액으로 사용되던 용어를 '퇴직급여충당금'으로 통일·표준화했다. 이번 제·개정에서는 용어 수를 늘리는 데 그치지 않고 기후에너지환경부·과학기술정보통신부 등 21개 소관 부처와 협의를 통해 '공통표준용어설명'과 '데이터 형식' 등 표준용어에 대한 활용성을 강화했다. 국문·영문 언어 전문가와 데이터 표준 전문가, 현업 담당자가 참여하는 검증 절차를 통해 용어의 정확도와 완결성을 점검했으며 이전 차수에서 보급된 용어도 현행화를 추진했다. 아울러 기존 문서 형태로 제공되던 공통표준을 '공공데이터포털'에서 오픈 포맷과 API 개방을 통해 'AI 친화적 데이터'로 제공할 계획이다. 데이터 표준을 기계가 읽기 좋은 오픈 포맷 CSV·JSON·XML 등으로 제공함으로써, AI가 학습·활용, 데이터 표준 점검, 데이터 연계 등에 공공데이터를 쉽게 활용할 수 있게 될 전망이다. 향후 공공기관에서는 공통표준용어를 바탕으로 신규 정보시스템 구축 단계부터 표준을 적용해 개발 비용을 줄이고 데이터 품질을 선제적으로 확보할 수 있다는 설명이다. 행안부는 공통표준용어 활용을 확대하고 현장의 수요를 반영한 추가 제·개정을 지속 추진해 시스템 구축 활용 시 같은 기준으로 데이터를 설계·운영하도록 함으로써 데이터 활용을 지원할 방침이다. 행안부 이세영 인공지능정부정책국장은 "공통표준용어 확대와 AI 활용에 적합한 형식의 개방을 통해 공공과 민간이 데이터를 쉽게 연계·활용할 수 있을 것"이라며 "AI 민주정부 실현을 위해 AI가 활용하기 좋은 고품질 공공데이터 관리에 최선을 다하겠다"고 밝혔다.

2025.12.23 15:36한정호

내년 데이터 시장 핵심은 '논리적 관리'…"데이터 레이크 보완"

물리적 데이터 이동을 최소화하는 '논리적 데이터 관리'가 내년 인공지능(AI) 전환 핵심 동력이 될 것이란 분석 결과가 나왔다. 23일 디노도가 발표한 '2026년 기업이 주목해야 할 데이터 시장 10대 전망'에 따르면 모든 데이터를 한 저장소에 모으는 데이터 레이크 전략 대신 데이터 복제 없이 원천 데이터에 직접 접근하는 논리적 관리 방식이 이를 보완할 것으로 예측됐다. 논리적 데이터 관리는 멀티 클라우드와 하이브리드, 데이터 주권이 강조되는 환경에서 데이터 복제 없이 일관된 거버넌스를 유지할 수 있는 유연성을 제공한다. 이를 통해 기업은 분산된 인프라 전반에서 데이터 이동성을 보장하며 규제 준수와 상호운용성을 동시에 확보할 수 있다. 보고서는 AI 역할 또한 수동적인 '어시스턴트'에서 스스로 업무를 수행하고 승인하는 '자율 에이전트'로 진화할 것으로 봤다. 이러한 진화를 뒷받침하기 위해 정보기술책임자(CIO)들은 신뢰할 수 있는 실시간 AI용 데이터 기반 구축을 최우선 과제로 삼고, 논리적 관리를 전략적 수단으로 활용할 것으로 분석된다. 산업별로는 제조 현장이 실시간 데이터 중심 구조로 전환되며 생산 주기가 대폭 단축되고, 금융과 고객 관리 등 모든 비즈니스 영역에서 품질이 보장된 데이터 제품이 핵심 자원으로 부상할 것으로 나타났다. 보고서는 이사회와 최고재무책임자(CFO)가 데이터 이동을 최소화하고 인사이트 도출 시간을 줄여 명확한 투자수익률(ROI)을 입증하는 플랫폼에 우선순위를 둘 것으로 전망했다. 다만 기술 발전 속도에 비해 조직 구성원의 활용 역량이 뒤처지는 현상은 AI 확산 병목 요인으로 꼽혔다. 디노도는 기업이 비기술 인력도 독립적으로 AI를 활용할 수 있도록 직관적인 도구에 투자하고 재교육을 강화함으로써 기술 혁신과 조직의 준비 수준 간 격차를 해소해야 한다고 당부했다.

2025.12.23 14:49김미정

하이퍼엑셀-망고부스트, 차세대 AI 인프라 고도화 MOU

AI반도체 스타트업 하이퍼엑셀(HyperAccel)은 망고부스트(MangoBoost)와 차세대 AI 인프라 고도화를 위한 기술 및·사업 협력을 목적으로 업무협약(MOU)을 체결했다고 23일 밝혔다. 이번 협약은 AI 워크로드 증가로 복잡해지는 데이터센터 환경에 대응하기 위한 것으로, 양사는 지속가능한 데이터센터 구현과 AI 인프라 성능 및 운영 효율 개선을 공동 목표로 설정하고 기술 교류와 공동 검증을 중심으로 단계적인 협력 체계를 구축할 계획이다. 하이퍼엑셀은 LLM(거대언어모델) 추론에 특화된 고효율 AI 반도체 LPU(LLM Processing Unit)와 소프트웨어 스택을 기반으로 차세대 AI 가속 인프라를 개발하고 있으며, 망고부스트는 DPU 기반 네트워크 및 시스템 최적화 기술을 통해 AI 인프라의 효율을 높이는 솔루션을 보유하고 있다. 양사의 기술 역량을 결합해 AI 인프라 전반에서 실질적인 운영 개선 효과를 제공하는 것을 목표로 한다. 하이퍼엑셀 김주영 대표이사는 “AI 인프라의 확산과 함께 데이터센터의 성능, 효율, 지속가능성은 더 이상 선택이 아닌 필수 과제가 됐다”며 “망고부스트와의 협력을 통해 AI 반도체부터 데이터센터 운영까지 아우르는 실질적인 기술·사업 성과를 만들어갈 것”이라고 밝혔다. 망고부스트 김장우 대표이사는 “이번 협약은 AI에 최적화된 차세대 데이터센터 인프라를 구현하기 위한 중요한 출발점”이라며 “양사의 기술 역량을 결합해 고객에게 더 높은 성능과 효율, 그리고 지속가능한 데이터센터 환경을 제공하겠다”고 말했다. 양사는 향후 국내외 AI 및 데이터센터 시장을 대상으로 협력을 단계적으로 확대할 계획이다.

2025.12.23 14:09전화평

이상준 알스퀘어 팀장 "부동산 보유 기업, '시장 나침반' 될 것"

"앞으로 20년은 부동산을 보유한 기업들이 '시장의 나침반'이 될 겁니다." 이상준 알스퀘어 CRE 컨설팅팀장(이사)의 전망이다. 그는 국내 상업용 부동산 시장이 중대한 변곡점을 맞았다고 진단했다. '기관투자자 중심'에서 '기업 자체'가 부동산을 전략자산으로 관리하며 시장을 이끄는 구조로 전환되고 있다'는 것이다. 업계에 따르면 국내 상장·코스닥 기업 중 약 20%가 부동산을 보유 중이다. 기업 5곳 중 1곳은 소유한 부동산을 두고, 운용을 고민하고 있다는 의미다. 이들은 더 이상 부동산을 단순 투자 대상으로 보지 않는다. 특히 최근 10년 동안 각 사업영역에서 탄탄한 비즈니스를 진행해 온 중견기업들은 사업 전략의 일부로, 경영 자산으로 적극 관리하려는 움직임을 보이고 있다. 이상준 팀장은 이 변화의 중심에서 데이터와 전략, 공공 개발을 연결하는 새로운 CRE 자문 모델을 제시하고 있다. "상업용 부동산 시장, 거센 파도에 휩쓸리는 중" 이상준 팀장에 따르면, 미국의 기준금리 인하 기조는내년에도 2~3차례 이어질 것으로 예상된다. 그러나 우리나라의 기준금리 인하 방향성을 장담하기 어려운 상황이다. 다행스러운 것은 한국 경제성장률과 기업 실적이 전반적으로 개선될 것으로 보인다는 점이다. 개별 기업 실적은 올해보다 소폭 상승할 것으로 예상된다. 이에 따라 영업비용 감축을 위해 임대료가 낮은 권역으로 이동하는 기업이 늘면서, 부동산 자문사 실적도 개선될 전망이다. 시장의 복잡성도 과거와 다르다. 저금리에서 금리 인상으로, 팬데믹 이후 공간 수요 변화, 인플레이션, 경기 둔화가 겹치며 기업 부동산 시장은 새로운 리스크 구조에 놓였다. 이상준 팀장은 "부동산을 단순히 사고파는 차원을 넘어 세밀한 전략이 필요한 시점"이라고 강조했다. 이 팀장은 "매입·처분 타이밍, 건물 활용 방안, 지방 빌딩의 재배치까지, 과거와는 다른 접근이 필요하다"며 "경험과 감이 아니라 데이터와 전략으로 움직여야 하는 시대가 됐다"고 말했다. 섹터별 명암, 데이터가 답이다 이상준 팀장은 '상업용 부동산 시장의 섹터별 명암이 뚜렷하게 갈린다'고 진단했다. 물류센터와 데이터센터, 오피스 시장이 각각 다른 국면을 맞고 있다는 설명이다. 이 팀장은 "물류센터는 이커머스 성장에 따른 수요 증가로 성장하면서 공급이 급증했고, 일부 지역에서는 과잉 공급, 공실률 상승, 임대료 하락 등이 현실화됐다"면서 "하지만 최근 몇 년간 물류센터 인허가 물량이 급감하면서 새로운 시장 균형점을 찾는 중이다. 입지와 물류 효율성에 따라 자산 가치가 크게 갈릴 것으로 본다"고 예상했다. 또 그는 "물류센터의 경우 단순히 넓은 창고가 아니라, 첨단 물류 시스템과 교통 접근성, 인력 수급 가능성까지 고려한 전략적 입지 선정이 중요해졌다"고 강조했다. 데이터센터에 대한 전망은 더욱 긍정적이었다. 이 팀장은 "AI 시대의 핵심 인프라다. 기업의 클라우드 전환과 AI 서비스 확대로 데이터센터 수요는 폭발적으로 증가하고 있다"며 "전력 공급과 냉각 시스템, 네트워크 인프라를 갖춘 입지가 핵심"이라고 말했다. 이어 "데이터센터가 단순 부동산 자산을 넘어 디지털 인프라 투자의 성격을 띠고 있다"고 덧붙였다. 기업들이 사업 확장을 위해 데이터센터 확보에 적극 나서고 있다는 것이다. 반면 오피스 시장은 복잡한 양상이다. 이 팀장은 "하이브리드(출근+원격) 근무 확산 추세와 출근 비중을 늘리는 움직임이 동시에 나타나고 있다. 또한 신규 업무권역으로의 이동 등에 따라 서울 주요권역의 오피스 공실률이 완만하게 상승하고 있다"며 "다만 프라임급 빌딩과 구형 빌딩 간 양극화가 심화되고 있는데, 최신 설비와 ESG 인증을 갖춘 빌딩은 여전히 선호되지만 노후 빌딩은 공실과 임대료 하락에 직면하고 있다"고 말했다. 그는 오피스 시장에서 기업들이 단순히 면적을 줄이는 게 아니라, 더 좋은 품질의 공간으로 이동하는 '업그레이드 전략'을 취하고 있다고 분석했다. 따라서 기업들은 보유 오피스의 경쟁력을 냉정하게 평가하고, 리모델링이나 용도 전환, 처분 등을 전략적으로 결정해야 한다는 조언이다. 이상준 팀장은 "섹터별로 이렇게 다른 양상이 펼쳐지는 시장에서, 데이터 없이 감으로 의사결정하는 건 위험하다"면서 "알스퀘어는 각 섹터의 공실률, 임대료 추이, 거래 동향을 실시간으로 분석해 기업들이 정확한 판단을 내릴 수 있도록 돕는다"고 설명했다. CRE, 투자 자산에서 전략 자산으로 이상준 팀장은 기업 부동산의 의미가 근본적으로 바뀌고 있다고 말한다. 특히 기업들의 접근 방식이 달라졌다는 점을 주목했다. 단순 투자 목적을 넘어 사업 전략의 일부로 부동산을 관리하려는 움직임이 대기업뿐 아니라 중견·중소기업까지 확산되고 있다. 복잡해진 경제환경 속에서 전문 자문의 필요성도 커졌다. 기업들은 단순 정보가 아니라 데이터와 전략, 재무와 법률을 아우르는 통합 솔루션을 요구하고 있다. 이 팀장은 알스퀘어가 기존 부동산 자문사와 다르게 접근하는 방식을 세 가지로 설명했다. 첫째는 데이터 기반 분석이다. 이 팀장은 "알스퀘어는 인구 30만 이상 도시의 빌딩을 전수조사해 데이터베이스를 구축했다"며 "이를 바탕으로 시장 흐름을 분석하고 미래 가치를 예측하는 'RA 애널리틱스'를 운영 중"이라고 말했다. 이 접근은 불확실성이 큰 시장에서 기업들이 리스크를 줄이는 데 결정적이다. 경험 많은 전문가의 직관도 중요하지만, 객관적 데이터와 분석이 의사결정의 중심이 되고 있다는 설명이다. 둘째는 기업 경영전략과의 연계다. 이 팀장은 "우리는 단순히 부동산을 사고파는 자문이 아니다. 기업의 사업 전략, 재무 구조, 공시 및 세금, 손익 분석까지 함께 고려한 통합 전략을 제안한다"고 밝혔다. 본사 사옥과 물류센터, 지점, 공장, 창고 등 기업이 보유한 모든 부동산을 '비즈니스 자산'으로 관리하는 방향이다. 부동산 자문이 단순 거래 중개를 넘어 경영 컨설팅의 영역으로 확장되고 있음을 보여준다. 셋째, 공공 개발과의 접점을 만든다. 이 팀장은 "지방정부나 공공기관의 도시재생, 공공시설 개발, 인프라 투자 같은 공공 프로젝트와 기업 부동산 전략을 연결한다"고 설명했다. 공공개발사업 로드맵 리서치를 통해 기업들은 지역 개발 계획과 자신들의 부동산 전략을 맞춰갈 수 있다. 단순히 좋은 입지를 찾는 게 아니라, 미래에 좋은 입지가 될 곳을 먼저 찾는 전략이다. 이상준 이사는 지금을 한국 상업용 부동산 시장의 변곡점으로 규정했다. 이 팀장은 "지난 20년이 성장기였다면, 지금은 시장이 성숙하면서도 변동성이 커지는 위기와 기회의 혼재기"라면서 "앞으로 20년은 부동산을 보유한 기업들이 과감하고 전략적인 투자로 시장의 나침반 역할을 할 것"이라고 전망했다. 기관투자자 중심이었던 부동산 시장이 이제는 기업 자체가 부동산을 전략자산으로 관리하며 시장을 이끄는 구조로 전환되고 있다는 뜻이다. 이 팀장은 "불확실성이 큰 시대일수록 정확한 데이터와 전략적 사고가 중요하다"며 "기업들이 폭풍 속에서도 방향을 잃지 않도록 나침반 역할을 하겠다"고 말했다. 끝으로 그는 데이터의 중요성을 강조했다. 이 팀장은 "과거에는 베테랑 브로커의 경험과 네트워크가 경쟁력이었다. 지금은 객관적 데이터와 분석 역량, 그리고 기업 경영 전반을 이해하는 통합적 시각이 필요하다"고 역설했다. 그가 제시하는 것은 단순한 자문 서비스의 변화가 아니다. 기업 부동산(CRE)의 재정의다. 부동산이 투자 대상에서 '경쟁력의 원천'으로 바뀌었다. 불확실성의 시대에 경험과 감이 아니라 '데이터'와 '전략'으로 움직여야 하는 때다. 공공 개발과 민간 부동산을 연결하는 시도는 부동산과 도시 개발, 기업 전략이 융합되는 미래를 보여준다. 인구 30만 이상 도시의 전수조사 데이터, 기업 경영전략과 연계된 부동산 자문, 공공개발 로드맵과의 접점. 이것이 이상준 팀장과 알스퀘어가 제시하는 새로운 CRE 모델이다.

2025.12.23 12:56백봉삼

데이터이쿠, IDC 마켓스케이프 '통합 AI 거버넌스' 리더

데이터이쿠가 인공지능(AI) 관리 우수성을 글로벌 시장에서 인정받았다. 데이터이쿠는 글로벌 시장조사기관 IDC가 발행한 'IDC 마켓스케이프: 2026년 전 세계 통합 AI 거버넌스 벤더 평가 보고서'에서 리더로 선정됐다고 23일 발표했다. IDC는 데이터이쿠가 개별적인 사후 통제 방식에서 벗어나 플랫폼 자체에 거버넌스와 컴플라이언스를 내장한 총체적 접근 방식을 높게 평가했다. 데이터이쿠의 가장 큰 경쟁력은 AI 개발과 배포 워크플로 전반에 거버넌스를 직접 심은 내재형 통제 메커니즘에 있다는 평을 받고 있다. 각 프로젝트가 실제 운영 환경에 배포되기 전 조직의 정책 준수 여부를 자동으로 검증하며, 거번 노드를 통해 필수적인 결재와 승인 절차를 강제해 규정 위반을 사전에 차단할 수 있다. 또 데이터 운영과, 머신러닝 운영, 거대언어모델(LLM) 운영을 모두 아우르는 전 주기적 라이프사이클 관리 기능을 제공한다는 점도 높게 평가받았다. 설계·실험 단계부터 데이터 준비, 생성형 AI 애플리케이션 개발, 모니터링에 이르기까지 AI 시스템의 모든 생애 주기를 단일 통합 플랫폼에서 관리할 수 있다. 최근 AI 시스템이 복잡해지며 거버넌스를 일상적인 운영의 핵심 요소로 재정의하려는 기업들의 요구사항을 정확히 반영했다는 점도 주목받았다. 분석과 머신러닝은 물론 생성형 AI와 자율 에이전트 전반에 걸쳐 확장 가능한 관리 체계를 구축해 기업의 디지털 전환을 가속화하고 있다. 플로리앙 두에또 데이터이쿠 공동 창립자 겸 최고경영자(CEO)는 "AI 거버넌스는 더 이상 단순한 체크포인트가 아니라 토대가 됐다"며 "지속 가능한 유일한 방법은 사람과 데이터, 모델, LLM, 에이전트를 설계 단계부터 하나의 통합된 시스템 하에 관리하는 것"이라고 말했다.

2025.12.23 11:27김미정

카카오 T·카카오내비 데이터, 공공 정책 연구에 활용↑

카카오모빌리티의 모빌리티 빅데이터가 지자체와 공공기관의 정책 연구에 활용되며 데이터 기반 정책 수립 사례를 넓히고 있다. 카카오모빌리티는 경북연구원과 화성시연구원 등 주요 연구기관의 정책 연구에 카카오 T와 카카오내비를 통해 구축한 모빌리티 빅데이터가 활용되고 있다고 23일 밝혔다. 관광과 교통 정책 분야에 실제 이동 데이터를 접목해 연구의 정밀도를 높이는 데 기여하고 있다는 설명이다. 경북연구원은 'POST APEC, 경북 관광을 설계하다' 연구에서 카카오내비와 카카오 T 데이터를 분석 자료로 활용했다. 경북 지역 방문객의 이동 목적과 선호 지역, 연계 활동 등을 분석한 결과, 대형 국제행사 이후에도 관광 성장을 이어가기 위해서는 도내 타 지역과 연계한 광역 관광 네트워크 구축이 필요하다는 결론을 도출했다. 화성시연구원은 지난 11월 발표한 '화성시 공유 개인형 이동장치(PM) 주차구역 설치 가이드라인 개발 연구'에서 카카오 T 바이크 이용 데이터를 정책 근거로 활용했다. 시간대와 지역별로 세분화된 이용 데이터를 통해 PM 이용 패턴을 분석하고, 지정주차제 정책의 효과를 객관적으로 검증하는 자료로 활용했다. 이 외에도 카카오모빌리티의 모빌리티 빅데이터는 국토연구원의 대도시 간선도로 교통혼잡 실태 조사, 제주관광공사의 관광객 특성 분석, 양평군의 시니어 운전자 이동성과 교통안전 정책 연구 등 다양한 공공 연구에 접목되고 있다. 카카오모빌리티는 연구 목적에 맞춰 이동 수단과 공간, 시간 단위로 데이터를 가공해 제공하고, 가명처리를 통해 개인정보 보호도 함께 고려하고 있다. 맞춤형으로 제공된 데이터는 정책 연구의 객관적인 근거로 활용되며 모빌리티 빅데이터의 실질적인 부가가치를 높이고 있다는 평가다. 안규진 카카오모빌리티 사업부문총괄 부사장은 “모빌리티 빅데이터가 정책 연구와 업계 선순환에 기여할 수 있는 방안을 지속 고민해왔다”며 “앞으로도 공공기관과의 협력을 통해 데이터 기반 정책 연구를 지원하고 안전하고 편리한 이동 환경 조성에 힘쓰겠다”고 말했다.

2025.12.23 10:19류승현

  Prev 1 2 3 4 5 6 7 8 9 10 Next  

지금 뜨는 기사

이시각 헤드라인

눈앞으로 다가온 '피지컬 AI'…CES 2026이 증명했다

[ZD브리핑] 국가대표 AI 1차 탈락팀 발표 예정...새해 행사·정책 일정 잇따라

[르포] 폭설에 얼어붙는 도시…전기차 보기 힘든 홋카이도 가다

이더리움 창립자 "탈중앙화 스테이블코인, 달러 의존 취약점"

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.