• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
CES2026
스테이블코인
배터리
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'네이버 큐원'통합검색 결과 입니다. (2건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

[유미's 픽] 독자 AI 논란 속 '설계 주권' 시험대…LG 'K-엑사원'이 돋보인 이유

"이번 경쟁에서 고유 아키텍처를 고수하며 바닥부터 설계하는 곳은 LG AI연구원 정도입니다. 정부 과제의 짧은 데드라인과 제한된 자원 속에서 검증된 글로벌 오픈소스를 적극 활용할 수밖에 없는 환경 속에 특정 모듈 차용이 문제라면, 오픈소스 기반으로 개발한 국내 기업 다수도 그 비판에서 자유롭기 어려울 것입니다."최근 정부 주도의 독자 인공지능(AI) 파운데이션 모델 프로젝트를 둘러싼 잡음이 이어진 가운데 LG AI 연구원의 'K-엑사원'이 비교적 논란 없이 업계의 호평을 받으며 존재감을 드러내고 있다. 성능 평가에서도 미국, 중국이 점령한 글로벌 AI 상위 10위권에서 7위를 기록하며 유일하게 이름을 올려 'AI 3강'을 노린 한국을 대표할 AI 모델로 자리를 굳히는 분위기다.LG AI연구원은 'K-엑사원'이 정부의 독자 AI 파운데이션 모델 프로젝트 1차 평가 기준인 13개의 벤치마크 테스트 중 10개 부문 1위를 기록했다고 11일 밝혔다. 전체 평균 점수는 72점으로, 5개 정예팀 중 1위를 차지했다. 이 기준으로 평가를 했을 시 경쟁사들은 50점 중반대에서 60점 중반대 정도의 평균 점수를 기록하는 것으로 알려졌다. 일부 참가업체들이 최근 공개한 테크 리포트에서 13개 벤치마크 결과를 모두 기재하지 않은 것과 달리, LG AI연구원은 모든 결과를 공개해 비교 가능성을 높여 우위에 올라섰다는 평가도 나온다. 업계에선 독자 AI 모델의 가장 중요한 요소로 '프롬 스크래치'와 '독자성' 해석을 꼽고 있다. 최근 해외 모델 유사성 등 여러 논란 속에서 가장 중요한 요소가 외부 모델 '가중치(Weight) 사용' 여부가 핵심으로 떠오르고 있는데, 특히 LG AI연구원의 'K-엑사원'은 이를 모두 충족시키는 모델로 평가 받고 있다. 가중치는 AI 모델이 학습을 통해 축적한 지식이 압축된 결과물로, 라이선스와 통제권 문제와 직결된다. 정부가 해외 모델을 파인튜닝한 파생형 AI를 독자 AI로 간주하지 않겠다고 밝힌 이유도 이 때문이다. 다만 일각에선 가중치 논쟁이 독자 AI의 기준을 지나치게 단순화할 수 있다는 지적도 나온다. 가중치는 독자 AI의 최소 조건일 뿐 그 위에서 어떤 기술적 선택을 했는지가 모델의 완성도를 가른다는 것이다. 특히 대규모 자본과 연산 자원을 투입해 데이터와 파라미터 규모를 늘리는 방식은 단기 성능 경쟁에는 유리할 수 있지만, 장기적인 국가 AI 전략과는 거리가 있다는 평가도 있다.이 때문에 최근에는 가중치 이후의 단계인 모델 구조에 대한 설계 역량이 중요 기준으로 떠오르고 있다. 대표적인 영역이 어텐션(Attention)과 토크나이저(Tokenizer)다. 어텐션은 AI가 방대한 정보 중 어떤 부분에 집중할지를 결정하는 핵심 메커니즘으로 연산량과 메모리 요구량을 좌우한다. 토크나이저는 문장을 토큰 단위로 분해하는 방식으로 학습 효율과 언어 이해 능력에 직접적인 영향을 미친다. 두 요소는 성능과 비용을 동시에 결정하는 구조적 레버로, 독자 AI의 '설계 주권'을 가늠하는 지표로 평가된다.이에 대해 임정환 모티프테크놀로지스 대표는 독자 기술의 기준을 보다 구조적으로 봐야 한다고 지적했다. 그는 "엔비디아가 설계를 하고 TSMC가 생산을 맡는 구조나, 삼성 스마트폰이 다양한 외부 부품을 조합해 만들어지는 사례를 보더라도 핵심은 누가 설계의 주체냐는 점"이라며 "단순히 코드를 복제한 뒤 재학습하는 방식은 기술적 난이도가 낮아 독자 아키텍처로 보기 어렵다"고 말했다. 이어 "중국 딥시크는 기존 구조를 그대로 쓰지 않고 이를 변형해 자신들만의 기술적 철학을 담았기 때문에 독자 기술로 평가받는 것"이라고 덧붙였다.업계에선 독자 AI의 '설계 주권'을 판단하는 기준이 어텐션과 토크나이저에만 국한돼서는 안 된다는 지적도 나온다. 실제로 AI 모델의 성능과 효율은 어텐션 외에도 정규화(Normalization) 방식, 레이어 구성, FFN(Feed-Forward Network) 구조, 학습 커리큘럼 설계, 추론(Reasoning) 구조의 내재화 여부 등 복합적인 설계 선택에 의해 좌우된다. 정규화 방식과 레이어 구성은 학습 안정성과 스케일링 한계를 결정하는 요소로, 표준 레이어놈(LayerNorm)을 그대로 사용하는지, RMS놈(RMSNorm) 등 변형된 방식을 적용했는지에 따라 대규모 학습에서의 효율과 수렴 특성이 달라진다. 레이어놈이 모든 신호를 고르게 '정돈'하는 방식이라면, RMS놈은 꼭 필요한 크기 정보만 남겨 계산 부담을 줄이는 방식에 가깝다.FFN 구조 역시 전체 파라미터의 상당 부분을 차지하는 영역으로, 활성화 함수 선택이나 게이트 구조 도입 여부에 따라 연산량 대비 성능 효율이 크게 달라진다. FFN은 AI가 주목한 정보를 자기 언어로 다시 정리하는 '내부 사고 회로'에 해당한다. 학습 커리큘럼 역시 설계 주권을 가늠하는 중요한 지표로 꼽힌다. 단순히 대규모 데이터를 한 번에 투입하는 방식이 아니라, 언어 이해·추론·지시 이행·도메인 특화 학습을 어떤 순서와 비중으로 설계했는지가 모델의 안정성과 범용성을 좌우하기 때문이다. 여기에 프롬프트 기법에 의존하지 않고, 추론 과정을 모델 구조 내부에 내재화했는지 여부도 공공·국방·금융 등 고신뢰 영역에서 중요한 평가 요소로 거론된다. 업계 관계자는 "가중치는 독자 AI의 출발점이고, 어텐션과 토크나이저는 그 다음 단계"라며 "그 이후에는 학습 시나리오와 추론 구조, 스케일링 전략까지 얼마나 스스로 설계했는지가 진짜 기술적 자립도를 가른다"고 설명했다. LG AI연구원의 'K-엑사원'은 이 지점에서 차별화된 접근을 택했다. LG AI연구원은 데이터 양이나 파라미터 규모를 무작정 키우는 방식 대신, 모델 구조 자체를 고도화해 성능은 높이고 학습·운용 비용은 낮추는 전략을 적용했다. 엑사원 4.0에서 검증한 '하이브리드 어텐션(Hybrid Attention)'을 'K-엑사원'에 고도화해 적용, 국소 범위에 집중하는 슬라이딩 윈도우 어텐션과 전체 맥락을 이해하는 글로벌 어텐션을 결합했다. 이를 통해 메모리 요구량과 연산량을 이전 세대 대비 약 70% 절감했다는 설명이다. 토크나이저 역시 단순 재사용이 아닌 구조적 개선이 이뤄졌다. LG AI연구원은 학습 어휘를 약 15만 개로 확장하고, 한국어에서 자주 쓰이는 단어 조합을 하나의 토큰으로 묶는 방식을 적용했다. 그 결과 동일한 연산 자원으로 더 긴 문서를 기억하고 처리할 수 있게 됐으며 기존 대비 약 1.3배 긴 컨텍스트 처리 능력을 확보했다. 여기에 멀티 토큰 예측(MTP) 구조를 도입해 추론 속도도 크게 높였다. 이 같은 구조 혁신은 정부 프로젝트의 성격과도 맞닿아 있다. 독자 AI 파운데이션 모델의 목표는 단기적인 성능 순위 경쟁이 아니라 공공·산업 현장에서 실제로 활용 가능한 국가 AI 인프라를 구축하는 데 있기 때문이다. LG AI연구원이 고가의 최신 그래픽처리장치(GPU)가 아닌 A100급 환경에서도 프런티어급 모델을 구동할 수 있도록 설계해 인프라 자원이 제한된 기업과 기관에서도 활용 가능성을 넓혔다는 점도 우위 요소로 보인다. 다른 참가 기업들 역시 각자의 강점을 내세우고 있다. SK텔레콤은 최신 어텐션 기법과 초거대 파라미터 확장을 통해 스케일 경쟁력을 강조하고 있고, NC AI는 산업 특화 영역에서 운용 효율을 앞세우고 있다. 네이버클라우드는 멀티모달 통합 아키텍처를 독자성의 핵심으로 제시하고 있으며, 업스테이지는 데이터와 학습 기법을 통해 성능을 끌어올리는 전략을 취하고 있다. 다만 일부 모델은 외부 가중치나 구조 차용 여부를 둘러싼 논란으로 인해 기술 외적인 설명 부담을 안고 있는 상황이다. 업계 관계자는 "이번 논쟁이 '순혈이냐, 개발이냐'의 이분법으로 끝나기보다 가중치 주권을 전제로 한 설계 주권 경쟁으로 진화하고 있다고 본다"며 "이 기준에서 'K-엑사원'은 성능, 비용 효율, 구조적 혁신이라는 세 요소를 동시에 충족한 사례로 평가되고, 한국형 독자 AI가 나아갈 한 방향을 보여주고 있다"고 분석했다.업계에선 이번 1차 평가를 계기로 독자 AI에 대한 기준이 한층 정교해질 가능성이 높다고 봤다. 단순한 성능 순위나 '프롬 스크래치' 여부를 넘어 가중치 주권을 전제로 한 모델 설계 역량과 비용 효율, 실제 활용 가능성까지 함께 평가하는 방향으로 심사 기준이 진화할 수 있을 것으로 전망했다. 정부 역시 2차 심사 과정에서 독창성과 기술적 기여도를 평가 항목으로 포함하겠다고 밝힌 만큼, 향후 독자 AI 경쟁은 데이터·자본 경쟁을 넘어 누가 더 깊이 모델을 설계했는지를 가리는 국면으로 접어들 것이란 분석도 나온다.임정환 모티프테크놀로지스 대표는 "현재 독자 개발과 프롬 스크래치에 대한 개념이 혼재된 상황"이라며 "(정부 차원에서) 기술적 기여도에 따른 명확한 정의와 가이드라인 마련이 시급하다"고 강조했다. 이승현 포티투마루 부사장은 "독자 AI 2차 심사에서 퍼포먼스는 단순히 벤치마크 점수로 줄 세울 문제가 아니다"며 "가중치를 처음부터 자체 학습했는지, 데이터와 학습 과정에 대한 통제권을 갖고 있는지, 같은 조건에서 성능을 안정적으로 재현할 수 있는지가 먼저 봐야 할 기준"이라고 말했다. 이어 "이 전제가 빠진 성능 비교는 기술 평가라기보다 보여주기에 가깝다"고 덧붙였다.

2026.01.11 15:57장유미

[AI는 지금] 배경훈, 'K-AI' 탈락 발표 앞두고 '공정 심사' 약속…정부 기준 '주목'

"독자 인공지능(AI) 파운데이션 모델 개발 프로젝트(K-AI) 평가는 객관적이고 공정하게 진행될 것입니다." 배경훈 과학기술정보통신부 장관이 '독자 AI 파운데이션 모델 개발 프로젝트' 1차 탈락자 발표를 앞두고 심사를 공정하게 할 것이란 의지를 드러냈다. 최근 평가 기준과 독자성 판단을 둘러싼 논쟁이 이어지는 가운데 정부가 명확한 기술 기준과 판단 체계를 갖춰 심사에 나서겠다는 메시지를 내놓은 것으로 풀이된다. 배 장관은 8일 자신의 소셜 미디어(SNS)를 통해 글로벌 오픈소스 AI 플랫폼 '허깅페이스'에서 독파모 모델들이 주목받고 있는 사례를 소개하며 오픈소스를 기반으로 각국이 AI '사용자'를 넘어 '개발자'가 될 수 있음을 강조했다. 배 장관은 "(우리나라의) 세계적 수준 AI 모델 (개발) 도전은 계속되고 있고 각종 지표에서의 반응도 긍정적"이라면서도 "(독파모) 평가는 윤리적 측면에서도 모두가 공감할 수 있어야 비로소 'K-AI' 타이틀을 유지하게 된다"고 언급했다. 배 장관의 이 발언은 단순한 원칙 선언을 넘어 독자 AI를 어떻게 정의하고 무엇을 기준으로 평가할 것인지에 대한 보다 명확한 기준 정립이 필요하다는 업계의 지적에 따른 것으로 분석된다. 또 정부가 이번 논란을 불식시키기 위해 공정한 기준으로 평가에 나설 것이란 의지를 드러낸 것으로도 보인다. 앞서 정부는 지난해 8월 네이버클라우드, 업스테이지, SK텔레콤, NC AI, LG AI연구원을 'K-AI' 국가대표로 선정한 바 있다. 오는 15일께 한 팀을 탈락시킬 1차 발표를 앞둔 상태로, 각 사가 제시한 목표치 도달 여부와 기술적 완성도, 독자성 등을 종합적으로 판단할 예정이다. 일단 정부가 지난해 'K-AI' 사업자 선정과 관련해 공개한 공문에선 해외 모델의 파인튜닝이나 파생형 개발은 독자 모델로 간주하지 않는다는 원칙을 제시했다. 그러나 구체적으로 명확한 기준을 제시하지 않아 업계에선 '독자성' 기준을 두고 혼선을 빚고 있다. 특히 최근에는 독자 모델 개발에서 중국을 포함한 해외 AI 모델의 아키텍처, 인코더, 학습 방식 등을 어디까지 활용할 수 있는지를 두고 논란이 가열되고 있다. 일각에선 글로벌 오픈소스 생태계에서 검증된 구조를 참고하는 것이 불가피하다는 의견도 있지만, 학습된 가중치나 핵심 모델을 그대로 사용하는 경우 독자성 판단이 달라질 수 있다는 반론도 만만치 않다.업계 관계자는 "독자 AI 파운데이션 모델을 가르는 핵심은 아키텍처가 아니라 가중치"라며 "구조는 참고할 수 있지만, 가중치를 처음부터 어떻게 학습했고 누가 통제하느냐가 소버린 AI의 기준"이라고 강조했다. 이어 "중국 모델을 구조로 가중치를 0으로 두고 재설계해 처음부터 자체 완전 학습을 시킨 경우라면 프롬 스크래치로 인정받을 수 있다"며 "하지만 기존 해외 모델의 가중치를 활용해 성능을 개선한 단계는 인정되지 않는다"고 덧붙였다. 그러면서 "AI 모델에서 비전·오디오 인코더 역시 지능의 핵심 요소"라며 "이를 미국, 중국 등 외부 모델에서 그대로 가져와 활용한 경우 독자 AI 모델로 정부가 바라봐선 안될 것"이라고 강조했다. 업계에선 정부가 글로벌에서 통용되고 있는 여러 기준들을 토대로 공정한 심사에 나설 수 있을지 주목하고 있다. 현재 글로벌 기술 문헌과 주요 연구 기관, 오픈소스 커뮤니티 등 여러 곳에서 공통적으로 지목하고 있는 '독자성' 기준은 ▲기존 모델의 학습된 가중치를 그대로 활용하거나 이를 기반으로 미세조정한 경우 ▲무작위 초기화 상태에서 독자 데이터와 학습으로 모델을 새롭게 구축한 경우로 나뉜다. 이는 IBM, 허깅페이스 등 주요 AI 플랫폼과 학계에서도 일반적으로 받아들여지고 있는 기준이다. 특히 특정 국가나 기업의 모델을 차용했는지 여부보다 그 결과물에 대한 통제권과 수정·개선 역량이 누구에게 있는지가 핵심 판단 요소로 꼽힌다.이 같은 논쟁은 최근 정부와 업계에서 확산되는 '소버린 AI' 논의와도 맞닿아 있다. 소버린 AI는 단순히 중국이나 미국 등 특정 국가의 모델을 쓰느냐의 문제가 아니라, 핵심 지능을 구성하는 가중치와 학습 과정에 대해 자국이 얼마나 통제권을 확보하고 있는가를 따지는 개념이다. 업계에선 이승현 포티투마루 부사장이 최근 공개한 '소버린 AI 2.0(T-클래스)' 분류체계가 하나의 참고 기준이 된다고 보고, 정부가 이를 반영해 심사에 나설 것을 희망했다. 이 분류체계는 AI 모델을 ▲설계(Code) ▲지능(Weights) ▲기원(Data)이라는 세 가지 요소로 나눠 단계별로 구분한다. 또 아키텍처 참조 자체보다 가중치를 처음부터 독자적으로 학습했는지를 중요한 분기점으로 삼는다. 업계 관계자는 "이 같은 접근이 중국 모델 차용 여부를 둘러싼 논쟁을 감정적 공방이 아닌, 기술적·제도적 판단의 문제로 전환할 수 있다"며 "정부가 명확한 기준을 제시하고 이를 일관되게 적용한다면 불필요한 오해와 소모적 논쟁도 자연스럽게 줄어들 것"이라고 말했다. 전문가들은 배 장관이 강조한 '객관적이고 공정한 심사'가 실질적인 의미를 가지려면 최종 선정 결과보다 판단 기준과 적용 과정이 명확히 설명되는 것이 중요하다고 지적했다.

2026.01.08 15:55장유미

  Prev 1 Next  

지금 뜨는 기사

이시각 헤드라인

눈앞으로 다가온 '피지컬 AI'…CES 2026이 증명했다

[ZD브리핑] 국가대표 AI 1차 탈락팀 발표 예정...새해 행사·정책 일정 잇따라

인텔, 아크 B390 성능 공개 "노트북용 별도 GPU 필요없다"

[르포] 폭설에 얼어붙는 도시…전기차 보기 힘든 홋카이도 가다

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.