• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 생활/문화
  • 인사•부음
  • 글로벌뉴스
스테이블코인
배터리
AI의 눈
IT'sight
칼럼•연재
포토•영상

ZDNet 검색 페이지

'네이버클라우드'통합검색 결과 입니다. (171건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

[현장] "소버린 AI 늦으면 도태된다…기술·데이터·인프라 통제권 갖춰야"

글로벌 인공지능(AI) 패권 경쟁이 격화되는 가운데, 소버린 AI 확보가 지연될 경우 기술·데이터·인프라 통제권을 잃고 국가와 기업이 동시에 종속 위험에 직면할 수 있다는 AI 기업들의 우려가 나왔다. LG AI연구원 김유철 전략부문장은 21일 네이버와 한국은행이 공동 개최한 AX 컨퍼런스에서 "앞으로 AI는 국가 경쟁력을 좌우하는 전략 자산이 될 것"이라며 "각 나라가 AI 기술과 인프라를 스스로 통제하고 운영하려는 흐름이 소버린 AI"라고 말했다. 김 부문장은 소버린 AI 확보 논의가 단순 기술 트렌드를 넘어 생존 전략이라고 강조했다. 그는 "지금이 아니면 다시는 AI 기술을 확보하기 어려울 것"이라며 "이 기술과 인프라 역량을 확보하지 못하면 선진국에서 중진국·후진국으로 떨어질 수도 있다"고 경고했다. 특히 그는 소버린 AI를 둘러싼 경쟁이 국가 총력전 양상으로 치닫고 있다고 진단했다. 전력망·데이터센터·AI 반도체·파운데이션 모델 등 국가 단위 투자 경쟁이 본격화되는 상황에서 통제권을 잃으면 AI 활용 비용 자체가 외부 변수에 휘둘릴 수 있다는 설명이다. 아울러 네이버클라우드 성낙호 하이퍼스케일 AI 기술총괄은 소버린 AI의 본질에 대해 "데이터를 지능으로 바꾸는 기술"이라고 정의하며 인터넷 데이터에만 머무르던 AI가 음악·영상·피지컬 AI로 확장되는 흐름을 짚었다. 그는 "최근 AI는 인터넷에 없는 데이터를 기반으로 만들어내는 것들을 보여주고 있다"며 "이를 구현할 때 독자적인 기술이 없으면 데이터가 있어도 새로운 지능을 만들어낼 방법이 없어진다"고 말했다. 또 성 총괄은 외산 AI 의존이 가져올 비용·주권 리스크도 언급했다. 그는 "소버린 AI 전략을 시도하지 않고 외산 AI를 쓰다 보면 갑자기 가격이 올라갈 수도 있고 전략 자산화될 수도 있다"고 지적했다. AI가 생활과 산업 전반의 기반 기술로 고착되는 만큼 가격 결정권이 해외로 넘어가면 종속 관계가 구조화될 수 있다는 우려다. 이날 토론에서 LG AI연구원과 네이버클라우드는 소버린 AI가 자립형 모델 개발에 그치지 않고 산업 현장과 업무 시스템에 뿌리내리는 것이 중요하다는 데에도 공감대를 형성했다. 특히 김 부문장은 AI 전환(AX)의 필요성을 강하게 주장했다. 그는 "AX가 국가 경쟁력과 기업 경쟁력에 도움이 되느냐를 넘어 현재는 AX를 하지 않으면 도태되는 상황"이라며 "기업은 AI 도입이 늦어져 생산성이 낮아지고 고정비가 커지면 다른 기업과 경쟁에서 이길 수 없고 국가도 AX가 늦어지면 마찬가지로 위험하다"고 역설했다. 이어 "외산 AI를 활용하는 것과 별개로 핵심 영역에서는 우리 스스로 운영 가능한 역량을 갖춰야 한다"며 "소버린 AI 기반을 갖추는 것이 장기적으로 지속 가능한 경쟁력을 만드는 길"이라고 덧붙였다.

2026.01.21 18:36한정호 기자

"물가·금리 영향 분석을 위한 데이터 찾아줘" 명령하니 데이터셋 '뚝딱'

“물가와 경기 변동이 단기금리에 미치는 영향을 분석하고 싶으니, 활용 가능한 데이터를 찾아달라”고 입력하자 기준금리를 포함한 소비자물가지수(CPI), 국내총생산(GDP) 등 관련 데이터셋이 일목요연하게 제시됐다. 데이터 검색뿐 아니라 5페이지 분량의 연설문 작성, 내외부 보고서 탐색 등 업무 전반에 걸친 다양한 요청도 수행할 수 있다. 한국은행과 네이버가 공동 개발한 인공지능(AI) 모델 '보키(BOKI)'가 공개됐다. 보키는 네이버의 프라이빗 클라우드 인프라와 거대언어모델(LLM)을 기반으로 한 금융•경제 특화 AI다. 한국은행 내부망에 구축한 이른바 '소버린 AI'로, 글로벌 중앙은행 가운데 최초 사례다. 박정필 한국은행 디지털혁신실장은 21일 서울 중구 한국은행 별관에서 열린 한국은행-네이버 공동 주최 'AX 컨퍼런스'에서 보키를 시연했다. 그는 “2020년 창립 20주년 기념 전략 목표 가운데 하나로 '디지털 혁신'을 제시했고, 그 세부 과제로 AI•기계학습(ML)의 업무 도입을 추진해왔다”며 “이번에 전사적 AI 도입을 본격화하게 됐다”고 설명했다. 한국은행과 네이버는 약 1년 반에 걸쳐 네이버의 하이퍼클로바X 모델을 설치하고 AI 서비스별 애플리케이션을 개발했다. 이 과정에서 한국은행은 지난 20년간 축적된 330만건의 문서를 수집해 중복 내용을 제거한 뒤 140만건의 정형 데이터로 가공했다. 이를 바탕으로 행내외 조사 연구 자료와 내부 규정, 지침을 토대로 답변을 제공하는 AI 어시스턴트와 한국은행 종합데이터플랫폼과 연동된 분석 서비스를 구현했다. 아울러 한국은행은 AI가 질문 의도를 정확히 이해하도록 업무흐름(워크플로우)을 직접 설계했다. 박 실장은 “단순한 질문이라도 답변을 도출하기까지 여러 단계의 프로세스가 필요하다”며 “질문의 의도를 분해, 재작성하고 중요도를 판단하는 과정에서 많은 시행착오를 겪었다”고 말했다. AI 구축 과정에서 중점을 둔 부분은 시간의 흐름에 따라 기록되는 시계열 데이터 활용이다. 카드 사용내역이나 거래패턴 등이 대표적인 예로, 금융권에서 시계열 데이터는 AI 모델에 필수 요소로 꼽힌다. 한국은행의 경우 종합데이터플랫폼인 '바이다스.ai'를 통해 시계열 데이터를 관리하고 있다. 2022년 약 300만건이던 시계열 데이터는 현재 1900만건으로 늘었다. 데이터 업무 흐름 중심으로 기능을 개선하면서, 과거에는 IT 인력 지원이 필요했던 분석 작업도 이제는 직원들이 주도적으로 수행할 수 있게 됐다. 네이버 역시 시계열 데이터를 이해하는 AI 구현을 보키의 고도화 핵심 목표로 삼았다. 김유원 네이버클라우드 대표는 “금융권 데이터 대부분이 시계열이라는 점에서 이를 이해하는 AI를 어떻게 만들 것인지 고민했다”며 “이 부분이 한국은행에도 가장 중요한 요소라는 점을 인식하고 우선순위로 설정했다”고 말했다. 결과적으로, 한국은행이 시계열 데이터를 적극 활용할 수 있도록 지원하는 것이 소버린 AI의 방향성이라는 설명이다. 김 대표는 “시계열을 이해하는 AI를 구축하면 한국은행은 전세계 중앙은행 가운데서도 드문 마이크로, 매크로 시계열 데이터 분석 도구를 갖추게 된다”며 “이는 한국 중앙은행의 금융 경쟁력을 높이는 데 기여할 것”이라고 강조했다.

2026.01.21 17:57홍하나 기자

네이버 AI 전략 이끈 성낙호, 독파모 탈락 후 첫 발언…어떤 말 꺼냈나

네이버가 정부의 독자 인공지능(AI) 파운데이션 모델(독파모) 사업 탈락 이후 주가가 연일 내리막길을 걸으며 후폭풍을 겪고 있는 가운데 기초 체력 다지기로 전략 재정비에 나섰다. 독파모 추가 사업자 모집에 재도전하는 대신 기존 AI 사업 전략을 유지하며 공공·금융·산업 현장에서 실제로 작동하는 '현장형 AI' 중심의 AX(AI 전환) 전략을 본격화 하는 모양새다. 성낙호 네이버클라우드 기술총괄은 21일 한국은행 컨퍼런스홀에서 열린 '한국은행·네이버 공동 AX 컨퍼런스'에 참석해 지디넷코리아와 만나 "원래 저희는 하던 것에 더해 독파모에 참여했던 것"이라며 "(앞으로) 원래 하던 사업대로 계속 진행할 예정"이라고 밝혔다. 이는 성 총괄이 독파모 1차 결과 발표 후 내놓은 첫 입장으로, 독파모 탈락이 네이버클라우드의 AI 기술 개발이나 사업 방향에 영향을 주지 않는다는 점을 분명히 한 것으로 풀이된다. 네이버클라우드는 지난 15일 정부의 '독자 AI 파운데이션 모델' 프로젝트 1차 평가에서 탈락한 상태로, 당시 정부가 '패자부활전' 제도를 도입해 1개 팀을 추가 선정한다고 밝혔으나 불참 의사를 밝혔다.네이버는 이 여파로 주가가 큰 타격을 입었다. 이날 네이버 주가는 전일 대비 2.25% 하락한 23만8천500원에 마감했다. 올 초 26만원까지 오르며 순항했으나, 독파모 발표 이후 꾸준히 하락세를 보이며 23만원대까지 추락했다. 약 7개월 전인 지난해 6월 하정우 네이버클라우드 AI이노베이션 센터장이 이재명 정부 첫 AI 수석에 임명돼 52주 신고가(29만6천원)를 기록한 것과 비교하면 19.4%나 하락한 모습이다. 이에 네이버는 기존 사업을 다시 강화하며 시장 가치를 끌어올리려는 모습이다. 이날 한국은행과 함께 금융·경제 분야에 특화된 전용 생성형 AI 서비스 '보키(BOKI, Bank Of Korea Intelligence)' 구축을 완료하고 본격 운영에 들어간다고 발표한 것이 대표적인 예다. BOKI는 외부 네트워크와 완전히 분리된 한국은행 내부 온프레미스 환경에 구축된 전용 AI 플랫폼으로, 데이터 유출 우려를 원천 차단한 것이 특징이다. 이번 프로젝트에서 네이버클라우드는 클라우드 인프라와 초거대언어모델(LLM) 등 AI 플랫폼 기반을 제공했다. 한국은행은 이를 토대로 금융·경제 업무에 특화된 AI 애플리케이션을 직접 개발·운영한다. 이를 통해 한국은행 임직원들은 자료 검색과 요약, 질의응답, 번역은 물론 정책 수립을 위한 경제 현안 분석과 데이터 기반 의사결정까지 폭넓은 지원을 받게 된다. 업계에서는 이번 한국은행 사례가 네이버의 AI 전략이 연구·개발 중심에서 실제 운영과 사업 성과로 이동하고 있음을 보여주는 상징적 사례로 평가했다. 또 독파모 탈락 이후에도 네이버가 검색·쇼핑·금융·공공 등 강점을 가진 영역에서 AI를 실질적으로 적용하는 전략을 유지하며 사업을 확대할 것으로 기대했다. 최승호 DS투자증권 연구원은 "네이버의 2024~2026년 연간 투자 규모는 누적 1조6천억원 가량으로 국내 최대 수준"이라며 "국내 소프트웨어(SW) 기업 중 가장 많은 하드웨어 자산을 보유하고 있고 AI 모델의 성능도 국내 1~2위로 평가된다"고 밝혔다. 이어 "현재 네이버 가시화된 AI 수주 타깃이 공공보다는 중동·B2B에서 더 크다는 점에서 충격은 경감될 것"이라며 "(이번 탈락이) 실적에 미치는 영향은 제한적"이라고 분석했다.최수연 네이버 대표도 앞으로 AI 연구개발과 서비스 개발 역량을 한 단계 높여 실질적인 사업과 서비스에 연결함으로써 성과를 내겠다는 의지를 드러냈다. 이를 위해 최근 C레벨 리더 3명을 추가 발탁하기도 했다. 최 대표는 지난 20일 사내 소통 행사인 '컴패니언 데이'에서 "대한민국을 대표하는 인터넷 기업으로서 관련 투자는 오히려 더 확대될 것"이라고 강조했다. 또 독파모 탈락과 관련해 아쉬움을 표하면서도 성능 경쟁을 넘어 한 단계 발전된 모델을 선보인 것은 의미 있는 도전이었다고 임직원을 격려했다. 향후 전략 방향에 대해선 공공·산업 현장에서 작동하는 '실질적 과제'의 수행을 꼽았다. 모델 성능을 넘어 실제 사용자가 체감할 수 있는 비즈니스에서 이용자 가치를 창출하겠다는 의지도 드러냈다. 네이버클라우드 관계자는 "독파모 사업에 참여하지는 않지만 기존 사업들을 더 강화하는 것에 앞으로 힘을 쏟을 것 같다"며 "특히 버티컬 서비스에 집중하는 방향으로 사업을 펼칠 것 같다"고 밝혔다. 업계 관계자는 "네이버가 앞으로 보안과 데이터 주권이 중요한 중앙부처와 주요 금융기관을 중심으로 공공 AX 확산을 앞세워 적극 공략할 듯 하다"며 "범용 초거대 모델 경쟁보다 국내 제도와 산업 환경에 맞춘 소버린 AI를 실제 현장에 안착시키는 전략을 펼칠 가능성이 높다"고 전망했다.

2026.01.21 17:34장유미 기자

[현장] 네이버, 독파모 탈락에도 '소버린 AI' 지속 의지…한국은행 전용 플랫폼 가동

네이버가 독자 인공지능(AI) 파운데이션 모델(독파모) 프로젝트 1차 단계평가 탈락 이후에도 '소버린 AI' 전략을 공공·금융 현장으로 확산하겠다는 의지를 밝혔다. 전 세계 중앙은행 최초로 한국은행 내부망 기반 전용 생성형 AI 플랫폼을 구축하는 등 보안과 신뢰를 앞세운 공공 AI 전환(AX) 모델 실증에 집중하는 모습이다. 이해진 네이버 의장은 21일 한국은행과 공동 개최한 AX 컨퍼런스에서 "국가 경제의 근간이 되는 한국은행의 방대한 데이터는 그 자체로 대한민국의 중대한 전략 자산"이라며 "이번 프로젝트는 기술 속도뿐 아니라 신뢰와 안정성도 함께 고려해야 한다는 공감대 아래 팀네이버의 모든 역량을 집중해 추진했다"고 강조했다. 네이버와 한국은행은 이날 금융·경제 분야에 특화된 전용 생성형 AI 서비스 '보키(BOKI)' 구축을 완료하고 운영에 돌입했다고 발표했다. 이번 서비스는 전 세계 중앙은행 가운데 자체 AI 플랫폼을 구축해 운영 단계에 적용한 첫 사례로 평가된다. 이날 행사에 참석한 김유원 네이버클라우드 대표는 이번 협력의 핵심을 소버린 AI의 결과물이 아닌 소버린 AI를 구현하는 과정으로 규정했다. 그는 "한국은행의 경제 전문가들, 네이버에 근무하는 AI 엔지니어들이 함께 힘을 합쳐 AI 플랫폼 구축을 위한 문제들을 해결해 나가는 이 전체 프로세스가 소버린 AI가 필요한 이유이자 추구해야 하는 방향"이라고 말했다. 아울러 김 대표는 소버린 AI가 단순히 모델 개발에 국한되지 않는다고 강조했다. 그는 "소버린 AI는 AI 모델뿐만 아니라 보안을 위한 인프라 환경도 중요하다"며 "AI 모델도 새로운 요구 사항과 장기적인 로드맵에 맞춰 고도화해 나가야한다"고 덧붙였다. 앞서 네이버클라우드는 과학기술정보통신부가 주도하는 독파모 프로젝트 1차 단계평가에서 탈락한 바 있다. 과기정통부는 네이버클라우드가 종합 점수 기준 상위권에 포함됐지만 독자성 요건을 충족하지 못했다고 판단했다. 당시 네이버클라우드 측은 "과기정통부의 판단을 존중하고 앞으로 AI 기술 경쟁력을 높이기 위해 다각적인 노력을 이어갈 것"이라고 밝혔다. 또 2차 재도전에 대해선 검토하지 않는다고 전했다. 그럼에도 네이버는 이번 한국은행 전용 AI 플랫폼 구축 사례를 통해 독파모 탈락 이후에도 소버린 AI 기조를 공공·금융 영역에서 지속 선도한다는 목표다. 네이버클라우드 측은 이번 구축 경험을 토대로 보안과 데이터 주권이 중요한 중앙부처 및 주요 금융기관 등 공공부문 AX 확산을 가속화하겠다고 밝혔다. 이날 행사에 참석한 네이버클라우드 성낙호 하이퍼스케일 AI 기술총괄은 독파모 1차 탈락 후 AI 사업 방향에 대해 "기존부터 추진해온 AI 사업의 연장선으로 독파모에 참여했던 것"이라며 "앞으로도 그동안 추진해온 방향대로 AI 사업을 계속 이어갈 계획"이라고 말했다.

2026.01.21 17:27한정호 기자

[유미's 픽] "해외선 '통제'가 핵심"…독자 AI 기준 두고 국내선 '온도차'

최근 1차 평가 결과 발표 후 '독자 인공지능(AI) 파운데이션 모델(K-AI)' 사업을 둘러싼 논란이 해외 소버린 AI 논의와 대비되며 확산되고 있다. 우리나라는 '프롬 스크래치(from scratch)' 여부와 가중치 주권 등 기술적 독자성 기준을 둘러싸고 공방이 지속되고 있는 반면, 해외 주요국은 데이터 통제와 운용 주권을 중심으로 소버린 AI 전략을 전개하고 있다는 점에서 대조적인 모습을 보이고 있다. 20일 업계에 따르면 과학기술정보통신부가 지난 15일 'K-AI' 1차 평가 결과를 발표한 이후 ▲독자 AI모델과 해외 모델의 유사성 ▲외부 가중치 활용 범위 ▲독자성 판단 기준 등을 둘러싼 논쟁이 국내에서 불거졌다. 특히 네이버클라우드, NC AI가 1차 평가에서 탈락하면서 성능 경쟁을 넘어 '어디까지를 독자 AI로 볼 것인가'를 둘러싼 정책·기술적 논의가 본격화됐다는 평가가 나온다. 이번 논란은 특정 기업의 성패를 넘어 한국 독자 AI 정책이 해외 소버린 AI 사례와 비교해 기술적 출발점과 설계 주체성에 과도하게 초점을 맞췄기 때문으로 분석된다. 해외에선 '누가 통제하고 어디서 운용하느냐'를 주권의 핵심으로 삼는 반면, 한국은 '직접 만들었는가'를 기준으로 삼으면서 논쟁의 강도가 커진 것으로 보인다. 이는 해외 주요국의 소버린 AI 접근 방식과 비교하면 차이가 더욱 두드러진다. 우선 유럽연합(EU)은 미국 빅테크 의존을 줄이기 위해 데이터 주권과 규제(AI Act)를 중심으로 전략을 전개하고 있다. 또 오픈소스 모델을 활용하더라도 유럽 내 인프라에서 통제 가능하고 법·가치 체계에 부합한다면 주권을 확보한 것으로 보는 경향이 강하다. 일본은 자국어 특화 대형언어모델(LLM) 개발을 지원하는 한편, 글로벌 기업과의 협력을 통한 인프라 구축을 병행하는 전략을 택하고 있다. 인도, 아랍에미리트(UAE)는 한국처럼 미국·중국에 대한 기술 종속을 경계하면서도 독자성을 정의하는 방식에서 보다 유연하고 실용적인 접근을 취하고 있다. 특히 인도는 정부가 단일 '국가대표 모델'을 직접 설계하기보다 여러 민간 기업을 선정해 자국 언어와 산업 환경에 특화된 파운데이션 모델 개발을 지원하는 방식에 방점을 찍고 있다. 수십 개의 공용어와 복잡한 산업 구조를 가진 인도에서는 '밑바닥부터 코드를 만들었는지'가 아닌 인도어 데이터와 현지 산업 맥락을 얼마나 효과적으로 반영했는지가 독자성의 핵심 기준으로 작용한다. 또 해외 모델을 활용하더라도 인도의 언어·데이터로 재학습하고 실사용 가능한 형태로 고도화한다면 소버린 AI의 일환으로 인정하는 구조다. 이는 기술적 혈통보다는 데이터 주권과 현지 적합성을 중시하는 분위기다. UAE는 오픈소스를 통한 글로벌 주도권 전략으로 주목받고 있다. 이곳은 정부 산하 기술혁신연구소(TII)가 개발한 '팔콘(Falcon)' 시리즈 모델을 오픈소스로 공개해 전 세계 개발자들이 이를 개선·확장하도록 유도하고 있다. 이를 통해 팔콘은 사실상 글로벌 기술 표준 중 하나로 자리 잡게 됐다. 또 최근에는 중국 모델 '큐원(Qwen)' 등 외부 오픈 웨이트 모델을 참고해 성능을 보완한 모델도 공개하며 기술적 순수성보다 실용성과 확장성을 강조하는 전략을 이어가고 있다. 이는 기술적 순수성보다 확산성과 영향력을 주권의 요소로 보는 UAE식 접근을 보여준 것으로 평가받는다. 반면 한국의 소버린 AI 논쟁은 모델 개발의 출발점과 내부 구조에 대한 기술적 독자성으로 집중되고 있다. 앞서 정부는 공모 단계에서 해외 AI 모델을 단순 미세조정(fine-tuning)한 파생형 모델은 독자 AI로 인정하지 않겠다는 원칙을 제시한 바 있다. 또 이번 1차 평가에서는 사전학습(pre-training) 단계에서 핵심 가중치를 자체적으로 학습·갱신했는지 여부가 주요 판단 기준으로 적용된 것으로 알려졌다.이를 두고 일각에선 가중치 초기화 여부만으로 독자성을 단정하기는 어렵다고 지적했다. 토크나이저 설계, 학습 데이터 구성, 모델 아키텍처 변형 여부 등 복합적인 요소가 함께 고려돼야 하지만, 정부가 이를 제대로 반영했는지에 대해 의구심을 드러냈다. 이 과정에서 성능보다는 학습의 출발점과 가중치 통제 여부가 평가의 핵심 변수로 작용했다는 의견도 제기됐다. 업계에선 글로벌 오픈소스 생태계 활용이 일반화된 상황 속에 정부가 외부 모델 활용의 허용 범위와 독자성 기준을 사전에 충분히 공유하지 않았다는 점이 논쟁을 키웠다고 보고 있다. 업계 관계자는 "독자성이 곧 '모든 것을 혼자 만드는 것'을 의미하는 것은 아니다"며 "외부 기술을 활용하더라도 이를 통제하고 개조하며 장기적으로 유지할 수 있는 역량 역시 주권의 중요한 요소"라고 짚었다. 이어 "데이터의 질과 현지 최적화, 글로벌 생태계와의 호흡이 기술적 혈통 못지않게 중요해지고 있다"고 지적했다. 이와 함께 과기정통부의 역할에 대한 요구도 커지고 있다. 정부가 가중치 초기화 여부, 사전학습 수행 범위, 컴포넌트별 오픈소스 허용 기준 등을 보다 명확히 제시해 독자성 판단의 불확실성을 줄여야 한다고 봐서다. 또 기술적 순수성 중심의 단일 기준에서 벗어나, 실질적 통제 가능성과 활용도를 함께 평가하는 다층적 기준이 필요하다는 의견도 제기된다. 업계 관계자는 "이번 논쟁이 특정 기업의 탈락 여부를 넘어 한국이 AI 주권을 어떤 기준으로 정의하고 확보할 것인지에 대한 시험대가 되고 있다"며 "정부가 단순한 예산 집행자를 넘어 인도, UAE 처럼 유연하면서도 현실적인 방향성을 제시할 수 있을지가 향후 독자 AI 정책의 성패를 가를 핵심 변수가 될 것"이라고 전망했다.

2026.01.20 10:01장유미 기자

[AI는 지금] 독파모 '패자부활전' 할까 말까…"혜택 크다" vs "역효과"

정부가 '독자 인공지능(AI) 파운데이션 모델 프로젝트' 패자부활전 정책을 추진하지만 주요 기업들이 잇따라 불참 의사를 밝히면서 정책 실효성을 둘러싼 논란이 커지고 있다. 16일 업계에 따르면 과학기술정보통신부는 지난 15일 독파모 1차 평가에서 5개 정예팀 중 네이버클라우드와 NC AI를 탈락시켰다. 네이버클라우드는 모델 독자성 논란이 평가에 영향 준 것으로 알려졌다. NC AI는 종합 점수가 기준에 미치지 못했다. 이에 기존 4개 팀 선발이던 계획과 달리 LG AI연구원, SK텔레콤, 업스테이지만 통과했다. 정부는 공석을 메우기 위해 올해 상반기 중 1개 팀을 추가 선정하는 재공모를 추진한다고 밝혔다. 대상에는 1차 탈락 컨소시엄인 네이버클라우드와 NC AI, 앞서 정예팀 선발 과정에서 탈락한 카카오, KT, 모티프테크놀로지스, 코난테크놀로지, 한국과학기술원 컨소시엄까지 포함된다. 류제명 과기정통부 제2차관은 "신규 정예팀에도 기존 3개 팀과 동일한 그래픽처리장치(GPU)·데이터 지원과 'K-AI' 명칭 부여 등 개발 기회를 제공하겠다"고 밝혔다. 현재 주요 기업들은 재도전에 선을 긋고 있다. 네이버클라우드는 "정부 판단을 존중한다"며 "추가 공모를 검토하지 않겠다"고 밝혔다. 카카오 역시 참여 계획이 없다는 입장을 알렸다. NC AI도 "산업 특화 AI와 피지컬 AI 개발에 집중하겠다"며 패자부활전에 나서지 않겠다는 뜻을 분명히 했다. 업계에선 패자부활전 없이 갔어야 한다는 목소리가 나오고 있다. 업계 관계자는 "추가 선발 없이 기존 결과를 확정했다면 공정성 논란을 조기에 종식시킬 수 있었다"며 "잘못된 추가 선정이 이뤄질 경우 정부 지원 자체가 무용론에 빠질 수 있다"고 우려했다. 또 다른 관계자는 독파모 프로젝트 구조 자체가 문제라고 지적했다. 그는 "새 정예팀은 신규 GPU로 모델을 처음부터 학습할 수 있는 장점을 얻을 수 있지만 이를 실험할 시간적 여유가 부족하다"며 "결국 해외 모델을 카피해 학습만 프롬 스크래치로 진행할 수밖에 없는 상황일 것"이라고 분석했다. 이어 "'K-AI' 타이틀만 얻고 실질적 기술 자립을 못 할 가능성도 배제하기 어렵다"고 꼬집었다. 이 같은 상황 속에 정부는 신규 정예팀과 기존 정예팀 간 형평성 문제를 최소화하겠다고 밝혔다. 류 차관은 "기존 3개 팀 일정 지연은 최대한 피할 것"이라며 "팀 간 개발 시간과 환경 간극을 최소한으로 할 것"이라고 강조했다.

2026.01.16 18:37김미정 기자

네이버, 제13회 '널리웨비나' 성료…AI 활용 접근성 강화 논의

네이버는 지난 15일 '인공지능(AI) 기반 접근성을 통한 디지털 인권'을 주제로 제13회 '널리웨비나'를 개최하고 AI 기술을 활용한 접근성 강화와 디지털 포용 확산에 대한 논의를 진행했다고 밝혔다. 널리웨비나는 IT 및 학계 관계자들이 디지털 접근성과 관련된 인사이트와 실무 노하우를 나누는 자리로 올해로 13회째를 맞았다. 이번 웨비나는 ▲네이버클라우드를 포함해 ▲ 유엔 인권최고대표사무소(UN OHCHR) ▲삼성전자 ▲N 테크 서비스 ▲엔비전스 ▲카이스트 ▲서강대학교 등 국내외 전문가들이 참여해 디지털 포용의 가치와 AI 기술을 통한 접근성 향상의 실질적 사례를 다양하게 공유했다. 연사로 참여한 옥상훈 네이버클라우드 AI 솔루션 플래닝 리더는 초고령화 사회에서 디지털 접근성의 중요성을 짚으며, AI 안부 전화 서비스 '클로바 케어콜'을 통해 이를 구현한 사례를 소개했다. 옥 리더는 AI 기술은 목적이 아니라 디지털 포용성 향상을 위한 수단임을 강조하며, 서비스 설계 과정에서 대화에 공감하고 이해하는 AI 기술력 뿐만 아니라 안전한 이용을 위해 편의성과 AI 윤리를 함께 고려해 클로바 케어콜을 성공적으로 확산시킬 수 있었다고 말했다. 이어 N 테크 서비스의 이승호 개발자는 검색, 플레이스 등 네이버의 주요 서비스에서 누구나 정보를 편리하게 이용할 수 있도록 구조적·시각적 접근성을 동시에 확보하기 위한 설계 노력을 소개했다. 신의식 개발자는 AI를 활용해 실시간으로 접근성을 진단하는 솔루션을 개발한 과정을 설명했다. 이 밖에도 박혜진 서강대학교 교수는 금융 접근성 개선을 통한 디지털 인권 확보의 중요성을, UN OHCHR의 한기쁨 인권담당관은 AI 시대 기업의 의사결정에 인권을 고려해야 하는 필요성과 구체적인 기준을 발표했다.

2026.01.16 13:47박서린 기자

독파모 1차 탈락 네이버클라우드 "과기정통부 판단 존중…기술 경쟁력 높일 것"

독자 인공지능(AI) 파운데이션 모델(독파모) 프로젝트 1차 단계평가에서 탈락한 네이버클라우드가 정부 판단을 존중한다는 입장을 표명했다. 네이버클라우드 측은 15일 이번 탈락에 대해 "과학기술정보통신부의 판단을 존중하고 앞으로 AI 기술 경쟁력을 높이기 위해 다각적인 노력을 이어갈 것"이라고 밝혔다. 이날 과기정통부는 정부서울청사에서 독파모 프로젝트 1차 단계평가 결과를 발표했다. LG AI연구원과 SK텔레콤, 업스테이지 등 3개 정예팀이 2차 단계에 진출한 반면, 네이버클라우드와 NC AI는 1차 단계에서 탈락했다. 과기정통부는 네이버클라우드가 벤치마크·전문가·사용자 평가를 종합한 점수 기준에서는 상위 4개 팀에 포함됐지만, 독자성 부문 요건을 충족하지 못한 것으로 판단했다. 네이버클라우드 모델에 포함된 외부 인코더 활용 자체가 불가능한 것은 아니지만, 이번 평가에서는 인코더가 가중치를 업데이트할 수 없는 형태로 활용됐다는 점에서 독자 AI 모델로 인정하기 어렵다는 내부 판단이 있었다는 설명이다. 정부는 이번 평가 이후 정예팀이 3개로 줄어든 점을 고려해 1개 정예팀을 추가 선정하는 공모를 추진할 계획이다. 이날 브리핑에서는 이번 1차 평가에서 2차 단계에 진출하지 못한 기업들뿐 아니라, 최초 공모에 참여했던 다른 컨소시엄과 새로운 기업들에게도 기회를 열어두겠다는 방침을 밝혔다. 다만 2차 재도전에 대해 네이버클라우드 관계자는 "아직 검토하고 있진 않다"고 전했다.

2026.01.15 17:41한정호 기자

정부, '독파모' 탈락팀 이의제기 접수…"새 정예팀 선발에 특혜 없어"

정부가 '독자 인공지능(AI) 파운데이션 모델' 프로젝트 1차 탈락팀들에게 이의제기를 받는 절차를 진행한다. 정예팀 추가 선발을 둘러싼 특정 기업 특혜 의혹에 대해서는 선을 그었다. 류제명 과학기술정보통신부 제2차관은 15일 서울 정부청사에서 진행한 독파모 1차 평가 발표에서 이같이 밝혔다. 과기정통부는 LG AI연구원·SK텔레콤·업스테이지 등 3개 정예팀이 2차 단계에 진출했으며 기존 정예팀 가운데 네이버클라우드와 NC AI는 1차 단계에서 탈락했다. 정부는 1차 단계평가 결과에 대해 10일간 이의제기 접수 기간을 운영한다. 이를 반영해 행정 절차와 추가 정예팀 공모를 진행할 방침이다. 이의제기가 없을 경우 해당 기간을 단축해 재공모를 더 빠르게 시작할 계획이다. 류 차관은 "추가 선정할 네 번째 정예팀 대상은 폭넓게 열려 있다"며 "최초 공모에 참여했던 컨소시엄은 물론 이번 평가에서 탈락한 네이버클라우드·NC AI 컨소시엄, 새롭게 구성되는 역량 있는 컨소시엄까지 모두 지원할 수 있도록 지원할 것"이라고 강조했다. 정부는 이번 추가 선발이 특정 기업을 위한 맞춤형 구제 절차가 아니라는 점을 재차 강조했다. 그는 "우리는 최초 프로젝트 설계 당시부터 다수 경쟁 주체를 통해 치열한 경쟁 환경을 만드는 것에 집중했다"며 "네 번째 자리를 다시 여는 것도 그 연장선이다"고 말했다. 정부는 신규 정예팀에는 기존 3개 정예팀과 동일한 수준 지원을 제공한다. 그래픽처리장치(GPU)와 데이터 지원, 'K-AI' 명칭 부여 등 개발 기회도 동일하게 적용된다. 류 차관은 추가 선발을 기다리느라 기존 3개팀 프로젝트가 지연되는 상황을 최대한 피하겠다고 밝혔다. 그는 "3개 정예팀은 즉시 2단계에 착수하도록 행정 절차를 진행할 것"이라며 "전체 참여 기간과 GPU 물량 등 핵심 조건은 네 번째 팀과 동일하게 맞춰 형평성을 유지할 것"이라고 설명했다.

2026.01.15 16:03김미정 기자

'독파모' 1차서 네이버·NC AI 동반 탈락…정부, 정예팀 1곳 추가 공모

독자 인공지능(AI) 파운데이션 모델(이하 독파모) 프로젝트 1차 단계평가에서 네이버클라우드와 NC AI가 최종 탈락했다. 당초 5개 정예팀 가운데 1개 팀만 탈락할 것으로 예상됐지만, 평가 과정에서 독자성 기준과 종합 점수 경쟁이 동시에 작동하면서 2개 팀이 2차 단계 진출에 실패하게 됐다. 과학기술정보통신부는 15일 정부서울청사에서 독파모 1차 단계평가 결과를 발표했다. 이번 평가 결과, LG AI연구원·SK텔레콤·업스테이지 등 3개 정예팀이 2차 단계에 진출했으며 기존 정예팀 가운데 네이버클라우드와 NC AI는 1차 단계에서 탈락했다. 독자 AI 파운데이션 모델 프로젝트는 당초 5개 정예팀을 선정한 뒤 1차 단계평가를 거쳐 4개 팀을 2차 단계로 압축하는 구조로 설계됐다. 그러나 이번 평가에 정책적 기준과 상대평가 결과가 함께 반영되면서 결과적으로 2개 팀이 탈락하고 3개 팀만 2차 단계에 진출하게 됐다. 과기정통는 네이버클라우드 경우 벤치마크·전문가·사용자 평가를 종합한 점수 기준에서는 상위 4개 팀에 포함됐으나, 독자 AI 파운데이션 모델 요건을 충족하지 못한 것으로 판단했다. 과기정통부는 "이번 사업에서 해외 AI 모델을 단순 파인튜닝한 파생형 모델은 독자 AI 파운데이션 모델로 인정하지 않는다는 기준을 적용해 왔다"며 "네이버클라우드 모델은 독자성 측면에서 한계가 있다는 전문가 의견이 제기됐다"고 설명했다. 반면 NC AI는 독자성 기준과 관련한 별도의 결격 사유는 제시되지 않았지만, 1차 단계평가에서 다른 정예팀과의 종합 점수 경쟁에서 밀리며 2차 단계 진출에 실패한 것으로 풀이된다. 이번 평가는 AI 모델 성능을 중심으로 한 벤치마크 평가와 전문가 평가, 실제 활용 가능성을 살핀 사용자 평가를 합산해 진행됐으며 이 과정에서 NC AI가 다른 정예팀 대비 상대적으로 낮은 점수를 받은 것으로 해석된다. 평가 구조상 네이버클라우드와 NC AI 두 기업이 동시에 1차 단계에서 탈락하는 결과로 이어지는 등 당초 예상보다 탈락 팀 수가 늘어나면서 프로젝트 경쟁 구도에도 변화가 생기게 됐다. 과기정통부는 이번 1차 평가 이후 정예팀이 3개로 줄어든 점을 고려해 향후 1개 정예팀을 추가로 선정하는 공모를 추진할 계획이다. 추가 공모에는 이번 1차 단계에서 탈락한 네이버클라우드와 NC AI 컨소시엄도 참여할 수 있도록 문을 열어두겠다는 방침이다. 다시 한 번 경쟁 기회가 주어진 만큼 향후 두 기업이 어떤 전략으로 재도전에 나설지 주목된다. 배경훈 부총리 겸 과기정통부 장관은 이날 결과 발표에 앞서 "승자와 패자를 구분하고 싶지 않고 결과에 대해 깨끗하게 승복하고 다시 도전하는 모습을 기대한다"며 "정부에서도 새로운 해법을 추가적으로 제시할 것"이라고 SNS를 통해 밝혔다.

2026.01.15 15:13한정호 기자

LG AI연구원·SK텔레콤·업스테이지, 'K-AI' 1차 평가 통과

정부가 '독자 인공지능(AI) 파운데이션 모델' 1차 평가 결과를 공개했다. 과학기술정보통신부는 독파모 기존 5개 정예팀 가운데 LG AI연구원과 SK텔레콤, 업스테이지를 2단계에 진출했다고 15일 밝혔다. 이번 평가는 벤치마크를 비롯한 전문가, 사용자 평가를 합산해 모델 성능과 비용 효율성, 실제 활용 가능성, 생태계 파급력을 종합 검증한 결과다. 세 지표에서 모두 최고점을 받은 LG AI연구원이 전체 1위를 기록했다. 벤치마크 평가 부문에서 LG AI연구원은 40점 만점 중 33.6점을 받아 평균을 상회했다. 전문가 평가에서도 35점 만점 중 31.6점, 사용자 평가에서는 25점 만점을 획득해 모든 영역에서 선두를 유지했다. 종합 점수상 상위 4개 팀에는 LG AI연구원, 네이버클라우드, SK텔레콤, 업스테이지가 포함됐다. 다만 네이버클라우드는 독자성 기준을 충족하지 못해 최종 탈락했다. 이에 따라 2차 단계는 LG AI연구원과 SK텔레콤, 업스테이지 3개 팀 체제로 진행된다. 과기정통부는 "독자 AI 파운데이션 모델은 해외 모델 미세조정이 아닌 아키텍처 설계와 데이터 구축, 가중치 초기화 후 학습까지 전 과정을 자체 수행한 국산 모델"이라고 정의했다. 이어 "네이버클라우드 모델은 가중치 기반 독자성 요건을 충족하지 못한 것으로 판단했다"며 탈락 이유를 밝혔다. 정부는 경쟁과 생태계 유지를 위해 1개 정예팀을 추가 공모해 총 4개 팀 체제를 다시 구축할 계획이다. 신규 정예팀에는 그래픽처리장치(GPU)와 데이터, 'K-AI 기업' 명칭이 제공된다. 과기정통부는 "이번 프로젝트는 대한민국이 글로벌 AI 경쟁에서 독자 기술로 당당히 맞서기 위한 역사적 도전"이라며 "K-AI 모델을 반드시 확보해 지속 가능하고 건강한 AI 생태계를 구축할 것"이라고 밝혔다.

2026.01.15 15:00김미정 기자

[유미's 픽] '독자 AI' 논쟁, 韓서 유독 격화된 이유는

정부 주도의 독자 인공지능(AI) 파운데이션 모델 사업을 둘러싼 논란이 기업 간 경쟁을 넘어 정책·기술 논쟁으로 확산되고 있다. 해외 모델과의 유사성, '프롬 스크래치' 정의, 외부 가중치 사용 여부를 두고 해석이 엇갈리면서 논쟁의 강도도 커지는 양상이다. 나아가 업체 간 '진흙탕 싸움'으로도 번지자 이번 사업에서 국내 독자 AI 정책 설계 방식과 기준 설정이 미흡했기 때문이란 지적이 나온다. 14일 업계에 따르면 이번 논란이 확산된 것은 '독자 AI'라는 정책 목표가 기술적 정의보다 먼저 제시됐기 때문이다. 일단 정부는 지난 해 공모 단계에서 해외 AI 모델을 단순 미세조정(fine-tuning)한 파생형 모델을 독자 AI로 인정하지 않겠다는 원칙을 밝혔다. 그러나 '프롬 스크래치'와 '독자성'을 어디까지로 해석할 것인지에 대해서는 구체적인 기준을 제시하지 않았다. AI 연구 현장에서 통용되는 '프롬 스크래치'는 일반적으로 기존 모델의 가중치를 사용하지 않고 랜덤 초기화 상태에서 학습했는지를 의미한다. 반면 정책 논의 과정에서는 이 개념이 모델 구조, 아키텍처 차용, 모듈 활용 여부까지 포함하는 방식으로 확장되면서 기술적 정의와 정책적 해석 간의 차이가 드러났다는 평가가 나온다. 업계에선 이 간극이 이후 논쟁을 키운 근본 배경이라고 보고 있다. 평가 기준이 개발 전이 아닌 5개 팀 선발 결과 공개 이후에 본격적으로 논의됐다는 점도 논란을 키운 요인으로 꼽힌다. 짧은 개발 기간과 제한된 자원으로 글로벌 수준의 성능을 요구받은 상황 속에 다수 참여 기업이 오픈소스 생태계와 기존 연구 성과를 일정 부분 활용할 수밖에 없었다는 것도 문제다. 이를 활용했을 때 어느 수준까지 허용되는지에 대한 사전 합의가 충분히 공유되지 않은 탓이다. 이에 각 기업의 기술 선택은 현재 독자성 논쟁의 대상이 됐다. 업계 관계자는 "사전 가이드라인이 명확하지 않은 상태에서 사후 검증이 강화되다 보니 기술적 판단이 정책적·정치적 논쟁의 중심에 놓이게 됐다"며 "기술 선택의 맥락보다는 결과를 기준으로 한 평가가 이뤄지면서 논쟁이 과열됐다"고 진단했다. 이번 사업이 단순한 연구개발(R&D) 지원을 넘어 '국가대표 AI'를 선발하는 성격을 띠고 있다는 점도 논쟁을 증폭시킨 요인으로 분석된다. 기업 간 경쟁이 국가 기술 자립의 상징으로 해석되면서 기술적 차이보다 독자성의 순수성을 둘러싼 평가가 부각됐다는 점에서다. 글로벌 AI 연구 환경에서는 오픈소스와 기존 연구 성과를 활용하는 것이 일반적이지만, 국내에서는 안보와 기술 주권 담론이 결합되며 기술 선택 하나하나가 상징적 의미를 띠게 됐다는 지적도 나온다. 업계 관계자는 "이번 논쟁의 본질은 특정 기업의 기술 선택 문제가 아니라 기술 기준과 정책 기준이 혼재된 구조적 문제"라며 "AI 연구 관점에서는 구조 차용과 독자 학습을 구분해 평가하는 반면, 정책 관점에서는 외부 의존성과 통제 가능성이 더 중요한 판단 기준이 된다"고 말했다. 그러면서 "이번 독자 AI 사업에서는 이 두 기준이 동일한 언어로 정리되지 않은 상태에서 추진되면서 혼선이 커졌다"고 분석했다. 이로 인해 기술적으로는 합리적인 선택이 정책적으로는 부적절해 보일 수 있게 됐다. 반대로 정책적 메시지가 강한 선택이 기술적 완성도와는 별개로 평가되는 상황도 만들어졌다. 업계에선 이번 논쟁이 '유사성' 여부를 따지는 문제를 넘어 무엇을 기준으로 독자성을 판단할 것인지에 대한 논의로 이어지고 있다고 보고 있다. 일각에선 이번 1차 평가를 계기로 독자 AI의 기준을 보다 정교화할 필요가 있다는 의견을 내놨다. 단순한 성능 지표나 선언적 독자성보다 가중치 통제권, 설계 역량, 비용 효율성, 장기적 운용 가능성 등을 종합적으로 평가하는 체계가 필요하다는 지적이다. 업계 관계자는 "이번 논쟁이 한국 AI 산업에 반드시 부정적인 신호만은 아니라고 본다"며 "독자 AI의 정의와 정책 목표를 다시 정립하는 계기로 삼을 필요가 있다"고 밝혔다.이어 "앞으로 기술 논쟁을 도덕적 공방으로 몰고 가기보다 정책 목적과 기술 현실을 구분해 설명할 수 있는 기준을 우선 마련하는 것이 필요해보인다"며 "이번 독자 AI 논쟁은 개별 기업의 성패를 넘어 한국이 어떤 방식으로 AI 주권을 확보할 것인지에 대한 정책적 시험대가 될 것"이라고 덧붙였다.

2026.01.14 16:54장유미 기자

정부, 독파모 1차 평가에 개별 벤치마크 추가…"모델별 성능 본다"

정부가 '독자 인공지능(AI) 파운데이션 모델 프로젝트' 1차 결과를 앞두고 새 평가 방식을 도입했다. 14일 업계에 따르면 과학기술정보통신부는 기존 13개 공통 벤치마크에 기업별 개별 벤치마크 2종을 평가에 추가 적용한다. 공통 벤치마크는 전문지식, 추론, 코딩, 한국어 특화 등 거대언어모델(LLM) 기본 성능을 평가하는 지표들로 구성됐다. 모든 참여 모델은 이 13개 항목을 동일한 기준으로 검증받는다. 여기에 각 기업이 개발한 모델의 특성을 반영할 수 있도록 개별 벤치마크가 더해졌다. 텍스트 기반 LLM뿐 아니라 이미지, 문서, 음성 등 다양한 입력을 처리하는 멀티모달·옴니모달 모델 성능도 평가하기 위한 취지다. 현재 정예팀인 네이버클라우드는 시각 정보 질의응답(Text VQA)과 문서 기반 질의응답(DocVQA)을 개별 벤치마크로 제출한 것으로 알려졌다. 다른 기업들도 각자의 모델 특성에 맞는 지표를 개별 벤치마크로 제시한 것으로 전해졌다. 현재까지 공통 벤치마크 기준에서는 LG AI연구원 'K-엑사원' 13개 항목 중 10개에서 1위를 기록했다. 개별 벤치마크 결과는 공통 지표와 종합 평가에 반영된다. 과기정통부는 현재 1차 평가를 마무리하고 있다. 공통 성능과 모델별 특화 역량을 고려해 4개팀을 선별한다. 이번 1차 평가 결과는 15일 전후 공개된다.

2026.01.14 10:12김미정 기자

'K-AI' 주도권 잡을 4개 정예팀은…정부, 첫 심사 발표 임박

정부가 이번 주 '독자 인공지능(AI) 파운데이션 모델 프로젝트' 첫 심사 결과 발표를 앞둔 가운데 공정 심사 여부와 첫 탈락팀에 대한 이목이 쏠리고 있다. 12일 IT 업계에 따르면 과학기술정보통신부와 정보통신산업진흥원(NIPA)은 오는 15일 전후로 독자 AI 모델 1차 평가 결과를 발표할 예정인 것으로 알려졌다. 정부는 지난주부터 각 컨소시엄이 제출한 모델 성능과 효율성을 검토하면서 최종 선별 작업을 진행 중인 것으로 전해졌다. 현재 정예팀은 네이버클라우드와 NC AI, 업스테이지, SK텔레콤, LG AI연구원이다. 정부는 15일 전후로 여기서 4팀만 선별한다. 네이버클라우드는 텍스트·이미지·오디오 등 서로 다른 데이터를 단일 모델서 처리하는 옴니 파운데이션 모델 '네이티브 옴니모델(HyperCLOVA X SEED 8B Omni)'과 기존 추론형 AI에 시각·음성·도구 활용 역량을 더한 '고성능 추론모델(HyperCLOVA X SEED 32B Think)'을 오픈소스로 공개했다. 해당 모델은 에이전트 AI와 버티컬 서비스 기반 기술로 활용될 계획이다. 이를 통해 소버린 AI 경쟁력을 강화하고 월드모델과 로보틱스, 자율주행 등 물리 세계 AI로 키울 방침이다. NC AI는 멀티모달 생성용 파운데이션 모델 '배키(VAETKI)'를 내세웠다. 배키는 토크나이저 어휘 20%를 한국어에 할당하고 고어까지 처리 가능한 한글 조합 기능을 갖췄다. 이를 통해 국내 산업현장에 최적화된 소버린 AI를 달성하겠다는 포부다. 업스테이지는 '솔라 오픈 100B'를 허깅페이스에 내놨다. 솔라 오픈은 중국 딥시크 R1과 오픈AI GPT-OSS-120B' 등 글로벌 경쟁 모델을 주요 벤치마크에서 앞선 것으로 나타났다. 특히 한국어, 영어, 일본어 등 다국어 평가에서 모델 크기 대비 우수한 성능을 보였다. 향후 국내 금융을 비롯한 법률, 의료, 공공, 교육 등 산업별 AI 전환 확산에 활용될 방침이다. SK텔레콤은 한국형 소버린 AI 경쟁력 확보 목표로 '에이닷 엑스 K1'를 내놨다. 이 모델은 5천억 개 파라미터를 보유한 국내 첫 거대언어모델(LLM)이다. 웹 탐색과 정보 분석, 요약, 이메일 발송 등 여러 단계를 거치는 복합 업무를 자율적으로 수행할 수 있다. 향후 일상 업무뿐 아니라 제조 현장 데이터와 작업 패턴을 학습해 업무 효율을 높이는 데도 활용되는 것이 목표다. LG AI연구원은 'K-엑사원'을 공개했다. K-엑사원은 LG AI연구원이 지난 5년간 축적한 기술 바탕으로 하이브리드 어텐션 구조를 고도화해 설계됐다. 이를 통해 메모리 요구량과 연산량을 엑사원 4.0 대비 70% 줄이면서도 성능은 끌어올렸다. 해당 모델은 토크나이저 고도화, 멀티 토큰 예측 구조로 최대 26만 토큰의 초장문을 처리할 수 있다. 추론 속도도 기존 모델 대비 150% 높였다. A100급 그래픽처리장치(GPU) 환경에서도 구동 가능하다. 과기정통부 "평가 공정하게"…심사 기간은 연기 정부는 1차 발표를 앞두고 모델 평가 기간을 기존 일정보다 연장한 것으로 전해졌다. NIPA는 해당 사업에 참여하는 5개 팀에게 AI 모델 사이트를 지난 11일 자정까지 연장 운영해 달라고 요청한 것으로 확인됐다. 해당 사이트는 각 컨소시엄 모델 평가를 위해 전문 평가단이 확인할 수 있도록 구성된 플랫폼이다. 정예팀은 당초 지난 9일 오후 6시까지 사이트를 운영할 예정이었지만, 현재 정부 지침으로 약 56시간 연장한 것이다. NIPA는 해당 지침이 과기정통부 요청에 따른 것이라고 밝혔다. 과기정통부는 최근 사업 참여 컨소시엄에서 불거진 독자 기술력 논란과 모델 평가 기간 연장은 무관하다고 선 그은 것으로 알려졌다. 또 오는 15일 전후로 예정된 독자 AI 모델 선정 사업 1차 발표가 늦어질 가능성도 없다는 입장이다. 배경훈 부총리 겸 과기정통부 장관은 지난 8일 "독자 AI 파운데이션 모델 개발 프로젝트 평가는 객관적이고 공정하게 진행될 것"이라고 개인 소셜네트워크서비스(SNS)를 통해 밝혔다.

2026.01.12 15:21김미정 기자

[유미's 픽] 독자 AI 논란 속 '설계 주권' 시험대…LG 'K-엑사원'이 돋보인 이유

"이번 경쟁에서 고유 아키텍처를 고수하며 바닥부터 설계하는 곳은 LG AI연구원 정도입니다. 정부 과제의 짧은 데드라인과 제한된 자원 속에서 검증된 글로벌 오픈소스를 적극 활용할 수밖에 없는 환경 속에 특정 모듈 차용이 문제라면, 오픈소스 기반으로 개발한 국내 기업 다수도 그 비판에서 자유롭기 어려울 것입니다."최근 정부 주도의 독자 인공지능(AI) 파운데이션 모델 프로젝트를 둘러싼 잡음이 이어진 가운데 LG AI 연구원의 'K-엑사원'이 비교적 논란 없이 업계의 호평을 받으며 존재감을 드러내고 있다. 성능 평가에서도 미국, 중국이 점령한 글로벌 AI 상위 10위권에서 7위를 기록하며 유일하게 이름을 올려 'AI 3강'을 노린 한국을 대표할 AI 모델로 자리를 굳히는 분위기다.LG AI연구원은 'K-엑사원'이 정부의 독자 AI 파운데이션 모델 프로젝트 1차 평가 기준인 13개의 벤치마크 테스트 중 10개 부문 1위를 기록했다고 11일 밝혔다. 전체 평균 점수는 72점으로, 5개 정예팀 중 1위를 차지했다. 이 기준으로 평가를 했을 시 경쟁사들은 50점 중반대에서 60점 중반대 정도의 평균 점수를 기록하는 것으로 알려졌다. 일부 참가업체들이 최근 공개한 테크 리포트에서 13개 벤치마크 결과를 모두 기재하지 않은 것과 달리, LG AI연구원은 모든 결과를 공개해 비교 가능성을 높여 우위에 올라섰다는 평가도 나온다. 업계에선 독자 AI 모델의 가장 중요한 요소로 '프롬 스크래치'와 '독자성' 해석을 꼽고 있다. 최근 해외 모델 유사성 등 여러 논란 속에서 가장 중요한 요소가 외부 모델 '가중치(Weight) 사용' 여부가 핵심으로 떠오르고 있는데, 특히 LG AI연구원의 'K-엑사원'은 이를 모두 충족시키는 모델로 평가 받고 있다. 가중치는 AI 모델이 학습을 통해 축적한 지식이 압축된 결과물로, 라이선스와 통제권 문제와 직결된다. 정부가 해외 모델을 파인튜닝한 파생형 AI를 독자 AI로 간주하지 않겠다고 밝힌 이유도 이 때문이다. 다만 일각에선 가중치 논쟁이 독자 AI의 기준을 지나치게 단순화할 수 있다는 지적도 나온다. 가중치는 독자 AI의 최소 조건일 뿐 그 위에서 어떤 기술적 선택을 했는지가 모델의 완성도를 가른다는 것이다. 특히 대규모 자본과 연산 자원을 투입해 데이터와 파라미터 규모를 늘리는 방식은 단기 성능 경쟁에는 유리할 수 있지만, 장기적인 국가 AI 전략과는 거리가 있다는 평가도 있다.이 때문에 최근에는 가중치 이후의 단계인 모델 구조에 대한 설계 역량이 중요 기준으로 떠오르고 있다. 대표적인 영역이 어텐션(Attention)과 토크나이저(Tokenizer)다. 어텐션은 AI가 방대한 정보 중 어떤 부분에 집중할지를 결정하는 핵심 메커니즘으로 연산량과 메모리 요구량을 좌우한다. 토크나이저는 문장을 토큰 단위로 분해하는 방식으로 학습 효율과 언어 이해 능력에 직접적인 영향을 미친다. 두 요소는 성능과 비용을 동시에 결정하는 구조적 레버로, 독자 AI의 '설계 주권'을 가늠하는 지표로 평가된다.이에 대해 임정환 모티프테크놀로지스 대표는 독자 기술의 기준을 보다 구조적으로 봐야 한다고 지적했다. 그는 "엔비디아가 설계를 하고 TSMC가 생산을 맡는 구조나, 삼성 스마트폰이 다양한 외부 부품을 조합해 만들어지는 사례를 보더라도 핵심은 누가 설계의 주체냐는 점"이라며 "단순히 코드를 복제한 뒤 재학습하는 방식은 기술적 난이도가 낮아 독자 아키텍처로 보기 어렵다"고 말했다. 이어 "중국 딥시크는 기존 구조를 그대로 쓰지 않고 이를 변형해 자신들만의 기술적 철학을 담았기 때문에 독자 기술로 평가받는 것"이라고 덧붙였다.업계에선 독자 AI의 '설계 주권'을 판단하는 기준이 어텐션과 토크나이저에만 국한돼서는 안 된다는 지적도 나온다. 실제로 AI 모델의 성능과 효율은 어텐션 외에도 정규화(Normalization) 방식, 레이어 구성, FFN(Feed-Forward Network) 구조, 학습 커리큘럼 설계, 추론(Reasoning) 구조의 내재화 여부 등 복합적인 설계 선택에 의해 좌우된다. 정규화 방식과 레이어 구성은 학습 안정성과 스케일링 한계를 결정하는 요소로, 표준 레이어놈(LayerNorm)을 그대로 사용하는지, RMS놈(RMSNorm) 등 변형된 방식을 적용했는지에 따라 대규모 학습에서의 효율과 수렴 특성이 달라진다. 레이어놈이 모든 신호를 고르게 '정돈'하는 방식이라면, RMS놈은 꼭 필요한 크기 정보만 남겨 계산 부담을 줄이는 방식에 가깝다.FFN 구조 역시 전체 파라미터의 상당 부분을 차지하는 영역으로, 활성화 함수 선택이나 게이트 구조 도입 여부에 따라 연산량 대비 성능 효율이 크게 달라진다. FFN은 AI가 주목한 정보를 자기 언어로 다시 정리하는 '내부 사고 회로'에 해당한다. 학습 커리큘럼 역시 설계 주권을 가늠하는 중요한 지표로 꼽힌다. 단순히 대규모 데이터를 한 번에 투입하는 방식이 아니라, 언어 이해·추론·지시 이행·도메인 특화 학습을 어떤 순서와 비중으로 설계했는지가 모델의 안정성과 범용성을 좌우하기 때문이다. 여기에 프롬프트 기법에 의존하지 않고, 추론 과정을 모델 구조 내부에 내재화했는지 여부도 공공·국방·금융 등 고신뢰 영역에서 중요한 평가 요소로 거론된다. 업계 관계자는 "가중치는 독자 AI의 출발점이고, 어텐션과 토크나이저는 그 다음 단계"라며 "그 이후에는 학습 시나리오와 추론 구조, 스케일링 전략까지 얼마나 스스로 설계했는지가 진짜 기술적 자립도를 가른다"고 설명했다. LG AI연구원의 'K-엑사원'은 이 지점에서 차별화된 접근을 택했다. LG AI연구원은 데이터 양이나 파라미터 규모를 무작정 키우는 방식 대신, 모델 구조 자체를 고도화해 성능은 높이고 학습·운용 비용은 낮추는 전략을 적용했다. 엑사원 4.0에서 검증한 '하이브리드 어텐션(Hybrid Attention)'을 'K-엑사원'에 고도화해 적용, 국소 범위에 집중하는 슬라이딩 윈도우 어텐션과 전체 맥락을 이해하는 글로벌 어텐션을 결합했다. 이를 통해 메모리 요구량과 연산량을 이전 세대 대비 약 70% 절감했다는 설명이다. 토크나이저 역시 단순 재사용이 아닌 구조적 개선이 이뤄졌다. LG AI연구원은 학습 어휘를 약 15만 개로 확장하고, 한국어에서 자주 쓰이는 단어 조합을 하나의 토큰으로 묶는 방식을 적용했다. 그 결과 동일한 연산 자원으로 더 긴 문서를 기억하고 처리할 수 있게 됐으며 기존 대비 약 1.3배 긴 컨텍스트 처리 능력을 확보했다. 여기에 멀티 토큰 예측(MTP) 구조를 도입해 추론 속도도 크게 높였다. 이 같은 구조 혁신은 정부 프로젝트의 성격과도 맞닿아 있다. 독자 AI 파운데이션 모델의 목표는 단기적인 성능 순위 경쟁이 아니라 공공·산업 현장에서 실제로 활용 가능한 국가 AI 인프라를 구축하는 데 있기 때문이다. LG AI연구원이 고가의 최신 그래픽처리장치(GPU)가 아닌 A100급 환경에서도 프런티어급 모델을 구동할 수 있도록 설계해 인프라 자원이 제한된 기업과 기관에서도 활용 가능성을 넓혔다는 점도 우위 요소로 보인다. 다른 참가 기업들 역시 각자의 강점을 내세우고 있다. SK텔레콤은 최신 어텐션 기법과 초거대 파라미터 확장을 통해 스케일 경쟁력을 강조하고 있고, NC AI는 산업 특화 영역에서 운용 효율을 앞세우고 있다. 네이버클라우드는 멀티모달 통합 아키텍처를 독자성의 핵심으로 제시하고 있으며, 업스테이지는 데이터와 학습 기법을 통해 성능을 끌어올리는 전략을 취하고 있다. 다만 일부 모델은 외부 가중치나 구조 차용 여부를 둘러싼 논란으로 인해 기술 외적인 설명 부담을 안고 있는 상황이다. 업계 관계자는 "이번 논쟁이 '순혈이냐, 개발이냐'의 이분법으로 끝나기보다 가중치 주권을 전제로 한 설계 주권 경쟁으로 진화하고 있다고 본다"며 "이 기준에서 'K-엑사원'은 성능, 비용 효율, 구조적 혁신이라는 세 요소를 동시에 충족한 사례로 평가되고, 한국형 독자 AI가 나아갈 한 방향을 보여주고 있다"고 분석했다.업계에선 이번 1차 평가를 계기로 독자 AI에 대한 기준이 한층 정교해질 가능성이 높다고 봤다. 단순한 성능 순위나 '프롬 스크래치' 여부를 넘어 가중치 주권을 전제로 한 모델 설계 역량과 비용 효율, 실제 활용 가능성까지 함께 평가하는 방향으로 심사 기준이 진화할 수 있을 것으로 전망했다. 정부 역시 2차 심사 과정에서 독창성과 기술적 기여도를 평가 항목으로 포함하겠다고 밝힌 만큼, 향후 독자 AI 경쟁은 데이터·자본 경쟁을 넘어 누가 더 깊이 모델을 설계했는지를 가리는 국면으로 접어들 것이란 분석도 나온다.임정환 모티프테크놀로지스 대표는 "현재 독자 개발과 프롬 스크래치에 대한 개념이 혼재된 상황"이라며 "(정부 차원에서) 기술적 기여도에 따른 명확한 정의와 가이드라인 마련이 시급하다"고 강조했다. 이승현 포티투마루 부사장은 "독자 AI 2차 심사에서 퍼포먼스는 단순히 벤치마크 점수로 줄 세울 문제가 아니다"며 "가중치를 처음부터 자체 학습했는지, 데이터와 학습 과정에 대한 통제권을 갖고 있는지, 같은 조건에서 성능을 안정적으로 재현할 수 있는지가 먼저 봐야 할 기준"이라고 말했다. 이어 "이 전제가 빠진 성능 비교는 기술 평가라기보다 보여주기에 가깝다"고 덧붙였다.

2026.01.11 15:57장유미 기자

[유미's 픽] 'K-AI 고속도로'는 아직 심사 중?…7월 착공 공표한 삼성SDS, 정부도 발 맞출까

국가인공지능(AI)컴퓨팅센터 추진 속도가 더딘 가운데 사업 주도권을 쥔 삼성SDS가 처음으로 착공 시점을 공개하며 속도전에 나섰다. 정부가 'AI 3대 강국'과 'K-AI 고속도로'를 외치고 있지만, 실제 움직임은 민간 시계가 더 빠르게 움직이고 있다는 평가가 나온다. 삼성SDS는 7일(현지시간) 'CES 2026' 현장에서 열린 기자간담회에서 국가AI컴퓨팅센터 착공 시점을 올해 7월로 잠정 결정했다고 밝혔다. 금융 심사가 2월 초 마무리되면 4월 1일 특수목적법인(SPC)을 설립하고, 설계 준비를 거쳐 곧바로 공사에 착수한다는 내부 타임라인도 함께 제시했다. 센터 개소 목표는 2028년이다.이준희 삼성SDS 대표는 "7월에 국가AI컴퓨팅센터를 착공한다"며 "현재 기술심사평가를 마치고 금융 부문 심사를 진행하는 중"이라고 말했다. 삼성SDS는 이 자리에서 이미 기술·정책 평가를 통과했고, 남은 절차는 금융 심사뿐이라는 점도 분명히 했다. 그간 '안갯속'처럼 추진돼 왔던 국가AI컴퓨팅센터의 일정이 처음 구체적으로 공개됐다는 점에서 업계에선 향후 정부가 이에 발 맞춰 협조할지를 두고 예의주시하고 있다. 그러나 정부의 행정 절차는 매우 더딘 상태다. 과학기술정보통신부는 지난해 말까지 우선협상대상자 선정을 마무리하겠다는 계획을 세웠지만, 현재까지 금융 심사가 이어지고 있다. 조 단위 자금이 투입되는 대형 프로젝트인 만큼 정책금융기관의 리스크 검토와 국민성장펀드 투자 심사가 겹치며 검토 기간이 길어지고 있는 것으로 전해졌다. 국가AI컴퓨팅센터는 총 2조5천억원 규모의 민관 협력 사업으로, 그래픽처리장치(GPU) 수만 장을 갖춘 초대형 AI 컴퓨팅 인프라를 구축하는 것이 목표다. 기업과 대학, 연구기관, 스타트업에 고성능 연산 자원을 제공하는 'AI 고속도로'의 핵심 거점으로, 정부의 AI 3대 강국 전략을 상징하는 프로젝트이기도 하다. 이처럼 사업 규모와 정책적 상징성이 큰 만큼, 업계에선 실제 사업 속도를 좌우할 핵심 변수로 'SPC 설립 시점'을 꼽고 있다. 국가AI컴퓨팅센터는 민관이 SPC를 세우고, 이 SPC가 구축·운영의 실체가 되는 구조다. 삼성SDS와 네이버클라우드, 카카오, KT 등 컨소시엄 참여사들은 지분 투자자 역할을 맡고, 실제 센터 구축과 운영은 SPC를 중심으로 이뤄진다. 현재로선 금융 심사가 마무리돼야 우선협상대상자 선정과 실시협약, SPC 출범이 연쇄적으로 진행될 수 있다. 이 대표는 "컨소시엄 구성원의 공식적인 역할은 SPC 설립을 위한 지분 투자자"라며 "실제 사업은 SPC가 하는 만큼 SPC를 통해 여러 협상과 논의가 이뤄질 것"이라고 말했다. 이 같은 상황에서 삼성SDS 컨소시엄은 전남 해남 솔라시도 부지를 직접 찾으며 선제 행보에 나섰다. 공모 참여 이후 첫 공식 대외 일정으로, 데이터센터 건립 예정지의 지반 조사 결과와 전력·통신 인프라 여건을 점검했다. 다만 삼성SDS 컨소시엄은 정부의 우선협상대상자 발표 후 5개월도 안 되는 시간에 SPC 설립과 센터 설계, 착공까지 마무리하는 가파른 일정을 소화해야 한다는 점에서 부담을 느끼고 있을 가능성이 높다. 업계 관계자는 "삼성SDS가 정부 결정을 기다리는 동시에 준비는 이미 끝났다는 시그널을 보낸 것"이라며 "정부 입장에서도 더 늦추기 어려운 압박이 될 수 있다"고 분석했다.또 다른 관계자는 "정부의 심사 지연은 곧 '착공 지연'으로 직결될 수 있다"며 "7월 착공이란 민간 계획이 현실이 되려면 정부의 빠른 결단이 필요하다"고 지적했다. 이어 "'AI 3강'이라는 구호가 실행력으로 이어질지, 첫 국가 AI 인프라부터 지연의 상징이 될지는 해남 국가AI컴퓨팅센터 추진에 달렸다"며 "이번 일이 정부 AI 정책의 시험대가 된 분위기"라고 덧붙였다.

2026.01.08 11:55장유미 기자

[AI 리더스] 'AI 표준' 만든 이승현 "K-AI 5곳, 모두 승자…톱2 집착 버려야"

"독자 인공지능(AI) 파운데이션 모델(K-AI) 사업자로 선정된 5곳은 사실상 모두 승자입니다. 2개 사업자만 선별해 정부가 지원하기 보다 각 팀이 짧은 시간 안에 각자의 방식으로 글로벌 모델과 일정 수준 비교 가능한 결과물을 만들어냈다는 점을 인정해야 합니다. 정부가 각 모델의 특성과 강점을 살릴 수 있는 지원책을 마련한다면 국내 AI 생태계도 훨씬 건강해질 수 있을 것입니다." 이승현 포티투마루 부사장은 8일 지디넷코리아와의 인터뷰를 통해 최근 독자 AI 파운데이션을 둘러싼 논란에 대해 이같이 정리했다. 오는 15일께 정부가 1차 탈락팀을 결정하기 전 각 업체들이 '이전투구' 양상으로 치닫는 모습을 보이는 것을 두고 정부가 2개팀만 선별해 지원하려는 구조 때문이라고도 진단했다. 또 이번 논란의 본질이 기술 경쟁이 아니라 구조적 문제에 있다고 봤다. 정부가 2개 사업자만 선별해 집중 지원하는 방식이 계속 유지되면 탈락 기업에 과도한 낙인이 찍히고 업계 전체가 방어적·공격적으로 변할 수밖에 없다고 분석했다. 성능 경쟁보다 통제 원칙 우선돼야…소버린 AI 기준 마련 필요 정부는 현재 네이버클라우드와 업스테이지, SK텔레콤, NC AI, LG AI연구원 등 독자 AI 파운데이션 모델 사업자로 선정된 5개 정예팀을 대상으로 1차 심사를 진행 중이다. 탈락팀 1곳은 오는 15일쯤 발표할 예정으로, 정예팀마다 평가 기준이 상이해 업계에선 각 업체별 모델을 두고 유불리 논란이 이어지고 있다. 이 부사장은 "정부 사업에서 탈락하면 해당 팀이 '사망선고'를 받는 것처럼 여겨지는 구조는 바람직하지 않다"며 "톱2만 키우는 방식은 산업 전체를 위축시킬 가능성이 높은 만큼, 선별보다 육성 중심의 정책 전환을 고민해야 한다"고 제언했다. 특히 이번 사업에 참여한 기업 상당수가 대기업 또는 대기업 계열이라는 점에서 1차 탈락이 갖는 파급력은 더 크다고 봤다. 그는 "1차에서 떨어졌다는 이유만으로 '이 정도밖에 못하느냐'는 평가가 붙으면 내부 투자나 그룹 차원의 지원이 위축될 가능성도 배제하기 어렵다"며 "그 부담이 기업을 더욱 공격적인 대응으로 몰아넣는다"고 진단했다.이에 이 부사장은 '선별'이 아닌 '육성'을 초점에 맞춘 정부 정책이 마련될 필요가 있다고 강조했다. 일정 수준 이상의 역량을 입증한 기업들을 여러 트랙으로 나눠 지속적으로 키우는 구조가 필요하다는 것이다. 그는 "영국 등 해외 사례를 보면 한 번 떨어졌다고 끝나는 게 아니라 다른 트랙으로 계속 경쟁과 육성을 이어간다"며 "이번에 선정된 5개 기업 역시 각자 다른 강점과 방향성을 갖고 있는 만큼, 정부가 이들을 '탑위너 그룹'으로 묶어 장기적으로 관리하는 전략이 필요하다"고 말했다.이 부사장은 소버린 AI를 둘러싼 논의 역시 '전면 강제'가 아니라 '위험 구간에서의 원칙'으로 재정의해야 한다고 강조했다. 글로벌 모델과의 성능 경쟁을 목표로 삼기보다 투명성을 바탕으로 통제 가능성과 주권 확보가 필요한 영역에서 전략적으로 활용해야 한다고 주장했다. 그는 "공공 영역만 보더라도 정보 등급에 따라 활용 원칙이 달라야 한다"며 "오픈 데이터나 공개 서비스 영역에서는 글로벌 모델이나 경량화 모델을 활용할 수 있지만, 민감정보·보안 등급으로 올라갈수록 소버린 모델을 원칙으로 삼는 방식이 합리적"이라고 말했다. 그러면서 "다만 소버린을 내세워 모든 것을 자체 모델로만 해결하려는 접근은 현실적이지 않다"며 "필요할 경우 월드모델 활용 등을 통해 안전한 방식의 연계·상호운용을 함께 고민해야 한다"고 덧붙였다. AI 정책, 구조적 한계 여실…공공 클라우드 전환 선행돼야 이처럼 이 부사장이 분석한 이유는 과거 공공 정책 현장에서 직접 경험한 구조적 한계가 지금도 크게 달라지지 않았다고 판단해서다. 그는 디지털정부플랫폼위원회 재직 당시부터 AI 시대를 준비하기 위해 공공 시장의 클라우드 전환이 선행돼야 한다고 꾸준히 주장해왔다. 이 부사장은 "지난 2022년 3월 무렵부터 공공이 AI 시대를 이야기하면서도 정작 기반이 되는 클라우드 전환은 제대로 이뤄지지 않는 점이 가장 큰 한계라고 봤다"며 "AI를 서비스(SaaS) 형태로 도입하려면 클라우드가 전제가 돼야 하는데, 공공 영역의 전환 속도가 이를 따라가지 못했다"고 설명했다. 그는 이에 대한 원인으로 ▲클라우드 전환 지연 ▲예산·제도 구조 ▲관료제의 연속성 부족을 꼽았다. 이 부사장은 "정부 예산 구조상 ISP 등 절차를 거치면 최소 2~3년이 소요되는데, 이 방식으로는 빠르게 변하는 AI 흐름을 따라가기 어렵다"며 "AI처럼 중장기 전략이 필요한 분야에서 담당 보직이 자주 바뀌면 학습 비용이 반복되고 정책 추진의 일관성도 흔들릴 수밖에 없다"고 지적했다. 또 그는 "이 때문에 국가AI전략위원회와 같은 컨트롤타워 조직에는 보다 실질적인 권한과 연속성이 필요하다"며 "전문가 의견을 모으는 데서 그치지 않고, 부처 간 정책을 조정하고 실행으로 연결할 수 있도록 조직에 힘을 실어줘야 한다"고 강조했다.다만 이 부사장은 제도 개선의 필요성을 강조하는 것만으로는 AI 정책의 한계를 넘기 어렵다고 봤다. 정책이 실제 서비스와 산업 현장으로 이어지지 못하는 구조가 반복되고 있다고 판단해서다. 이에 디지털플랫폼정부위원회 AI플랫폼혁신국장을 맡았던 이 부사장은 지난 달 포티투마루로 자리를 옮겼다. 이곳에서 공공 정책 설계 경험을 바탕으로 공공·민간 영역에서 AI가 실제 서비스로 구현되고 확산되는 구조를 만드는 데 직접 기여할 것이란 각오다. 또 공공 AI 활용 사례를 통해 스타트업과 중소기업이 함께 성장할 수 있는 실증 모델을 만드는 데도 집중할 계획이다. 이 부사장은 "4년간 공공 영역에서 AI 정책을 다루며 나름대로 전문성을 쌓았다고 생각했지만, 실제 현장에서는 또 다른 병목이 존재하고 있다고 판단됐다"며 "AI 강국이 되려면 결국 국민이 체감해야 한다"고 지적했다.이어 "공공 영역에서 AI를 통해 일하는 방식 혁신을 통해 생산성을 높이고, 대국민 서비스의 속도와 품질을 개선하며 의료·복지 등 사회 문제 해결로 이어져야 가능한 일"이라며 "포티투마루를 통해 공공 AI가 실제로 작동하는 사례를 만들고, 스타트업과 중소기업이 함께 성장할 수 있는 구조를 현장에서 증명하고 싶다"고 덧붙였다. 그러면서 "국내 소프트웨어 산업은 여전히 공공이 큰 축을 차지하고 있는데, 공공 시장이 SI 중심 구조에 머물러 있다 보니 스타트업이 성장할 수 있는 발판이 제한적"이라며 "영국 등은 정부가 클라우드 기반으로 전환하면서 스타트업들이 공공 시장에 자연스럽게 진입했지만, 한국은 제도와 조달 구조가 이를 가로막고 있다"고 지적했다. 소버린 AI 등급체계 직접 개발…'국산 AI' 논쟁 끝낼까 지난 6일 소버린 AI 기준 논의를 위해 직접 평가 기준과 이를 판별할 도구를 개발해 허깅페이스에 공개한 것도 이 같은 문제에 대한 고민에서 출발했다. 그는 소버린 AI 등급 체계인 'T-클래스 2.0'을 깃허브와 허깅페이스에 공개하며 막연한 '국산 AI' 구호로는 기술 주권을 설명할 수 없다는 점을 분명히 했다. 이 부사장이 제안한 'T-클래스 2.0'은 기존 논의와 달리 '설계(Code)', '지능(Weights)', '기원(Data)' 등 세 가지 실체적 기준을 중심으로 AI 모델을 T0부터 T6까지 7단계로 구분한다. ▲단순 API 호출 및 미세조정 수준(T0~T1) ▲오픈 웨이트를 활용한 과도기 모델(T2~T3) ▲소버린 AI의 기준점이 되는 아키텍처를 참조하되 가중치를 처음부터 자체 학습한 T4 ▲독자 설계 아키텍처와 한국어 토크나이저를 갖춘 T5 ▲국산 반도체·클라우드까지 결합한 T6 등으로 분류됐다. 이 중 T4를 T4-1과 T4-2로 세분화한 것이 기존 버전과의 차별점이다. T4-1은 표준 아키텍처를 그대로 유지한 채 가중치를 처음부터 학습한 모델이다. 데이터 주권은 확보했지만, 구조적 독창성은 제한적인 단계다. 반면 T4-2는 기존 아키텍처를 참고하되 레이어 구성, 파라미터 규모, 연산 구조 등을 최적화·확장한 모델로, 글로벌 표준을 활용하면서도 기술 주권까지 일정 수준 확보한 단계로 분류된다. 이 부사장은 "T4-1이 '데이터 소버린' 단계라면, T4-2는 '기술 소버린'에 한 발 더 다가간 모델"이라며 "현재 국내 독자 AI 파운데이션 모델로 선정된 팀 대부분은 모두 T4-2 영역에 해당하는 질적 변형을 수행했다는 점에서 충분히 평가받아야 한다"고 말했다. 이어 "아키텍처는 이미 범용 기술이 됐지만, 가중치는 국가가 소유해야 할 자산"이라며 "T4는 아키텍처라는 그릇을 빌리더라도 데이터와 연산, 결과 지능을 우리가 통제하는 실질적 소버린 모델"이라고 덧붙였다. 일각에서 독자 아키텍처(T5)까지 가야 진짜 소버린으로 인정할 수 있다는 주장에 대해선 "현실을 외면한 기술적 순혈주의"라고 선을 그었다. 또 수백억원을 들여 아키텍처를 처음부터 다시 만들어도 글로벌 표준 모델 대비 성능 우위를 확보하기는 쉽지 않다는 점도 분명히 했다. 이 부사장은 "대다수 기업에게는 아키텍처 재발명보다 고품질 데이터와 학습 인프라에 집중하는 것이 더 합리적인 전략"이라며 "T4는 산업의 허리를 튼튼하게 만드는 표준 전략이고, T5는 국가 안보와 기술 패권을 겨냥한 리더십 전략으로 두 트랙이 함께 가야 생태계가 건강해진다"고 강조했다. 이 기준을 구현한 '소버린 AI 판별 도구(Sovereign AI T-Class evaluator 2.0)'를 직접 개발해 공개한 이유에 대해서도 그는 투명성을 거듭 강조했다. 이 부사장은 "AI 개발은 참조와 변형의 경계가 매우 모호한 회색지대"라며 "명확한 가이드 없이 결과만 놓고 개발자를 비난하는 것은 부당하다"고 말했다. 그러면서 "기준이 없으니 불필요한 논쟁과 감정 싸움만 커진다"며 "누구나 같은 잣대로 설명할 수 있는 최소한의 공통 기준이 필요하다고 판단했다"고 덧붙였다. 실제로 해당 기준 공개 이후 업계에서는 "왜 이제야 이런 기준이 나왔느냐", "사실상 표준으로 삼을 만하다"는 반응이 이어지고 있다. 또 정부에서 이 부사장이 만든 'T-클래스 2.0'을 바탕으로 독자 AI 파운데이션 모델의 평가 기준이 구체적으로 만들어져 심사 투명성을 높여야 한다는 지적도 나왔다. 이 같은 분위기 속에 이 부사장은 독자 AI 논의가 현재 단계에만 머물러서도 안 된다고 지적했다. 또 현재의 혼란이 단기적인 사업 논쟁이 아니라 AI를 국가 전략 차원에서 어떻게 바라볼 것인가에 대한 더 큰 질문으로 이어지고 있다고 봤다. 그는 "독파모가 보여주기식 경쟁이나 단기 성과에 머물면, 월드모델·디지털 트윈·피지컬 AI로 이어지는 다음 스테이지를 놓칠 수 있다"며 "국가 R&D는 지금보다 한 단계 앞을 내다보는 구조여야 한다"고 강조했다. AGI 시대, 5년 내 현실화…AI 국가 전략, 체계적 마련 필요 이 부사장은 AI 경쟁의 종착점을 단기적인 모델 성능 비교에 두는 것 자체가 위험하다고도 경고했다. 그는 AGI(범용인공지능)가 5년 안에 현실화될 가능성이 높다고 전망하며 그 이후를 대비하지 않는 전략은 국가 차원에서도 지속 가능하지 않다고 지적했다. 그는 "AGI는 단순히 모델이 더 똑똑해지는 문제가 아니라 기억 구조와 추론 방식이 인간의 뇌를 닮아가는 단계"라며 "지금 구글이 시도하고 있는 중첩학습처럼 단기·중기·장기 기억을 분리·결합하는 구조는 거대언어모델(LLM) 이후를 준비하는 명확한 신호"라고 말했다. 그러면서 "글로벌 빅테크들은 이미 다음 스테이지를 보고 있다"며 "하지만 우리는 아직 현재 모델이 프롬 스크래치냐 아니냐에만 머물러 있는 건 아닌지 돌아봐야 한다"고 덧붙였다. 이 부사장은 AGI와 ASI(초지능)를 막연한 공포의 대상으로 보는 시각에도 선을 그었다. 그는 "인류는 오래전부터 인간을 능가하는 지능이 등장해 우리가 해결하지 못한 문제를 풀어주길 기대해왔다"며 "중요한 것은 AGI·ASI 자체가 아니라 그것을 어떤 문제 해결을 위해 어떻게 통제하고 활용할 것인가에 대한 고민"이라고 봤다. 이어 "AI를 두려워하기보다 인류 난제 해결이라는 방향성 속에서 통제권을 쥐는 것이 국가 전략의 핵심"이라고 강조했다. 이 부사장은 이 같은 고민을 담아 다음 달께 'AI 네이티브 국가'를 출간할 계획이다. 이 책에는 모델 개발을 넘어 지정학, 경제, 복지, 산업 구조 전반에서 AI가 국가 경쟁력을 어떻게 재편하는지에 대한 고민을 고스란히 담았다. 또 메모리 반도체, 제조 데이터, 클라우드 인프라를 동시에 보유한 한국의 구조적 강점을 짚으며 AI 시대에 한국이 '풀스택 국가'로 도약할 수 있는 전략도 함께 제시할 계획이다. 그는 "국내 AI 논의가 기술 우열이나 모델 성능에만 매몰돼 있는 흐름을 벗어나고 싶었다"며 "같은 기술이라도 국가가 어떤 전략을 취하느냐에 따라 결과는 전혀 달라질 수 있다는 점을 책을 통해 정리하고 싶었다"고 설명했다.마지막으로 그는 "AI를 둘러싼 지금의 혼란은 누군가가 틀렸기 때문이 아니라 기준과 구조가 없었기 때문"이라며 "논쟁을 줄이고 경쟁을 건강하게 만들 수 있는 최소한의 합의점을 만드는 데 앞으로도 계속 목소리를 낼 것"이라고 피력했다.

2026.01.08 10:10장유미 기자

[유미's 픽] 'AI 3강' 외치는 정부, 국가AI컴퓨팅센터 추진 속도낼까

조(兆) 단위 초대형 인공지능(AI) 데이터센터를 짓는 정부 사업이 연초부터 제 속도를 내지 못하고 있다. '국가AI컴퓨팅센터' 구축 사업자에 삼성SDS가 주도하는 대기업 컨소시엄이 유일하게 도전장을 내밀었지만, 정부가 계획된 일정에 맞춰 사업을 진행하지 않고 있어서다. 7일 업계에 따르면 과학기술정보통신부는 지난해 10월 국가AI컴퓨팅센터 사업 대상자로 선정된 삼성SDS 컨소시엄과 아직까지 우선협상대상자 계약을 체결하지 못했다. 당초 삼성SDS 컨소시엄을 대상으로 기술·정책 평가와 투자·대출 등 금융심사를 거쳐 지난해 12월 말 우선협상대상자 선정을 마무리할 것이란 계획을 밝혔으나, 해가 바뀌었음에도 여전히 논의만 하고 있는 상태다.국가AI컴퓨팅센터 사업은 정부와 민간이 공동으로 특수목적법인(SPC)을 설립해 대규모 그래픽처리장치(GPU) 인프라를 확보하고 산업계·학계·스타트업에 연산 자원을 제공하는 대형 공공 인프라 프로젝트다. 총 사업비는 약 2조5천억원 규모로, 정부가 800억원을 출자하고 민간과 정책금융기관이 나머지를 분담한다. 정부는 'AI 고속도로' 거점이 될 이곳에 오는 2028년까지 첨단 GPU 1만5천 장 이상을 확보, 2030년까지 지속 확충한다는 계획이다. 앞서 두 차례 공모는 공공 지분 비율(51%)과 매수청구권, 국산 AI 반도체(NPU) 의무 장착 조항 등으로 인해 유찰됐다. 이에 정부는 공공 지분을 30% 미만으로 낮추고 매수청구권과 국산화 의무를 폐지했다. 또 복수 CSP가 참여한 컨소시엄을 우대하고 단독 입찰이어도 적격 심사 절차를 거쳐 추진할 수 있도록 조건을 완화했다. 이후 삼성SDS는 네이버클라우드와 카카오, KT 등 주요 클라우드 서비스 사업자(CSP)와 연합해 이 사업에 홀로 도전장을 내밀었다. 삼성SDS 컨소시엄은 지난해 10월 국가 AI컴퓨팅센터 구축사업에 단독으로 참여한 이후 특수목적법인(SPC) 설립 TF를 구성해 ▲특수목적법인 설립 ▲데이터센터 설계(인허가 등) ▲사업 기획(사업모델 수립 등)을 준비해왔다. 하지만 정부가 계획대로 국가AI컴퓨팅센터 사업을 추진하지 않으면서 삼성SDS 컨소시엄과 SPC 설립을 위한 협약 체결을 제때 할 수 있을지도 미지수다. 과기정통부는 당초 올해 2월 SPC 설립 협약을 체결한 후 오는 3월 SPC 설립을 마무리할 계획이었다. 삼성SDS 관계자는 "지난해 11월 기술·정책평가를 통과했다"며 "현재 금융심사가 진행 중"이라고 설명했다. 이로 인해 'AI 고속도로'의 핵심 인프라를 마련함으로써 지역 균형 발전 투자를 활성화하고 글로벌 'AI 3강'으로 도약하겠다는 이재명 정부의 당초 의지도 점차 무뎌지는 모양새다. 업계에서는 사업 지연의 배경으로 대규모 정책금융이 투입되는 사업 구조상 정부 내부의 재정·리스크 검토가 예상보다 길어지고 있는 것으로 분석했다. 특히 우선협상대상자 선정 이후 금융심사와 함께 사업 추진 과정 전반에 대한 세부적인 정책 판단이 병행되면서 다음 단계로의 의사결정이 늦어지고 있는 것 아니냐는 관측도 나온다. 이처럼 정부가 사업 추진을 머뭇거리고 있지만, 삼성SDS 컨소시엄은 전남 해남에 위치한 국가 AI컴퓨팅센터 부지 방문을 시작으로 사업 추진을 위한 본격적인 움직임에 나선 모습이다. 삼성SDS는 이날 네이버클라우드와 전라남도(지자체) 등 컨소시엄 참여사 관계자 30명과 함께 국가AI컴퓨팅센터 부지로 선정된 솔라시도를 직접 찾아 데이터센터 건립 예정지를 시찰했다. 또 지반조사 진행 결과 확인 및 전력·통신 등 주변 인프라 여건도 종합적으로 점검했다. 이는 사업 공모에 참여한 이후 첫 공식 대외 일정이다. 삼성SDS 컨소시엄은 금융심사와 우선협상자 선정이 조속히 마무리되면 실시협약을 거쳐 특수목적법인 설립 절차에 착수할 계획이다. 삼성SDS 컨소시엄 관계자는 "이번 현장 방문은 국가 AI컴퓨팅센터를 신속하고 차질 없이 구축하겠다는 컨소시엄의 의지를 재확인하고, 사업 추진에 앞서 현장 여건을 선제적으로 점검하기 위한 것"이라며 "국가 AI컴퓨팅센터가 우리나라 AI 연구·산업 생태계의 글로벌 도약을 이끄는 토대가 될 수 있도록 컨소시엄 참여사들의 역량을 결집해 사업을 성공적으로 추진하겠다"고 말했다.

2026.01.07 15:31장유미 기자

HNIX, 네이버클라우드와 범현대그룹 AX·클라우드 혁신 이끈다

HNIX가 범현대그룹의 인공지능 전환(AX)과 클라우드 혁신을 주도하기 위해 네이버클라우드와 손을 맞잡았다. HNIX는 네이버클라우드의 공식 파트너사로 등록하고 AX·클라우드 사업을 중심으로 전략적 협력을 본격 추진한다고 6일 밝혔다. 이번 파트너십을 통해 양사는 AI와 클라우드를 결합한 AX 중심의 장기적인 협업 모델을 구축한다. HD한국조선해양·HDC현대산업개발·현대비앤지스틸 등 HNIX의 고객사를 대상으로 AI 기반의 맞춤형 자동화·예측 분석 솔루션을 우선 제공할 계획이다. 동시에 이같은 솔루션을 시스템·패키지화 해 범현대가 기업을 포함한 국내 기업 전반으로 확대 적용함으로써 각 산업군의 디지털 혁신을 이끌 방침이다. 네이버클라우드는 안정성과 확장성을 갖춘 클라우드 인프라 및 AI 플랫폼을 제공하고 HNIX는 산업별 업무 이해도를 바탕으로 AX 기획, AI 솔루션 적용, 레거시 시스템 연계, 현장 밀착형 구축·운영 등을 담당한다. 산업별로는 조선·자동차·기계 등 조립·생산 산업에서는 ▲데이터 기반 AI 설계 자동화 ▲품질 지능화 ▲생산 의사결정 고도화 등을, 철강·화학·정유 등 공정·연속 산업에서는 ▲AI 예지보전 ▲품질 예측 ▲에너지·설비 운영 최적화 등을 각각 핵심 축으로 공동 사업을 전개한다. 양사는 이러한 산업·기업별 AX 모델을 네이버클라우드의 클라우드 인프라에서 구축하고 개념검증(PoC)·상용화·기업 그룹사 확대 적용 등을 순차적으로 추진할 예정이다. 아울러 양사는 기존 온프레미스 중심의 레거시 환경을 클라우드 기반으로 전환하고 AI 서비스를 클라우드 형태로 신속하게 도입할 수 있는 구조를 마련함으로써 고객 투자 부담 등을 낮추는 데도 집중한다. 이를 통해 산업 현장에서 즉시 체감 가능한 AX 성공 사례를 지속 확대해 나가는 등 실질적인 성과를 만들어 나갈 계획이다. 특히 HNIX는 내년 조직개편에서 정득영 전무를 총괄 책임자로 하는 전사 AX추진실을 신설, 네이버클라우드와 협력 완성도를 끌어올리고 AX 관련 사업을 본격 확장할 예정이다. AX추진실을 통해 AI와 클라우드 사업 영역과 범위 등을 넓혀가는 한편, 최신 트렌드에 부합하는 기술을 HD현대그룹과 HL그룹 등 범현대가 기업들에 적용하는 것이 목표다. HNIX 관계자는 "우리의 산업 현장 경험과 AX 실행 역량에 네이버클라우드의 AI 플랫폼이 더해지면 기업들의 IT 시스템을 효과적으로 혁신할 수 있을 것"이라며 "양사는 단순한 파트너 관계를 넘어 고객의 비즈니스 성과를 함께 만들어가는 진정한 윈윈 동반자로서 성장해 나갈 것"이라고 강조했다. 네이버클라우드 관계자는 "HNIX는 대규모 엔터프라이즈와 산업 현장에서 검증된 실행력을 증명한 파트너"라며 "AX와 클라우드 기반 협업을 통해 국내 산업 전반의 디지털 경쟁력을 높이는 대표적인 성공 사례를 함께 만들어 가겠다"고 밝혔다.

2026.01.06 17:50한정호 기자

독자 AI '프롬 스크래치' 논란 재점화…네이버클라우드, 오픈소스 차용 해명

정부가 추진 중인 '독자 인공지능(AI) 파운데이션 모델' 프로젝트를 둘러싸고 기술 자립성 논란이 다시 불거졌다. 네이버클라우드가 일부 멀티모달 구성 요소에 외부 오픈소스 모델을 활용한 사실이 알려지면서 '프롬 스크래치' 기준을 둘러싼 해석 차이가 업계 내 논쟁으로 확산되는 양상이다. 5일 업계에 따르면 네이버클라우드가 멀티모달 AI 모델 '하이퍼클로바X 시드 32B 싱크'의 음성·이미지 입력을 처리하는 비전·오디오 인코더 일부에 중국 알리바바의 오픈소스 모델 '큐웬' 계열을 활용한 것으로 알려졌다. 해당 인코더 가중치가 큐웬 모델과 높은 코사인 유사도와 피어슨 상관계수를 보였다는 점이 공개되면서 정부 과제 취지에 부합하는지 여부가 쟁점으로 떠올랐다. 정부의 독자 파운데이션 모델 프로젝트는 모델을 학습 초기 단계부터 자체 기술로 구축하는 이른바 프롬 스크래치 구현을 주요 평가 요소 중 하나로 삼고 있다. 이 때문에 핵심 구성 요소 중 일부라도 외부 모델을 활용할 경우 기술 자립성에 대한 문제 제기가 불가피하다는 지적이 나온다. 이에 대해 네이버클라우드는 어디까지를 파운데이션 모델로 볼 것인가에 대한 정의 차이를 제시했다. 회사 측은 "파운데이션 모델의 본질은 입력 정보를 해석하고 추론해 결과를 만들어내는 핵심 엔진에 있다"며 "이 영역은 인간으로 치면 사고와 정체성을 담당하는 두뇌에 해당한다"고 설명했다. 이어 "해당 핵심 추론 엔진을 프롬 스크래치 단계부터 100% 자체 기술로 개발해 왔으며 이를 통해 한국어와 한국 사회의 복잡한 맥락을 깊이 이해하는 독자적인 경쟁력을 확보해 왔다"고 강조했다. 논란이 된 비전·오디오 인코더는 이 두뇌에 입력 신호를 전달하는 역할로, 모델의 정체성과는 구분해야 한다는 입장이다. 특히 비전 인코더의 경우 시각 정보를 모델이 이해할 수 있는 신호로 변환하는 시신경 역할을 하며 자체 비전 기술 역량도 충분히 보유하고 있다고 설명했다. 이번 모델에서는 글로벌 기술 생태계와의 호환성과 전체 시스템의 효율적 최적화를 고려해 검증된 외부 인코더를 전략적으로 채택했다는 것이다. 또 네이버클라우드는 이러한 방식이 기술 자립도가 부족해서가 아닌 이미 표준화된 고성능 모듈을 활용해 전체 모델의 완성도와 안정성을 높이기 위한 고도의 엔지니어링 판단이라고 강조했다. 실제 글로벌 AI 업계에서도 알리바바의 큐웬-오디오가 오픈AI의 음성인식 기술을, 큐웬-옴니가 구글의 이미지 인식 기술을 기반으로 구축하는 등 유사한 사례가 존재한다는 점을 근거로 들었다. 아울러 관련 기술적 선택과 라이선스 정보를 허깅페이스와 테크리포트를 통해 투명하게 공개해 왔으며 모델 성능이나 기술 기여를 과장하려는 의도는 전혀 없다고 밝혔다. 멀티모달 AI에서 가장 어려운 과제는 개별 부품의 출처가 아니라 텍스트·음성·이미지를 하나의 유기적인 구조로 통합해 동시에 이해하고 생성하도록 설계하는 통합 아키텍처라는 설명이다. 정부의 독자 파운데이션 모델 프로젝트를 둘러싼 유사성 논란은 이번이 처음은 아니다. 앞서 업스테이지가 개발한 모델을 두고도 일부 가중치 유사성을 근거로 한 의혹이 제기된 바 있으며 이후 공개 검증과 추가 설명을 거치며 논쟁은 일단락됐다. 네이버클라우드 측은 "앞으로도 기술 개발의 모든 과정에서 투명성을 유지할 것"이라며 "단순히 모든 요소를 직접 만들었는가라는 프레임을 넘어, 어떻게 창의적으로 통합해 사용자에게 최고의 가치를 줄 것인가에 집중할 계획"이라고 밝혔다.

2026.01.05 20:32한정호 기자

  Prev 1 2 3 4 5 6 7 8 9 Next  

지금 뜨는 기사

이시각 헤드라인

대기업 이탈 속 국대 AI 패자부활전 개막…"기준 미달 시 선정 무산"

카카오, CA협의체 힘 빼고 실행력 키우는 조직으로 탈바꿈 한다

소주의 이유있는 변신…"이러면 마실까?"

금값 사상 최고치 찍자 금 코인 거래량 13배↑

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.