• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 인터뷰
  • 인사•부음
  • 글로벌뉴스
인공지능
배터리
양자컴퓨팅
컨퍼런스
칼럼•연재
포토•영상

ZDNet 검색 페이지

'대규모'통합검색 결과 입니다. (43건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

올거나이즈-마키나락스, 금융권 LLM 인프라 최적화 전략 제시

올거나이즈(대표 이창수)가 금융업 실무자들이 LLM 솔루션을 업무에 쉽고 빠르게 적용할 수 있도록 금융권 인공지능(AI) 도입 핵심 사례와 활용 노하우를 공개한다. 올거나이즈는 마키나락스와 '알짜 기업이 쓰는 진짜 AI-금융권 LLM+AI 인프라 최적화 전략'을 주제로 세미나를 개최한다고 27일 밝혔다. 지난 1월 진행된 동명 세미나의 후속으로 진행되는 이번 세미나는 금융권 기업의 AI 실제 도입 사례를 보다 풍부하게 소개할 예정이다. 다음 달 5일 오후 6시부터 9시까지 서울 역삼동에 위치한 창업지원센터인 마루180의 이벤트홀에서 진행된다. 마키나락스의 신민석 이사가 '금융기업의 AI 자원 최적화: 하이브리드 AI 플랫폼의 구축과 운영 전략'을 주제로 강연을 시작한다. 비용 효율성, 운영의 민첩성, 유연성 측면에서 하이브리드 AI 플랫폼의 구축 및 운영 전략을 살펴본다. 금융 분야에서 AI를 활용해 비즈니스 가치를 극대화하고, 규제 준수 요건을 충족하면서도 기술적 유연성을 유지하는 전략을 공유한다. 올거나이즈의 이창수 대표는 '금융권 생성형 AI 프로젝트 성공을 위한 베스트 프랙티스'를 주제로 강연을 진행한다. 금융권 고객들과 실제 협업했던 사례를 중심으로, 금융권에서 첫 번째 생성형 AI 프로젝트를 시작할 때 내부에서 어떤 데이터를 준비하고 어떻게 팀을 꾸려 대응해야 하는지, AI 내재화와 고도화를 위해 지금 바로 사용할 수 있는 생성형 AI 애플리케이션은 어떤 것들이 있는지 등을 설명한다. 패널토론 및 질의응답은 총 1시간 진행된다. 실사례 위주로 진행되는 세미나인 만큼, 강연자 외에도 실제 금융권 AI 도입 프로젝트를 이끌었던 담당자들이 패널로 참여해 실무자들의 궁금증을 해소할 예정이다. 사례의 구체적인 내용에 대한 현장 질문도 가능하다. 올거나이즈에서 실제 금융권 AI 프로젝트를 진행중인 유태하 PM과 이창수 대표가 30분간 토론 및 질의응답을 진행한다. 금융권에서 AI를 도입할 때의 주의점, AI 프로젝트를 효율적으로 운영하고 관리하며 생산성을 혁신할 수 있는 방법 등을 중점으로 이야기 나눌 예정이다. 이어 마키나락스의 신민석 이사와 허영신 CBO가 금융권의 AI 인프라 및 플랫폼 구축에 대한 실제 사례와 장기적으로 비용 및 운영 측면에서 고려해야 할 사항 등에 대해 토론한다. 올거나이즈는 4월 4일 SK텔레콤, 마이크로소프트와 함께 '금융 AI 도입의 핵심 사례'를 주제로 세미나를 개최할 예정이다. 서울 중구에 위치한 SKT 타워에서 오후 3시부터 6시까지 진행된다. 올거나이즈의 이창수 대표는 "2024년은 4대 은행그룹 회장, 은행장들이 2024년 조직 개편과 신년사를 통해 AI 활용 확대를 선언할 정도로 금융업 전반에서 생성형 AI를 적용한 서비스가 확대되는 해"라며, "양사가 금융권 고객 기업과 실제 프로젝트를 진행하며 경험한 노하우를 벤치마킹할 수 있을 것"이라고 밝혔다.

2024.02.27 08:57남혁우

미소정보기술, 비라벨링 데이터 솔루션 '데이터스캔' 출시

의료 및 산업분야에 최적화된 비(非)라벨링 데이터 표준화 솔루션이 출시했다. 미소정보기술(대표 안동욱)은 대규모언어모델(LLM) AI 구축과 소규모언어모델(sLLM) AI 구축시 양질의 빅데이터 확보를 위한 솔루션 '데이터스캔'을 선보인다고 15일 밝혔다. '데이터스캔'은 의료 및 산업분야에서 사람의 손으로 가공된 라벨링 데이터(지도학습)가 아닌 챗GPT등 초거대AI 개발에 필수인 양질의 빅데이터를 확보할 수 있는 비라벨링 데이터 표준화 솔루션이다. 초거대AI 사전학습에 필요한 빅데이터 구축을 위해 데이터 등록부터 분류체계, 단어사전 구축 통한 자연어 처리 및 분류분석, 텍스트분석, 산업별 적용 도메인에 따른 데이터 후처리 등을 실시간 분석한다. 기업·공공기관의 내부 문서 보안이 강화된 패브릭기반 멀티모달 데이터 플랫폼 '스마트빅(smart BIG)'을 통해 LLM, sLLM구축시 고도화된 언어처리 기술을 원스톱으로 제공한다. 일상생활과 직결되는 의료분야에서는 의료영상 판독을 통한 건강검진·진료 소견서 작성, 과거 진료기록 요약, 치료 방법·처방전, 개인건강관리, 반려동물 질병 상담 등 활용할 수 있다. 금융 부분은 고객상담, 금융상품 추천, 신용평가, 금융사고 감지 등 금융전반의 AI서비스에 활용하며, 법률 분야에서는 계약서, 소장, 법조문 제시, 판결문(법원)등 서류 작성 시간을 줄이고 유사 판례를 쉽게 찾아주는 서비스 등을 통해 업무 효율성과 국민 편의성까지 높아질 것으로 기대하고 있다. 현재 초거대AI에 필요한 '비라벨링 데이터'는 의료 및 산업분야에 부족한 실정이다. 단순·반복 작업 중심이었던 라벨링 데이터 중심의 AI 학습용 데이터로는 사람이 직접 라벨링 하지 않고 비지도학습 즉 모델이 스스로 예측하며 학습하는 방식의'챗GPT' 같은 초거대 AI를 지원하기 어렵다. 국가 차원의 초거대 AI 학습용 핵심 데이터 구축으로 빠르게 전환이 필요하다. 미소정보기술은 주력사업인 디지털 헬스케어사업 호조 및 대학병원 및 공공, 의료기관등 의료데이터 개방에 맞춰 임상연구분석에 최적화된 워크플로 전과정을 통합 제공하는 '서비스형 임상시험(CRaaS)' 솔루션 고도화, 정형, 비정형, 텍스트, 비디오, 오디오 등 데이터들을 통합하고 인터랙션을 제공하는 멀티모달 데이터 플랫폼(MDP) 사업에 집중하고 있다. 미소정보기술은 의료데이터에서 산업데이터까지 데이터 구분없이 분석이 가능한 전문 도메인 날리지와 패브릭기반 멀티모달 데이터 플랫폼 '스마트빅'을 통해 기업 및 공공기관에 한국형 챗GPT, LLM, Sllm등 생성형AI 서비스 품질을 높일 수 있도록 고도화에 집중 투자하고 있다. 미소정보기술 안동욱 대표이사는“생성형AI시대를 맞아 양질의 데이터는 AI경쟁력의 핵심이라며 의료, 산업 데이터분석 및 멀티모달 데이터 플랫폼으로 똘똘한 데이터를 제공해 초거대AI 기업들의 경쟁력을 지원하는 데이터 인에이블러 역할을 담당할 것”이라고 말했다.

2024.02.16 15:05남혁우

구글, 직접 학습하고 개선하는 로봇 훈련도구 공개

로봇이 주변 환경을 인식하고 스스로의 행동을 분석해 작업을 개선하는 대규모 인공지능(AI) 모델 기반 학습도구를 구글에서 공개했다. 5일 테크크런치 등 외신에 따르면 구글 딥마인드 로보틱스는 로봇 학습모델 '오토RT'와 'RT-트레젝토리' 등을 공개했다. 오토RT는 로봇에게 주어지는 다양한 환경과 목적에 따라 명령을 자연스럽게 수행할 수 있도록 개발된 기본 학습모델이다. 대규모 언어모델(LLM)과 비전 언어모델(VLM)과 로봇 제어 모델을 결합해 사전에 설정되지 않은 환경을 스스로 분석 후 주어진 목표를 적합하게 수행하기 위한 방안을 도출하고 수행한다. 예를 들어 '책상 위의 캔을 들어'라는 명령이 주어지면 언어모델이 주변 환경을 스캔한 후 모든 객체에 따른 정보를 텍스트 데이터화 한다. 이후 LLM이 책상과 캔과 관련된 데이터를 확인 후 명령을 수행하기 위한 작업 프로세스을 생성한다. 작업 프로세스는 환경을 고려해 다양하게 생성되며 부적절한 방식과 실제 업무에 필요한 작업 등을 분류하는 과정을 거친다. 실제 유효하다고 판단된 작업만이 업무 프로세스로 샘플링 된 후 로봇에 적용되어 수행된다. 또한, 수행 과정과 결과에 대한 데이터를 수집 후 분석해 이후 작업을 개선할 수 있는 기능도 갖췄다. 구글 측에 따르면 오토RT는 로봇이 얼마나 자율적으로 명령을 수행할 것인지 원하는 정도에 따라 설정할 수 있다. 또한 얼마나 안전하고, 자율적으로 업무를 수행하는지 판단하기 위해 테스트를 진행했다. 7개월에 걸쳐 한 번에 최대 20대의 로봇을 다양한 환경을 조성하며 테스트를 실시한 결과 6천650개의 고유한 언어 지침을 다루는 7만7천 개 이상의 사례를 수집할 수 있었다고 밝혔다. 구글은 로봇이 업무를 수행하는 과정에서 가장 적합한 물리적 동작을 수행하기 위한 RT-트레젝토리라는 학습모델도 도입했다. 로봇의 동작 궤도를 시각화해 반복 학습 과정에서 어떤 동작으로 업무를 수행했을 때 더 좋은 결과를 얻을 수 있는지 확인하고 개선할 수 있도록 지원한다. 훈련 데이터를 지원하지 않은 41개 작업으로 테스트한 결과 작업 성공률이 29%에서 63%로 2배 이상 향상됐다고 밝혔다. 또한 보다 안전한 로봇 활용을 위해 자체 필터링 기능 외에도 추가적인 안전조치 계층을 구성했다. 관절에 가해지는 힘이 주어진 임계값을 초과하면 자동으로 멈추도록 설정했다. 더불어 작동 중인 모든 로봇은 사람이 직접 중단한 수 있는 물리적 비활성화 스위치가 눈에 잘 띄는 곳에 위치하도록 구성할 것을 권했다. 구글 딥마인드 로보틱스 팀은 “우리는 여러 환경에서 다양한 명령을 자연스럽게 수행하기 위한 다목적 로봇개발을 목표로 하고 있다”며 “이번에 공개한 대규모 AI모델과 시스템 등을 통해 더욱 효율적인 로봇을 선보일 수 있을 것으로 기대한다”고 말했다.

2024.01.05 09:09남혁우

  Prev 1 2 3 Next  

지금 뜨는 기사

이시각 헤드라인

SKT, 침해사고 이후 해지 위약금 면제...8월 요금 50% 감면

인천공항-면세업계, 임대료 인하 공방…"깎아줘" vs "왜 너만"

"AI 다음은 로봇"…열리는 로봇 칩 선점 전쟁

지주사 주가 치솟자 재계 표정관리...승계 셈법 복잡

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.