• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
지스타2025
인공지능
스테이블코인
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'대규모 언어모델'통합검색 결과 입니다. (6건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

문서 작성부터 협력사 평가까지…엠로, AI 에이전트로 구매 업무 부담 최소화

기업의 구매 부서는 제품 생산과 운영의 기반이자 경쟁력의 핵심 축이다. 하지만 수많은 문서 작성, 데이터 검색, 협력사 관리 등 반복적이고 복잡한 업무가 이어지면서 담당자의 업무 피로도가 높고, 신규 인력이 진입하기에도 쉽지 않다. 이로 인해 많은 기업들이 인력 운용에 어려움을 겪는다. 이러한 어려움을 극복하기 위해 인공지능(AI) 에이전트가 대안으로 주목받고 있다. AI가 스스로 문제를 인식한 뒤 목표 달성을 위해 필요한 정보를 스스로 찾아내고 계획을 세우며 실행까지 수행할 수 있어 업무 부담을 최소화하고 고부가가치 분석과 전략 수립에 집중하며 생산성을 향상시킬 수 있기 때문이다. 21일 엠로는 서비스 중인 구매시스템에 대규모 언어모델(LLM)을 기반으로 한 5종의 AI 에이전트를 탑재했다고 밝혔다. 엠로의 구매시스템에 탑재된 AI 에이전트는 ▲구매 가이드 에이전트(Procurement Guide Agent), ▲DB 검색 에이전트(DB Search Agent) ▲SRM 코파일럿(SRM Copilot), ▲시장 분석 에이전트(Market Intelligence Agent) ▲문서 생성 에이전트(Automation Agent) 등이다. 이 기능들은 구매 문서 작성부터 협력사 평가, 시장 동향 분석까지 한 번의 대화로 처리할 수 있도록 지원한다. 초보자도 복잡한 구매 절차 손쉽게 엠로의 '구매 가이드 에이전트'는 이름 그대로 구매 업무 전반의 '길잡이' 역할을 한다. 신규 담당자가 복잡한 절차나 용어에 익숙하지 않더라도 챗봇에 질문만 하면 필요한 답변을 즉시 받을 수 있다. 예를 들어 '해외 협력사 등록 절차가 어떻게 되나요?' 같은 질문을 입력하면 AI가 사내 매뉴얼과 외부 문서를 동시에 검색해 단계별 절차를 안내한다. 이 에이전트는 검색증강생성(RAG) 기술을 이용해 정형 데이터뿐 아니라 PDF나 보고서 같은 비정형 데이터에서도 정보를 찾아낸다. 이를 통해 AI는 보다 구체적이고 신뢰할 수 있는 답변을 제공한다. 결과적으로 구매 가이드 에이전트는 기업 내 지식 격차를 줄이고 담당자의 역량을 균등하게 끌어올리는 역할을 한다. 이를 통해 신규 인력은 빠르게 업무를 익힐 수 있고 숙련 인력은 반복적인 질문 응답이나 문서 확인에 드는 시간을 절약해 전략적 업무에 집중할 수 있다. 필요한 정보를 자연어로, DB 검색도 한번에 DB 검색 에이전트는 구매 담당자가 시스템 속 방대한 데이터를 일일이 찾지 않아도 되도록 돕는다. 그동안 협력사 정보를 찾기 위해 여러 메뉴를 오가며 검색해야 했지만 이제는 자연어로 질문만 하면 된다. "지난해 수도권 지역 협력사 중 납기 우수 업체를 알려줘"라고 입력하면 내부 데이터베이스(DB)에 어떤 항목들이 있는지 납기율이 어떤 테이블에 저장되어 있는지를 스스로 파악한 한다. 이후 그 조건에 맞는 SQL 쿼리(SQL Query)를 자동으로 생성해 사용자에게 필요한 정보를 제공한다. 또한 AI는 단순히 데이터를 보여주는 데서 그치지 않고 필요한 경우 요약이나 분석 결과까지 함께 제시한다. "최근 6개월간 납기 지연이 늘어난 품목은?"이라고 물으면 AI는 해당 데이터를 시각화해 '어떤 품목에서 지연이 발생했고 그 원인이 무엇인지'까지 요약 보고 형식으로 알려준다. 이렇게 사용자가 복잡한 데이터를 직접 다루지 않아도 자연스러운 대화만으로 원하는 인사이트를 얻을 수 있도록 지원한다. 문서 작성도 AI가 초안부터 제안까지 구매 부서의 주요 업무 중 하나는 다양한 문서 작성이다. 입찰 공고문, 품의서, 계약서 등 문서의 형식은 정해져 있지만 매번 다른 품목과 조건을 반영해야 하기 때문에 단순 반복 업무임에도 상당한 시간이 소요된다. 한 문서를 완성하기 위해 과거 사례를 찾아보고 협력사 정보를 대조하며 예산과 납기 일정을 맞추는 과정을 거쳐야 하기 때문이다. 엠로의 '문서 생성 에이전트'는 이런 반복적인 문서 작성 부담을 줄여준다. 구매 담당자가 품목명, 예산, 일정, 자격 요건 등 기본적인 정보를 입력하면 AI가 사내 시스템에 저장된 방대한 문서 데이터를 바탕으로 유사한 사례를 찾아낸다. 이후 관련 내용을 분석해 입찰 공고문, 입찰 제안 요청서(RFx), 품의서, 계약서 등 다양한 문서의 초안을 자동으로 생성한다. 담당자가 "다음 달까지 납품 가능한 사무용 의자 입찰 공고문 초안을 만들어줘"라고 입력하면 AI는 과거 유사 품목의 입찰 데이터를 검색해 조건이 비슷한 문서를 찾아낸다. 이후 예산 규모, 납기 일정, 자격 요건 등을 자동으로 반영해 새로운 초안을 완성한다. 이후 이 초안을 바탕으로 세부 항목만 수정하면 곧바로 결재 절차를 진행할 수 있다. 과거처럼 처음부터 문서를 새로 쓰거나 비슷한 문서를 일일이 찾아 복사·편집하는 과정이 사라지는 셈이다. 또한 사람이 자주 실수하기 쉬운 오타, 금액 입력 오류, 항목 누락 같은 문제도 예방해준다. 시스템이 자동으로 항목별 데이터를 불러와 검증하기 때문에 작성 과정에서 정보가 누락되거나 중복되는 경우를 줄일 수 있다. 예를 들어 예산 금액이 내부 결재 시스템의 승인 한도와 일치하지 않거나 협력사 등록번호가 최신 정보와 다를 경우 AI가 즉시 경고 메시지를 띄운다. 결과적으로 문서 작성 시간을 단축하고 업무 품질을 높일 수 있는 환경을 조성해 구매 담당자는 전략 수립이나 공급망 리스크 관리 등 보다 중요한 업무에 집중할 수 있다. 시장 동향까지 분석해 리스크 선제 대응 구매 업무는 시장의 흐름을 읽고 가격 변동과 공급 안정성, 협력사의 재무 상태를 종합적으로 판단해야 하는 전략적 의사결정 과정이다. 특히 글로벌 공급망이 불안정하고 원자재 가격이 급변하는 시대에는 시장 상황을 빠르고 정확하게 파악하는 역량이 기업 경쟁력의 핵심이 된다. 그러나 담당자가 모든 정보를 직접 확인하기에는 한계가 있다. 매일 쏟아지는 뉴스, 공시, 환율, 거래 데이터 등 방대한 자료를 일일이 검토하기에는 시간과 인력이 턱없이 부족하기 때문이다. 시장 분석 에이전트는 실시간으로 뉴스, 공시, 주가, 재무정보 등 외부 데이터를 자동 수집하고 분석해 시장의 흐름과 주요 기업의 동향을 한눈에 보여준다. 담당자가 "리튬 가격이 최근 어떻게 변했는지 알려줘"라고 입력하면 AI는 전 세계 주요 산업 뉴스와 거래소 데이터를 통합 분석해 최근 가격 추세와 변동 원인까지 요약한다. 또한 수집한 정보를 기반으로 잠재적인 리스크를 감지하고, 향후 영향을 미칠 수 있는 요인을 예측한다. 예를 들어 특정 원자재 가격이 급등 조짐을 보이면 관련 품목의 구매 계획을 조정하도록 경고를 띄우거나 대체 공급업체를 검토할 수 있도록 제안한다. 이처럼 AI가 시장의 움직임을 사전에 포착해 알려주면 기업은 공급망 혼란이나 원가 상승 같은 위험에 훨씬 빠르게 대응할 수 있다. AI끼리 소통하는 'A2A'로 자율형 공급망 완성 목표 엠로는 이번 AI 에이전트 기능을 단순한 보조 도구가 아닌 서로 연동되는 자율형 시스템으로 발전시키고 있다. 각 에이전트가 독립적으로 작동하는 것을 넘어 서로 협업해 복잡한 문제를 해결하는 에이전트 간 협업(A2A) 구조를 구축 중이다. 시장 분석 에이전트가 특정 품목의 가격 상승을 감지하면 문서 생성 에이전트가 자동으로 관련 품목의 재입찰 공고문을 작성하고 DB 검색 에이전트가 납기 우수 협력사를 추천하는 식이다. 각 AI 에이전트가 독립된 기능을 넘어 '팀'처럼 움직이면 공급망 관리(SCM)는 완전히 새로운 단계로 진화한다. 담당자가 모든 데이터를 직접 확인하거나 문서를 작성하지 않아도 시스템이 먼저 문제를 감지하고 해결 방향을 제시한다.이를 통해 AI가 공급망 을 스스로 운영하는 자율형 시스템을 구축한다는 방안이다. 엠로는 올해 안에 이 A2A 체계의 기술적 기반을 완성할 계획이다. 이를 위해 에이전트 간 실시간 데이터 교환 프로토콜, 상황 인식 기반 의사결정 모델, AI 협업 시나리오 설계 등을 병행하고 있다. 특히 복수의 에이전트가 동시에 작동할 때 충돌이나 오류가 발생하지 않도록 우선순위 판단 알고리즘과 피드백 제어 로직을 강화하는 것이 핵심이다. 한 엠로 관계자는 "에이전틱 ai가 미래 공급망의 핵심 기술 트렌드로 자리잡으면서 이를 도입해 공급망의 운영 효율성을 높이고자 하는 기업들의 수요도 증가하고 있다"며 "이 같은 흐름과 더불어 엠로의 에이전틱 ai 솔루션에 대한 기업 고객들의 관심과 문의도 빠르게 늘어나고 있으며 엠로의 또 하나의 핵심 성장 동력이 될 것으로 기대된다"고 말했다.

2025.10.21 10:58남혁우

타이핑 없이 느낌으로 코딩하는 시대…'바이브코딩'오나

인공지능(AI) 기술 급격한 발전으로 소프트웨어(SW) 개발 방식에 큰 변화가 있을 것이란 전망이 제기되고 있다. 특히 기존의 수작업 중심 개발 방식에 근본적인 변화를 예고하며 AI가 대신 코딩하는 형태의 개발 문화가 자리잡을 것이란 예상이다. 대표적으로 최근 전 테슬라 AI 디렉터이자 오픈AI 공동 창립자인 안드레 카파시(Andrej Karpathy)는 '바이브코딩(Vibe Coding)'이라는 개념을 SNS를 통해 제시했다. 그는 "최근 내가 '바이브 코딩이라고 부르는 새로운 종류의 코딩이 있다"며 "이 방식은 그저 바이브에 완전히 몸을 맡기고 지수적 변화를 받아들이며 코드가 존재한다는 사실조차 잊는다"고 바이브코딩을 설명했다. 이어 "이러한 개발이 가능한 이유는 LLM의 기능이 너무 좋아졌기 때문"이라고 밝혔다. 그는 실제로 코드 편집기인 커서 컴포저(Cursor Composer), LLM 소넷(Sonnet), 음성 명령 도구 슈퍼위스퍼(SuperWhisper) 등을 AI기반 도구를 활용해 키보드를 거의 사용하지 않고 프로젝트를 진행하고 있다고 밝혔다. 예를 들어 UI 스타일 변경, 버그 수정, 레이아웃 조정 등의 요청을 모두 음성이나 자연어로 입력하는 것 만으로 AI가 이를 인식하고 자동으로 작성한다. 안드레 카파시는 코드 리뷰나 디버깅도 AI에 맡기고 있다고 설명했다. 에러 메시지를 복사해 붙여넣기만 해도 대부분 문제가 해결되며, 코드 변경 내용은 별도 검토 없이 전부 수락하는 방식으로 작업한다. 그는 이러한 흐름을 '더 이상 코딩이라 부를 수 없는 새로운 제작 방식'이라고 표현했다. 안드레 카파시 외에도 실리콘밸리의 스타트업에서 상당수 AI를 활용한 개발이 가속화되고 있는 추세다. 미국 최대 스타트업 액셀러레이터인 와이컴비네이터의 개리 탄 최고경영자는 "포트폴리오 스타트업 중 25%가 전체 코드의 95%를 AI에 의존하고 있다"고 밝힌바 있다. 그는 LLM 기반 개발 도구를 활용하면 소규모 인력으로도 대규모 제품을 빠르게 출시할 수 있으며, 코드 품질 역시 일정 수준 이상을 유지할 수 있다고 설명한다. 더불어 비개발자인 실무자도 직접 앱을 개발하고 운영하는 만큼 속도가 중요한 스타트업의 경쟁력을 높일 수 있다는 것도 장점으로 꼽았다. 비개발자나 초급 개발자도 프로토타이핑 수준의 기능을 빠르게 구현할 수 있어 스타트업과 소규모 팀에 적합하다는 의견이 제시된다. 프로덕트 매니저, 디자이너 등의 직군에서도 AI 기반 개발 도구를 도입하는 사례가 늘고 있다. AI의 개입이 코드 작성 전반을 대체하면서 개발자의 역할도 재정의되고 있다. 코드를 잘 작성하는 능력은 점차 AI로 대체되고 있으며 대신 AI의 효율적 활용, 명확한 설계 지시 능력, 비즈니스 요구사항과 다양한 기술 간 조합 능력이 새로운 핵심 역량으로 부상하고 있다. 안드레 카파시의 바이브코딩에 대해선 아직 긍정과 우려가 교차한다. 생산성과 접근성을 높였다는 평가가 있는 반면, 코드 품질 저하와 기술 부채 누적에 대한 경계도 커지고 있다. 특히 AI가 생성한 코드를 사용자가 충분히 이해하지 못한 채 적용할 경우 보안 취약점이나 논리 오류가 발생할 수 있다. 복잡한 시스템에서는 장기적인 유지보수가 어려워질 수 있다는 지적도 제기된다. 안드레 카파시 역시 바이브코딩이 주말에 만들고 테스트하는 프로젝트용으로 바이브코딩이 적합하며 진짜 코딩은 아니라고 언급했다. 간단한 서비스나 데모 개발 등에는 효과적이지만 정교한 인프라나 실시간 시스템 개발에는 여전히 한계가 있다는 것이다. 더불어 그는 일부 버그의 경우 AI가 해결하지 못해 반복적인 요청이나 질문을 우회해야 했다고 밝혔다. 파이썬 웹 프레임워크 장고(Django)의 공동 창시자인 사이먼 윌리슨도 "LLM은 강력한 보조 도구이지만, 코드에 대한 이해와 검토 과정을 생략해서는 안 된다"며 과도한 AI 의존에 대해 경고했다. 이러한 우려에도 불구하고 AI를 중심에 둔 개발 방식은 빠르게 하나의 흐름으로 자리잡고 있다. 구글, 마이크로소프트, 아마존 등 주요 빅테크는 코파일럿, 제미나이 코드 어시스트, Q디벨로퍼 등 자체 개발한 LLM 기반 개발 도구를 선보이고 있다. AI 기반 개발은 아직 실험과 실전 단계의 경계에 놓여 있다. 그러나 LLM이 생성하는 코드 품질이 빠르게 개선되며 일부 분야에서는 코드를 쓰지 않고 개발이 가능할 것이란 예측이 강세를 보이고 있다. 베타랩스 데니스김 CEO는 "바이브코딩은 아직 초기 개념이지만 직관과 감성, 협업의 시대로 전환하는 디딤돌이 될 수 있다"며 "이제 우리는 AI와 코드를 함께 느끼는 시대로 향하고 있는지도 모른다"고 말했다.

2025.03.30 09:11남혁우

코난테크놀로지, 의료분야 국내 첫 LLM 기반 진료 플랫폼 개발

코난테크놀로지(대표 김영섬)가 생성형인공지능(AI) 기술을 기반으로 의료 분야에 특화된 대규모언어모델(LLM)을 선보인다. 코난테크놀로지는 한림대학교 의료원과 '생성형AI기반 입원환자 전주기 기록지 작성 및 의료원 지식상담 플랫폼 구축' 사업을 계약했다고 5일 밝혔다. 이 사업은 한림대학교의료원과 협력하여 국내 의료 분야에 특화된 생성형 AI 플랫폼을 개발하고 적용하는 것을 목표로 하며, 양 기관은 오는 7월까지 의료 AI 솔루션 공동 개발에 나서게 된다. 입원환자 전주기 의무기록은 접수부터 진료, 검사, 경과 기록, 퇴원까지 모든 과정을 아우르는 통합 기록 시스템으로, 의료 기록 전 과정에 LLM 기술을 적용하는 사례는 국내 최초다. 이에 따라 의무기록 작성에 소요되는 시간이 연간 최대 절반까지 단축될 것으로 예상되며, 실시간 데이터 분석과 함께 입력 오류도 줄어들어 의료기록의 정확성이 한층 높아질 전망이다. 생성형 AI가 의료 현장에 도입되면, 환자 관리와 케어에 더 많은 시간을 할애할 수 있는 환경이 조성되어 궁극적으로 의료 서비스의 품질 향상으로 이어질 것으로 기대된다. 양 기관은 의료 기록 시스템 외에도 검색 증강 생성(RAG) 기술을 활용한 지식 상담 플랫폼을 개발해 의료진과 교직원의 실시간 정보 검색과 상담을 지원할 계획이다. 윤리적 AI 설계와 안전 필터링으로 정보 신뢰성을 강화하며, AI 오남용 방지를 위한 대응 시스템도 구축한다. 김규훈 코난테크놀로지 사업부장은 "생성형 AI 기술을 적용해 병원 행정과 진료 과정에서 업무를 효율화하려는 시도가 늘어나는 만큼, 의무기록 작성 AI 서비스를 시작으로 의료 AI 시장의 수요에 민첩하게 대응하며 관련 모델 고도화와 제품화를 이어가겠다"고 포부를 전했다. 한림대학교의료원은 초기 개념검증(PoC) 단계부터 서비스 기획, 의료진 인터뷰, 방향성 도출까지 사업의 주요 과정을 주도적으로 이끌었다. 코난테크놀로지는 한림대학교의료원이 제공한 실무적 통찰과 피드백, 그리고 의료 AI의 특수성을 반영한 철저한 검증을 기반으로 안전하고 신뢰성 높은 의료 AI 솔루션을 고도화 해나갈 예정이다.

2025.02.05 16:46남혁우

사이냅소프트, '사이냅 도큐애널라이저' LLM 도입 가속 지원

사이냅소프트(대표 전경헌)가 대규모언어모델(LLM) 도입 지원을 위해 문서분석 솔루션 '사이냅 도큐애널라이저'을 고도화 한다. 사이냅소프트는 사이냅 도큐애널라이저에 차트, 도형, 이미지, 수식 등 복잡한 문서 요소까지 아우르는 통합적인 분석 솔루션을 추가한다고 27일 밝혔다. 이번 업데이트는 문서 내 다양한 요소를 정확하게 분석하고, 사용 편의성을 대폭 향상시킨 것이 특징이다. 새롭게 추가된 이미지 추출 기능은 문서 내 포함된 이미지들을 별도의 파일로 추출할 수 있도록 한다. 기존에는 복잡한 과정을 거쳐야 했던 이미지 추출 작업이 단 몇 번의 클릭만으로 가능해졌다. 이 기능을 통해 연구자나 데이터 분석가는 차트나 수식이 포함된 이미지 정보를 보다 쉽게 활용할 수 있게 되어, 필요한 정보를 신속하게 확보하고 분석 시간을 단축할 수 있게 된다. 제목 및 캡션 인식 기능은 문서의 구조를 명확하게 파악할 수 있도록 돕는다. 이는 사용자가 문서의 맥락을 빠르게 이해하고 원하는 정보를 정확하게 찾는데 결정적인 역할을 한다. 페이지 내 읽기 순서 인식은 좌표 정보를 기반으로 더욱 정교해 졌으며 문단의 읽기 순서를 최적화하여, 문서를 더욱 효율적으로 탐색할 수 있도록 지원한다. REST API 기능 지원을 통해서는 개발자들이 도큐애널라이저의 기능들을 자체 애플리케이션에 통합하여 사용할 수 있다. 이를 통해 문서 분석을 자동화하고, 업무 효율성을 높일 수 있도록 지원할 전망이다. 이번 업데이트를 통해 사이냅소프트는 문서 분석을 넘어, 데이터 분석 및 LLM구축 연구 개발 분야에서 분석 품질을 향상시키는 강력한 솔루션으로서의 역할을 수행할 수 있을 것으로 기대 중이다. 사이냅 도큐애널라이저는 타사 제품과 달리 PDF로 변환할 필요 없이 MS오피스 등 원본 파일을 바로 분석할 수 있어 시간과 노력을 절약할 수 있다는 특징이 있다. 원본 파일을 바로 분석할 경우 문서의 포맷과 구조를 유지하면서 분석할 수 있어 데이터의 의미를 보다 정확하게 이해할 수 있다. 또한 텍스트뿐 아니라, 이미지, 차트, 도형 등 다양한 요소를 동시에 분석할 수 있어 종합적인 인사이트를 얻을 수 있다. 전경헌 사이냅소프트의 대표는 "도큐애널라이저의 고도화된 기능은 이미 다수의 LLM 구축 및 지식 자산화 사업에 사용되고 있으며, 다양한 산업 분야에서의 활용 가능성이 높아지고 있다. 앞으로도 고객들의 요구사항을 신속하게 개발에 반영하여, 도큐먼트 AI 전문기업으로서 입지를 더욱 강화하겠다"고 밝혔다.

2024.12.27 08:58남혁우

[기고] 기업 데이터 분석의 새로운 패러다임, 생성형 BI

그야말로 AI열풍이다. 기업에서는 업무 전반에 인공지능(AI) 특히, 대규모 언어모델(LLM)을 적용하거나 새로운 비즈니스 기회를 창출하는 시도가 활발하게 이루어지고 있다. LLM은 언어 모델이기 때문에 주로 비정형 텍스트 문서를 기반으로 AI 활용을 모색하고 있다. LLM의 단점을 보완하기 위해 검색 증강 생성(RAG) 아키텍처를 적용하는 경우도 많다. 다만, 기업의 중요한 정보는 비정형(unstructured) 문서에만 존재하는 것이 아니라, 관계형 데이터베이스(RDB) 같은 데이터 저장소에 정형(structured) 형태로도 존재한다. RDB 데이터의 LLM 적용을 위해서 RDB 데이터를 문서형태로 변환하는 것은 비효율적이다. RDB 데이터는 SQL을 통해 질의하고 결과를 얻는 것이 적절하므로, LLM이 SQL을 생성하도록 하는 것이 바람직하다. 이 과정은 자연어 기반 질의(NL2SQL) 영역에 속하며, LLM이 자연어 질의를 SQL로 변환할 수 있다. LLM은 자연어 질의에 대한 답변을 비롯해 SQL 작성에도 비교적 높은 수준의 성능을 보인다. 다만, LLM은 조직의 내부 DB 정보를 학습하지 않았으므로 RAG 방식으로 기업 내 DB 정보를 LLM 프롬프트에 질의와 함께 전달해 주면, 비교적 정확한 SQL을 생성할 수 있다. RDB에 데이터를 저장하고 분석하는 일은 전통적인 비즈니스 인텔리전스(BI) 영역에 속한다. 데이터 분석을 목적으로 한 NL2SQL은 BI 영역에 생성형AI를 적용한 것이므로 '생성형 BI'라 부를 수 있다. 글로벌 리서치 기관인 가트너에서도 생성형 BI라는 용어를 사용하기 시작했으며, 비정형 텍스트를 대상으로 생성형AI가 활발히 적용된 만큼, 정형 데이터를 대상으로 한 생성형 BI 영역도 급속도로 성장할 것으로 예상된다. 하지만 LLM이 생성하는 SQL이 항상 정확한 것은 아니다. 단순한 DB 모델에서는 LLM의 정확도가 높지만, 복잡한 DB 모델에서는 성능이 떨어질 수 있다. 정확도를 높이기 위해 DB 정보에 대한 설명을 풍부하게 만들어주면 성능이 향상될 수 있으나, 여전히 100% 만족하기는 어렵다. 그 이유는 기업의 복잡한 업무가 DB 테이블 설계에 반영되어 있을 뿐만 아니라, DB 설계자의 설계 스타일도 반영되기 때문이다. 이러한 정보를 모두 서술하기도 어렵고, LLM에 전달해도 이해하지 못해 잘못된 SQL을 생성할 가능성이 크다. 또 다른 문제점은 BI 데이터 분석이 주로 수치화된 정보를 다룬다는 점이다. 예를 들어, 판매수량, 판매금액, 생산수량, 불량수량 등을 집계하는 경우가 많은데, 잘못 생성된 SQL의 결과값이 정답 SQL의 결과값과 조금만 다르다면, 예를 들어 연간 매출액이 10조인데 9.9조나 10.1조의 결과가 나왔다면, 사용자가 이를 오답으로 인지하기 어렵다. 텍스트 문서를 기반으로 한 생성형 AI의 답변이 거짓일 경우, 예를 들어 "세종대왕이 아이패드를 던졌다"는 식의 거짓말은 문장의 특성상 사용자가 쉽게 알아차릴 수 있지만, 숫자로 된 답변은 큰 차이가 아니라면 잘못된 결과임을 인지하기 어렵다. 이러한 Gen BI의 한계를 극복하는 방법 중 하나는 온라인 분석 처리(OLAP)를 활용하는 것이다. OLAP은 SQL을 모르는 사용자도 DB 데이터를 분석할 수 있게 해주는 기술이다. 사용자가 OLAP솔루션에서 OLAP리포트를 작성하고 실행 버튼을 누르면, OLAP엔진이 SQL을 자동 생성해주고 실행 결과를 리포트에 반환해준다. 마치 엑셀의 피봇테이블 기능으로 엑셀의 데이터를 분석하는 것과 유사하다. OLAP이 쿼리 생성자로서의 역할을 수행하는 셈이다. OLAP은 수십 년에 걸쳐 상용화된 기술로, OLAP의 쿼리는 항상 안전하고 정확하다. OLAP 메타데이터를 설정할 때 비즈니스 메타데이터와 기술 메타데이터의 매핑 및 테이블 간의 조인 관계를 미리 설정하기 때문에, 설정되지 않은 조합의 SQL은 생성되지 않는다. OLAP 기반의 Gen BI에서는 LLM이 OLAP 리포트 항목을 선택할 수 있도록, RAG 방식에서 DB 정보 대신 OLAP 메타 정보를 전달하면 된다. 이후 LLM이 OLAP 리포트를 생성하면, OLAP 엔진을 통해 정확한 SQL을 생성하고 실행할 수 있다. OLAP 기반 생성형 BI의 또 다른 장점은 NL2SQL 방식의 Gen BI보다 오류 식별이 용이하다는 점이다. 질의에서 바로 SQL이 생성되는 것이 아니라, 중간 단계에서 OLAP 리포트 항목(관점, 측정값, 필터 조건 등)이 만들어지므로, 사용자가 이를 보고 LLM이 올바른 답을 도출했는지 쉽게 검증할 수 있다. 많은 OLAP 기반 BI 솔루션과 분석 솔루션들이 Gen BI 기능과 서비스를 출시하고 있다. 아직 Gen BI는 초기 단계이지만, 정확도를 높이기 위한 RAG 적용이나 외부 LLM 활용에 따른 데이터 보안 문제 등이 점차 개선될 것으로 보인다. 예를 들어 마이크로스트레티지와 같은 OLAP 기반 BI 솔루션 제공업체들은 기존 BI의 장점에 AI를 결합한 솔루션을 제공하고 있다. NL2SQL 기반의 생성형 BI도 SQL을 아는 개발자나 분석가의 생산성을 높이는 초도 Query 작성용으로 활용한다면 가치를 발휘할 것이다. 그러나 SQL을 모르는 일반 사용자에게는 OLAP 기반의 생성형 BI가 더 유리할 것이다. 언제까지? 아마도 LLM이 DB 설계자의 성향까지 극복해 정확한 NL2SQL을 생성할 때까지일 것이다. 챗GPT의 등장과 빠른 업그레이드처럼, 그 시기는 예상보다 빨리 올 수도 있다.

2024.09.13 10:29류진수

구글, 직접 학습하고 개선하는 로봇 훈련도구 공개

로봇이 주변 환경을 인식하고 스스로의 행동을 분석해 작업을 개선하는 대규모 인공지능(AI) 모델 기반 학습도구를 구글에서 공개했다. 5일 테크크런치 등 외신에 따르면 구글 딥마인드 로보틱스는 로봇 학습모델 '오토RT'와 'RT-트레젝토리' 등을 공개했다. 오토RT는 로봇에게 주어지는 다양한 환경과 목적에 따라 명령을 자연스럽게 수행할 수 있도록 개발된 기본 학습모델이다. 대규모 언어모델(LLM)과 비전 언어모델(VLM)과 로봇 제어 모델을 결합해 사전에 설정되지 않은 환경을 스스로 분석 후 주어진 목표를 적합하게 수행하기 위한 방안을 도출하고 수행한다. 예를 들어 '책상 위의 캔을 들어'라는 명령이 주어지면 언어모델이 주변 환경을 스캔한 후 모든 객체에 따른 정보를 텍스트 데이터화 한다. 이후 LLM이 책상과 캔과 관련된 데이터를 확인 후 명령을 수행하기 위한 작업 프로세스을 생성한다. 작업 프로세스는 환경을 고려해 다양하게 생성되며 부적절한 방식과 실제 업무에 필요한 작업 등을 분류하는 과정을 거친다. 실제 유효하다고 판단된 작업만이 업무 프로세스로 샘플링 된 후 로봇에 적용되어 수행된다. 또한, 수행 과정과 결과에 대한 데이터를 수집 후 분석해 이후 작업을 개선할 수 있는 기능도 갖췄다. 구글 측에 따르면 오토RT는 로봇이 얼마나 자율적으로 명령을 수행할 것인지 원하는 정도에 따라 설정할 수 있다. 또한 얼마나 안전하고, 자율적으로 업무를 수행하는지 판단하기 위해 테스트를 진행했다. 7개월에 걸쳐 한 번에 최대 20대의 로봇을 다양한 환경을 조성하며 테스트를 실시한 결과 6천650개의 고유한 언어 지침을 다루는 7만7천 개 이상의 사례를 수집할 수 있었다고 밝혔다. 구글은 로봇이 업무를 수행하는 과정에서 가장 적합한 물리적 동작을 수행하기 위한 RT-트레젝토리라는 학습모델도 도입했다. 로봇의 동작 궤도를 시각화해 반복 학습 과정에서 어떤 동작으로 업무를 수행했을 때 더 좋은 결과를 얻을 수 있는지 확인하고 개선할 수 있도록 지원한다. 훈련 데이터를 지원하지 않은 41개 작업으로 테스트한 결과 작업 성공률이 29%에서 63%로 2배 이상 향상됐다고 밝혔다. 또한 보다 안전한 로봇 활용을 위해 자체 필터링 기능 외에도 추가적인 안전조치 계층을 구성했다. 관절에 가해지는 힘이 주어진 임계값을 초과하면 자동으로 멈추도록 설정했다. 더불어 작동 중인 모든 로봇은 사람이 직접 중단한 수 있는 물리적 비활성화 스위치가 눈에 잘 띄는 곳에 위치하도록 구성할 것을 권했다. 구글 딥마인드 로보틱스 팀은 “우리는 여러 환경에서 다양한 명령을 자연스럽게 수행하기 위한 다목적 로봇개발을 목표로 하고 있다”며 “이번에 공개한 대규모 AI모델과 시스템 등을 통해 더욱 효율적인 로봇을 선보일 수 있을 것으로 기대한다”고 말했다.

2024.01.05 09:09남혁우

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

SK하이닉스, 낸드 계열사 지분 中에 전량매각…고부가 메모리 집중

[지디 코믹스] 판교 대기업 다니는 김부장 딸 결혼식

아우디, F1 첫 진출 앞두고 '레이싱 머신' 디자인 콘셉트 공개

이재명, 재계 총수와 주말 회동…팩트시트 후속 논의

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.