• ZDNet USA
  • ZDNet China
  • ZDNet Japan
  • English
  • 지디넷 웨비나
뉴스
  • 최신뉴스
  • 방송/통신
  • 컴퓨팅
  • 홈&모바일
  • 인터넷
  • 반도체/디스플레이
  • 카테크
  • 헬스케어
  • 게임
  • 중기&스타트업
  • 유통
  • 금융
  • 과학
  • 디지털경제
  • 취업/HR/교육
  • 인터뷰
  • 인사•부음
  • 글로벌뉴스
인공지능
배터리
양자컴퓨팅
컨퍼런스
칼럼•연재
포토•영상

ZDNet 검색 페이지

'거대언어모델(LLM)'통합검색 결과 입니다. (55건)

  • 태그
    • 제목
    • 제목 + 내용
    • 작성자
    • 태그
  • 기간
    • 3개월
    • 1년
    • 1년 이전

클라우데라 "내년에는 프라이빗 LLM이 주류된다"

기업들이 향후 퍼블릭 모델보다 프라이빗 거대언어모델(LLM)을 선호할 것이란 전망이 나왔다. 인공지능(AI) 보안과 데이터 보호의 중요한 해법으로 떠오르고 있기 때문이다. 12일 클라우데라가 발표한 '2025년 기술 전망'에 따르면 내년 AI 기술 트렌드에서는 보안 강화, 거버넌스 발전, 프라이빗 거대 언어 모델(LLM) 선호가 3대 주요 이슈로 자리 잡을 전망이다. 특히 생성형 AI를 포함한 하이브리드 환경에서는 보안과 거버넌스가 보다 중요해질 것으로 예상된다. 클라우데라는 기업들이 AI 도입 초기와 달리 보다 구체적인 성과를 요구받고 있으며 이에 따라 신뢰 가능한 데이터 확보와 성과 중심의 전략이 기업 AI 계획의 중심이 될 것이라고 분석했다. AI 확산과 더불어 하이브리드 클라우드 인프라의 중요성도 강조되고 있다. 온프레미스, 퍼블릭 클라우드 등 다양한 환경에서 데이터를 유연하게 통합 관리하는 것이 필수적이라는 전망이다. 이와 함께 데이터 보안과 거버넌스가 AI 도입의 주요 과제로 떠오르고 있다. 실제로 보고서가 참조한 딜로이트의 조사 결과에서도 규제 준수와 거버넌스 문제가 AI 도입 시 가장 큰 과제 중 하나로 지적됐다. 이러한 상황에서 클라우데라는 하이브리드 데이터 통합 관리 플랫폼의 수요가 크게 증가할 것으로 내다봤다. 기업들이 다양한 데이터 소스를 통합 관리하면서 보안과 규제 준수를 함께 고려할 필요가 있는 상황에서 하이브리드 방식이 인기를 끌 것이라는 설명이다. 프라이빗 LLM의 수요 역시 증가할 것으로 보인다. 퍼블릭 모델과 달리 맞춤형 모델을 통해 더 높은 보안과 데이터 보호가 가능하기 때문이다. 이와 함께 검색증강생성(RAG) 같은 고성능 기술을 통해 데이터 보호·성능을 동시에 확보하려는 움직임도 확대될 전망이다. 특히 HR, 공급망 등 다양한 기업 운영 분야에서 이러한 추세가 나타날 것으로 보인다. 최승철 클라우데라 코리아 지사장은 "디지털 트랜스포메이션의 핵심은 단순한 클라우드 이동이 아닌 신뢰할 수 있는 데이터의 확보와 하이브리드 환경에서의 통합적 운영"이라며 "이를 통해 AI 경쟁 우위를 선점할 수 있다"고 말했다.

2024.11.12 17:09조이환

맨디언트 "생성형 AI 시대…방어자가 공격자보다 강력해 질 수 있다"

"지금까지 사이버 보안은 방어자가 불리한 게임이었습니다. 이제 생성형 AI를 활용하면 이 판도를 역전시킬 수 있습니다." 심영섭 맨디언트 한국 및 일본 총괄은 6일 서울 강남 섬유센터에서 열린 '제14회 소프트웨어 개발보안 컨퍼런스'에서 이같이 말하며 생성형 AI를 통한 보안 취약점 점검 및 대응 전략을 소개했다. 심 총괄은 20년 이상의 사이버 보안 경력을 바탕으로 '방어자의 딜레마'를 강조했다. '방어자의 딜레마'란 방어자가 모든 취약점을 막아야 하지만 공격자는 단 하나의 취약점만 찾아 침투하면 된다는 불평등한 상황을 뜻한다. 지난 2000년대 IT 버블 시기부터 이러한 상황이 지속되며 보안 담당자는 끊임없이 늘어나는 취약점들을 모두 방어해야 하는 어려움을 겪어 왔다. 이에 심 총괄은 AI 시대에 접어들어 이러한 딜레마를 해결하기 위해 새로운 접근법이 필요하다고 강조했다. 또 심 총괄은 맨디언트의 연례 보고서인 '엠-트렌드(M-Trends)'를 인용해 최근 사이버 공격의 경향을 설명했다. 과거에는 네트워크 및 시스템 취약점을 이용한 공격이 주를 이뤘지만 최근에는 소프트웨어 공급망을 타깃으로 한 공격이 급증하고 있다. 특히 오픈소스 라이브러리에 대한 의존도가 높아지면서 취약점이 증가하고 있는 상황이다. 여기에 생성형 AI의 등장으로 새로운 보안 취약점이 발생할 여지도 있다. 생성형 AI가 학습하는 데이터에는 기존의 버그나 취약점이 포함될 수 있기 때문이다. 심 총괄은 "실제로 생성형 AI가 생성한 코드의 약 40%가 보안 취약점을 포함하고 있다"며 "이에 따라 개발자들이 생성형 AI를 활용할 때는 신중한 검토와 분석이 필요하다"고 강조했다. 그럼에도 불구하고 방어자에게는 생성형 AI가 주는 이점도 있다. 거대언어모델(LLM)과 자동화 도구를 활용하면 정적·동적 분석을 통해 보안 취약점을 효과적으로 점검할 수 있기 때문이다. 특히 코드QL(CodeQL), 트리비(Trivy) 등 다양한 솔루션이 개발돼 취약점을 탐지하고 보안을 강화하는 데 도움을 주는 것으로 알려져 있다. 또 구글의 OSS-퍼즈(OSS-Fuzz)나 엔비디아의 백스(VACS)처럼 오픈소스 보안을 강화하기 위한 프로젝트들도 활발히 진행 중이기 때문에 보안 업계의 기대가 커지고 있다. 심 총괄은 "LLM을 활용한 자동화로 보안 전문가들이 생산성을 높이고 보안성을 강화할 수 있게 됐다"며 "방어자에게만 불리하던 구도가 역전될 수도 있는 기회의 창이 열렸다"고 말했다. 그러면서 "보안 전문가는 생성형 AI가 보안 분야에 위협이 될 수도 있지만 동시에 강력한 무기가 될 수 있다는 점을 늘 주지하고 이 기회를 잘 활용해야 한다"고 강조했다.

2024.11.06 16:58조이환

"집과 자동차를 하나로"…카카오가 AI와 IoT 결합하는 방법은

"인공지능(AI)과 사물인터넷(IoT)을 결합해 보다 스마트하고 개인화된 서비스를 제공하려고 합니다. 이를 통해 사용자들의 생활을 획기적으로 개선하는 것이 우리의 궁극적인 목표입니다." 김덕형 카카오 담당자는 22일 경기도 용인시 카카오 AI 캠퍼스에서 열린 '이프카카오 2024' 행사에서 이같이 말했다. '이프카카오 2024'는 카카오 그룹이 AI 및 클라우드 기술 성과를 공유하고 국내 IT 기술 발전에 기여하기 위해 마련한 행사다. 첫날에만 10개 이상의 다양한 기술 세션이 진행됐다. 이날 김 담당자는 '카카오i를 통한 AIoT 서비스의 사례와 미래' 세션을 맡아 '인공지능-사물인터넷(AIoT)'을 구현하기 위한 카카오i의 역할을 설명했다. AIoT란 인공지능(AI)과 사물인터넷(IoT)의 융합으로, 데이터 수집과 학습이 동시에 이뤄져 큰 시너지를 발휘한다. 이는 AI의 학습·추론 능력과 IoT의 데이터 수집·연결성이 결합돼 더 효율적이고 지능적인 시스템을 구축할 수 있기 때문이다. 김 담당자는 "IoT의 발전 단계는 현재 자율형 단계로 나아가고 있다"며 "이 단계에서는 AI 기술이 IoT 기기 자체에서 실행돼 데이터 수집과 학습을 동시에 수행하고 기기 간의 협업도 가능해진다"고 설명했다. 카카오 AI 서비스들 역시 이러한 방향성을 따르며 발전하고 있다. '헤이 카카오', '카카오홈', '카카오i 오토' 등의 솔루션이 자연어를 기반으로 다양한 기능을 제공하고 있기 때문이다. 사용자들은 이미 이러한 서비스를 통해 AIoT의 초기 단계를 경험하고 있다. 이어 발표를 맡은 김진호 담당자는 AIoT가 구현될 미래의 구체적인 시나리오를 제시했다. 그는 AIoT 기술의 지속적인 발전이 개인화된 서비스로 구현되면서 기기간의 연결성이 증대되는 상황을 시나리오를 통해 설명했다. 김 담당자는 "취침 전에 카카오i 솔루션을 대상으로 '나 잘게'라고 말하면 기기가 자동으로 에어컨 온도를 조절하고 조명의 밝기와 색상을 변경하며 커튼을 닫는다"며 "리모콘처럼 하나의 기기를 제어하는 것을 넘어 사용자의 진정한 의도를 이해하고 여러 기기를 통합적으로 관리하는 상황이 가능해질 것"이라고 강조했다. 또 그는 환경 변화에 따라 적절한 서비스를 추천하는 기능도 소개하며 자동차를 예시로 들었다. 가까운 미래에 카카오i 솔루션은 운전 중 날씨와 차량 상태를 고려해 에어컨을 켜고 장시간 운전 시 환기를 추천하는 기능을 제공할 예정이다. 이러한 기대에 대해 김 담당자는 "사용자들은 더욱 편리하고 안전한 생활을 누릴 수 있게 될 것"이라고 강조했다. 그럼에도 불구하고 AIoT 구현을 위해서는 해결해야 할 도전과제들이 있다. 김 담당자는 "복잡하고 다양한 표현을 AIoT가 이해하는데는 기존의 자연어 처리 방식으로는 한계가 있다"며 "생성형 AI와 거대언어모델(LLM)을 활용해 사용자 발화의 맥락을 정확히 이해하고 적절한 기기 제어를 수행해야 한다"고 밝혔다. 그 중 해결책으로 각광 받는 최신 AI 기술로는 생각의 연쇄(Chain of Thought), 멀티 에이전트 LLM, 검색증강생성(RAG) 등이 있다. 이러한 기술들은 사용자 발화에서 제어해야 할 기기 목록을 정확히 추출하고 AI가 그럴듯하게 거짓말하는 환각 현상을 줄이는 데 도움이 된다. 김 담당자는 "우리는 기술적인 과제들을 해결해 결국 집에서는 차량을, 차량에서는 집을 제어할 수 있는 통합된 서비스를 제공하게 될 것"이라며 "AI를 통한 스마트한 결정으로 사용자 경험을 혁신하겠다"고 강조했다.

2024.10.22 15:46조이환

마이크로소프트 AI 부사장, 오픈AI 합류한다

마이크로소프트의 인공지능(AI) 핵심인력이 오픈AI에 합류한다. 15일 로이터에 따르면 세바스티앙 뷔벡 마이크로소프트 생성 AI 연구 부사장이 마이크로소프트에서 오픈AI로 이직해 일반인공지능(AGI) 개발에 주력할 예정이다. 뷔벡은 마이크로소프트에서 소형 거대언어모델인 '파이(Phi)' 연구를 주도했으며 이 모델은 기존 거대언어모델(LLM)보다 더 작은 규모로도 높은 성능을 낼 수 있다는 평가를 받고 있다. 그의 공동 연구자들은 마이크로소프트에 남아 해당 모델을 계속 개발할 계획이다. 이번 이동은 최근 오픈AI에서 발생한 일련의 인사 변화들과 맞물려 주목받고 있다. 지난 9월에는 오픈AI 최고기술책임자(CTO)였던 미라 무라티도 퇴사한 바 있다. 마이크로소프트는 뷔벡이 오픈AI로 자리를 옮겼지만 양사 간 협력 관계는 지속될 것이라고 밝혔다. 마이크로소프트는 오픈AI의 주요 투자자로서 긴밀한 관계를 유지하고 있다. 업계 관계자는 "오픈소스가 아닌 폐쇄형 연구를 진행하는 회사 간에서는 인력 이동이 아이디어의 확산에 도움될 수 있다"며 "AI 기술 발전에 긍정적인 영향을 미칠 것으로 생각한다"고 말했다.

2024.10.15 09:06조이환

MIT 박사·삼성 최연소 임원이 AI 기업 '투플랫폼' 세운 이유는

"인간과 인공지능(AI) 간의 상호작용을 혁신하고자 하는 마음이 저를 이끌었습니다. 둘 사이의 관계를 새롭게 정의해 인류 모두를 위한 AI를 실현하는 것이 우리의 최종 목표입니다. 이를 위해 우리는 비용 효율적이면서도 다문화 지향적인 '듀얼 트랜스포머 아키텍처' 기술을 적극 활용하고 있습니다." 프라나브 미스트리 투플랫폼 대표는 최근 기자와 만나 회사의 AI 기술 성과와 향후 계획을 이같이 밝혔다. 미스트리 대표는 지난 2012년 MIT에서 박사 과정을 밟던 중 삼성전자에 입사해 최연소 임원이 된 것으로 국내에 널리 알려진 바 있다. 그 이전에는 구글, 마이크로소프트, 나사(NASA) 등에서 근무하며 폭넓은 경험을 쌓았으며 삼성전자 입사 후에는 최연소 상무·전무로 초고속 승진해 최첨단 기술 프로젝트를 이끌었다. 그가 지난 2021년 삼성전자를 나온 후 세운 기업이 바로 투플랫폼이다. 인간과 AI의 관계를 재정의하고자 하는 목표를 가진 테크 스타트업으로서, 투플랫폼은 자체 거대언어모델(LLM)인 '수트라(Sutra)'를 개발해 다국어 지원·현지화에 특화된 솔루션을 제공한다. 미스트리 대표는 "'수트라'의 설계 철학은 전 세계 모든 다른 언어를 영어만큼이나 효율적으로 처리하는 것"이라며 "기존 모델들과 달리 진정한 의미에서 현지화된 경험을 대규모 사용자들에게 제공하는 것이 목표"라고 강조했다. 미스트리 대표에 따르면 오픈AI의 '챗GPT'와 같은 타사 LLM 역시 다양한 언어를 지원하고 있지만 '수트라'는 보다 비용 효율적이며 현지화에 특화돼 있다. 그는 "'수트라'는 기존 모델들보다 영어 이외의 언어에 최대 8배까지 비용 효율적"이라며 "이는 에너지 자원이 제한된 비영어권 시장에서 AI 도입이 확대되는 데 가장 중요한 요소"라고 주장했다. 이러한 비용 효율성을 가능하게 하는 것은 투플랫폼에서 개발한 '듀얼 트랜스포머 아키텍처' 기술 덕분이다. 인간의 뇌 작동 방식을 모방한 기술로서, '듀얼 트랜스포머'는 LLM이 한 언어에서 배운 지식과 개념을 다른 언어에도 그대로 적용할 수 있게 한다. 미스트리 대표는 "우리가 새로운 언어를 배울 때 굳이 이미 알고 있는 개념을 다시 배우지 않는다"며 "수트라 LLM 역시 이와 같이 이미 알고 있는 개념을 다른 언어에서 추가로 학습할 필요가 없게 설계됐다"고 설명했다. 이러한 기술 개발은 단순히 비용 효율성뿐만 아니라 문화적 다양성에도 도움을 준다. 실제로 '수트라'는 인도의 여러 방언과 혼합 언어까지 동시적으로 지원하고 있다. 미스트리 대표는 "우리의 주요 시장 중 하나인 인도는 각 지역들끼리 서로 포르투갈과 아르메니아 사이만큼이나 거대한 문화·언어적 차이가 있다"며 "'수트라'는 이와 같은 다양한 언어·문화차이를 극복하고 서비스를 제공할 수 있다"고 강조했다. 이러한 '수트라'의 장점은 최근 대두되는 '소버린 AI' 개념과도 연결된다. 실제로 지난 2022년부터 각국의 AI 주권을 위해 소버린 AI 개념을 강조해 왔던 네이버도 자회사 스노우를 통해 투플랫폼에 5백만 달러(약 60억원)를 투자한 바 있다. 상용화 역시 활발하다. 투플랫폼은 인도의 대표 통신기업인 릴라이언스 지오(Reliance Jio)와 협력해 '수트라'를 공급 중이다. 최근에는 국내 유수의 대기업들과도 사업 계약을 추진하고 있는 것으로 알려졌다. 투플랫폼의 철학은 실제 사업 행보에서도 드러난다. 본사가 위치한 실리콘밸리 외에는 인도 뭄바이와 서울에 사무실을 두고 있기 때문이다. 이는 대부분의 다국적 기업들이 세금 혜택을 목적으로 주로 싱가포르·두바이에 해외 사무소를 두는 것과는 차별화됐다. 미스트리 대표는 "지사를 세울 때 최우선 기준은 우리 기술 모델에 걸맞는 현지 인재를 확보하고 시장을 이해하는 것"이라며 "고객들과 가까이서 소통하며 현지 시장에 맞는 제품을 개발하고 언어 문제를 해결하는 '글로컬(Glocal)' 기업이 되기 위한 전략"이라고 밝혔다. 미스트리 대표에 따르면 투플랫폼의 장기 목표는 인간과 AI의 관계에 대한 재정의다. 실제로 투플랫폼의 슬로건은 '나(I)와 AI'로, 인간과 기계의 상호작용을 새로운 단계로 발전시키는 것이다. 이를 위해 텍스트나 음성을 넘어 몰입형 경험을 선도하는 것이 주요 전략이다. 실제로 회사 제품들도 이를 반영하고 있다. 올해 1월에는 AI 소셜앱 '재피(ZAPPY)'를 국내에 정식 출시했으며 출시 2개월 만에 25만 명이 넘는 유저를 확보했다. 인간 친구뿐만 아니라 AI 캐릭터들과도 함께 대화하는 기능을 통해 새로운 형태의 커뮤니케이션을 가능케 했다. 기술 혁신의 중요성을 강조하는 동시에 미스트리 대표는 책임 있는 AI 개발의 중요성에 대해서도 역설했다. 실제로 투플랫폼은 군사 분야에서의 책임 있는 AI 활용을 위해 대한민국 외교부가 전 세계 국가들을 대상으로 지난 9~10일 개최한 'REAIM' 정상회의에 AI 스타트업으로서는 유일하게 초청된 바 있다. 10일 개최된 주요 세션 패널로서 미스트리 대표는 스웜(Swarm)과 같은 최신 AI 기술들의 발전이 국제 안보에 미칠 수 있는 잠재적 악영향에 대해 발표했다. 스웜 AI는 작은 AI 에이전트들이 협력해 더 큰 지능을 발휘하는 기술로, 통제하기 어려운 집단 지능을 형성해 예측 불가능한 행동을 초래할 수 있다. 미스트리 대표는 패널에서 "새로운 AI들의 기술적 특성과 잠재적 악영향을 고려해야 한다"며 "비단 스웜 만이 아니라 앞으로 기하급수적으로 발전할 기술들의 잠재적 악용을 지속적으로 방지하고 책임감 있게 활용하는 것이 매우 중요하다"고 역설했다. 투플랫폼이 유일하게 행사에 초청된 AI 기업인 이유를 묻는 기자의 질문에 그는 "책임·효율성의 균형을 맞추는 동시에 인간과 기술 모두에 집중해 온 경영 철학이 주효했던 것 같다"며 "끊임없이 발전하는 AI가 의도치 않게 발생시킬 수 있는 악영향에 끊임없이 대비하고 인간을 위한 기술을 개발하겠다"고 밝혔다. 그러면서 "우리는 디즈니처럼 상상력과 기술로 세상을 변화시키는 회사가 되고자 한다"며 "기술이 일상에 스며들어 경계가 사라지는 세상을 만들고 싶다"고 강조했다.

2024.09.18 10:36조이환

[써보고서] "정말 미쳤다"…오픈AI 新모델 'o1' 추론 능력에 '감탄'

"다른 인공지능(AI)에게 물어봐도 한 번도 맞힌 적 없는 문제들을 한글로 한 번에 해결하네. 이 모델은 정말 미쳤다." 13일 공개된 오픈AI의 인공지능(AI) 모델 'o1'에 대해 국내 관련 커뮤니티에서는 찬사가 이어졌다. 사용자들이 모델 성능을 비교하기 위해 넣었던 난해한 논리학 문제와 수학 문제들을 직접 생각하고 모두 해결했기 때문이다. 론칭 당일 새벽부터 모니터링하던 기자도 직접 다양한 테스트를 진행해 봤다. 추론과 수학 논리에 특화된 AI…뛰어난 문제 해결 능력 '눈길' 우선 간단한 실험으로 단어 내 특정 알파벳 개수를 세는 테스트를 진행했다. 기존의 거대언어모델(LLM) 대다수는 숫자 세기에 약점을 보였지만 'o1'은 'strawberry'에 포함된 'r'의 개수를 묻자 2초 만에 정확히 3개라고 대답했다. 논리학 문제에서도 뛰어난 성능을 보였다. 멘사 등에서 사용하는 '아이의 나이 맞추기' 문제를 제시하자 'o1'은 정확한 답을 도출했다. 문제는 러시아 수학자 이반과 이고르의 대화로, 아들들의 나이의 곱이 36이고 합이 오늘 날짜라는 힌트를 기반으로 아들들의 나이를 추론하는 것이었다. 기존 GPT-4 모델은 오답을 제시했지만 'o1'은 아들들의 나이가 1, 6, 6이며 오늘 날짜가 13일임을 정확히 맞혔다. 또 복잡한 추리 문제가 포함된 도난 사건에서도 'o1'은 정확한 범인을 지목했다. 여러 용의자의 진술과 거짓말이 섞인 상황에서 '찰리'와 '존무드'가 범인임을 밝혀내며 논리적 추론 능력을 입증했다. 일상에서 사용하지 않는 논리학 문제 대신 복잡한 문장의 해석 능력도 확인해 봤다. 한때 국내에서 밈이 됐던 "나 아는 사람 강다니엘 닮은 이모가 다시 보게 되는 게 다시 그때처럼 안 닮게 엄마 보면 느껴지는 걸 수도 있는 거임? 엄마도?"라는 난해한 비문을 제시하자 'o1'은 그럴듯한 해석을 내놓았다. 'o1'은 화자의 말을 "강다니엘을 닮은 이모를 다시 보았을 때 예전만큼 닮았다고 느끼지 못했다"며 "이런 느낌이 어머니를 본 후에 생긴 것일 수 있는데, 어머니도 같은 생각을 하시는지 궁금하다"는 뜻으로 해석했다. 이처럼 'o1'은 복잡한 문장의 의미를 자연스럽게 이해하고 해석하는 능력을 보여줬다. 막대한 토큰 사용 추정…응답 시간과 사용 횟수 제한은 아쉬워 일부 아쉬운 부분도 있었다. 간단한 질문에도 응답 시간이 10초 이상 소요되는 경우가 있어 실시간 활용에 제약이 있었다. 국내 커뮤니티 유저 한 유저는 '고맙다'는 답을 듣기 위해 10초가 소요됐다는 비판을 제기한 바 있다. 또 일주일에 30회로 제한된 사용 횟수는 실제 업무나 연구에 활용하기에는 부족한 면이 있었다. 실제로 기자가 15번 이상 'o1'을 사용하자마자 경고창이 떴다. "미리 보기의 응답이 15개 남았습니다. 한도에 도달하면 2024년 9월 20일로 재설정될 때까지 응답이 다른 모델로 전환됩니다." 마지막으로 일반 사용자들이 수학이나 복잡한 논리 문제를 자주 접하지 않는다는 점에서 이러한 고급 기능이 얼마나 대중적으로 활용될지는 지켜봐야 할 부분이다. 단 프로그래머나 수학 연구자 등 전문 분야에서는 큰 도움이 될 것으로 예상된다. 'o1' 출시로 AI의 추론 능력이 한 단계 도약한 것은 분명하다. 향후 응답 속도 개선과 사용 제한 완화가 이루어진다면 다양한 분야에서 혁신적인 활용이 기대된다. 특히 수학적 계산과 논리적 추론이 필요한 분야에서 큰 변화를 가져올 것으로 보인다. 샘 알트만 오픈AI 대표는 'o1'의 출시에 대해 "새로운 패러다임의 시작"이라며 "AI는 이제 다양한 목적으로 복잡한 사고를 할 수 있게 됐다"고 평가했다.

2024.09.13 11:01조이환

업스테이지 "산업 특화 AI로 시장 공략…매출 급증했다"

"생성형 인공지능(AI)을 통해 돈 버는 기업으로 자리매김 했습니다. 올해 1분기 매출 100억원을 기록했습니다. 단순히 AI 모델 개발에만 그치지 않고 국내 금융·법률·의료·커머스 기업들에 맞춤형 거대언어모델(LLM)을 제공했기 때문입니다. 이런 사업 방향으로 국내뿐 아니라 미국 등 해외 시장에서도 본격 활약하겠습니다." 김자현 업스테이지 LLM 사업개발 리드는 최근 기자와 만나 자사 LLM '솔라'를 통한 비즈니스 성과와 향후 계획을 이같이 밝혔다. 김 리드는 업스테이지가 '솔라'를 통해 각 산업 도메인 업무에 특화된 솔루션을 제공해 왔다고 설명했다. 현재 업스테이지는 신한투자증권, 케이뱅크 등 금융회사에 파이낸스 LLM을 공급하고 있으며 법률상담 플랫폼 로톡을 운영하는 로앤컴퍼니에 법률 특화 솔루션을 제공하고 있다. 김 리드는 "고객이 요구하는 문제를 해결하기 위해 맞춤형 솔루션을 제공한 점이 주효했다"며 "이를 통해 고객사에 실질적인 가치를 제공하고 성공에 일조할 수 있었다"고 강조했다. 업스테이지는 금융과 법률뿐만 아니라 의료와 커머스 분야에서도 활약하고 있다. 의료 분야에서는 카카오 헬스케어와 손잡고 대학병원 3곳을 대상으로 AI 솔루션 제공용 메디컬 특화 모델을 제공한다. 커머스 분야에서는 커넥트웨이브와 협력해 AI 기반 맞춤형 상품 검색 및 추천 서비스를 구축했다. 현재 업스테이지는 생성형 AI 비즈니스로 올해 1분기 100억원 넘는 매출을 기록했다. 이는 지난해 회사 전체 매출보다 높은 수치다. 김 리드는 "업스테이지가 창업 원년부터 매출 창출을 목표로 사업을 진행했다"며 "최근 이례적인 성과를 얻은 셈"이라고 말했다. 이어 "생성형 AI 기업이 실제 매출을 올린 사례가 적다"며 "이런 상황에서 업스테이지 성과가 더 주목받고 있다"고 덧붙였다. 매출 성과 비결을 자체 개발한 LLM '솔라'와 파인튜닝 기술로 꼽았다. 파인튜닝은 LLM을 특정 작업이나 도메인에 맞게 학습 시키는 기술로, 업스테이지는 '솔라'를 특정 도메인에 맞게 파인튜닝해 고객사에 제공했다. 김 리드는 '솔라'가 번역·수학 풀이 등 특정 작업에서 오픈AI 'GPT-4' 같은 타사 LLM보다 뛰어난 성능을 보인다고 주장했다. 김 리드는 "파인튜닝 전문사인 프레디베이스(Predibase)와 협력해 '솔라' 성능 테스트를 500번 이상 실시했다"며 "'솔라'가 특정 도메인에선 빅테크 모델보다 우수하단 점을 정량적으로 입증했다"고 강조했다. 美·日 등 해외 진출 가속…"시장 수요에 맞는 전략 채택" 업스테이지는 글로벌 시장 진출도 빠르게 추진하고 있다. 현재 미국과 일본, 동남아시아 등 아시아태평양 지역으로 사업을 확장하며 국가 특성에 맞는 전략을 구사하고 있다. 김 리드는 "미국 시장에서는 온프레미스(On-premise) 수요를 주로 공략하고 있다"며 "생성형 AI 보안이나 비용 효율성 측면에서 온프레미스를 선호하는 기업 수요가 늘어났기 때문"이라고 밝혔다. 또 아태지역에서는 각국 언어와 도메인에 맞는 모델을 개발 중이다. 최근 '솔라' 일본어 버전을 개발 개발해 일본 시장 문을 두드리고 있다. 특히 '솔라' 일본어 버전은 니케이 아시아가 발표한 일본어 모델 벤치마크 테스트에서 상위 20위권에 포함된 것으로 알려졌다. 이중 유일한 한국산 모델이다. 김 리드는 "아태지역에서는 대규모 LLM을 자체 구축하기 어려운 경우가 많다"며 "한국서 입증된 경쟁력 있는 AI 솔루션을 통해 향후 베트남, 인도네시아, 아랍에미리트 등 다양한 국가에 언어 특화 모델을 제공할 계획"이라고 밝혔다. 김 리드는 업스테이지가 '솔라' 영어 모델을 공개해 AI 생태계 강화에 기여하고 있다는 점도 설명했다. 이를 통해 피드백과 사용 사례를 추가 확보하기 위함이다. 김 리드는 "오픈소스를 통해 개발자와 기업들이 업스테이지 모델을 활용하면 더 많은 애플리케이션과 솔루션이 나올 것"이라며 "이는 AI 공동 발전을 도모하고 AI 경쟁력을 알리는 좋은 기회"라고 강조했다. 같은 목적으로 업스테이지는 한국어 모델 성능을 평가하는 자체 리더보드를 운영 중이다. 리더보드 시즌 1에서는 LLM 기본 능력인 자연어 이해나 상식 등의 지표를 주로 사용했다. 최근에는 평가를 시즌 2로 업데이트 해 한국어 모델 성능뿐만 아니라 문화와 규범을 이해하는 능력까지 포함시켰다. 김 리드는 "평가 세트를 공개하지 않음으로써 모델들이 평가 세트를 학습하는 문제를 방지했다"며 "이로써 공정하고 정확한 성능 평가가 가능해졌다"고 밝혔다. 그러면서 "오픈소스와 리더보드 등을 통해 국내 AI 생태계가 함께 상생하고 발전하길 바란다"며 "이는 업스테이지도 한층 더 성장할 수 있는 기회일 것"이라고 강조했다.

2024.09.08 09:32조이환

식신, 아마존 서비스 활용한 AI 대시보드 구축

푸드테크 기업 식신은 아마존의 '아마존 베드록' 서비스를 활용한인공지능(AI) 대시보드 '외식메타 인덱스'를 구축했다고 8일 밝혔다. 아마존 베드록은 선도적인 AI 스타트업과 아마존의 고성능 파운데이션 모델을 활용한 생성형 AI 애플리케이션 구축을 지원하는 완전 관리형 서비스다. 외식메타 인덱스는 식신이 보유한 100만개 이상의 맛집 데이터 및 월간 350만명의 이용자 데이터를 기반으로 금융·공공·검색·SNS·방문자 정보 등 다양한 데이터를 통합·분석한다. 이를 통해 ▲지역별 인기 메뉴 ▲스토리가 있는 메뉴 트렌드 ▲상황이나 장소에 맞는 테마 데이터 ▲메뉴별 사용된 식자재 등의 데이터를 실시간으로 확인할 수 있다. 구축된 데이터는 수요처의 니즈에 따라 API, 콘텐츠형 위젯, 분석형 대시보드 등 다양한 형태로 제공한다. 식신은 아마존웹서비스(AWS)의 스타트업 고객 지원 프로그램에 선정돼 전략적 서비스 도입을 위한 리소스를 지원받았다. 이번 프로젝트는 AWS, 메가존클라우드, 스노우플레이크와의 협력을 통해 진행됐다 메가존클라우드는 AWS의 아마존 베드록과 스노우플레이크의 데이터 플랫폼 기능을 연동해 거대언어모델(LLM) 기반 마케팅 솔루션의 데이터 파이프라인을 구축했다. AWS는 아마존 베드록을 통해 LLM 서비스의 확장성을 제공함으로써 프로젝트에 필요한 AI 기능을 구현할 수 있도록 지원했으며, 스노우플레이크는 데이터 관리의 효율성을 높여 방대한 양의 데이터를 저장하고 분석할 기반을 마련했다. 식신은 이번 프로젝트 결과물을 통해 다양한 분야로 비즈니스를 확대할 계획이다. 에프엔비(F&B)와 여행관광 산업에서는 식신의 데이터를 통해 가맹점 컨설팅, 신메뉴 분석, 외식트렌드 등에 대한 인사이트를 제공할 예정이다. 사용자 재방문 및 전환 리마케팅용 콘텐츠를 필요로 하는 기업에도 자료를 유통한다. 식신 안병익 대표는 "글로벌 기업과 협력해 수십억건의 데이터를 효율적으로 분석하는 AI 프로젝트를 진행했다"며 "앞으로 LLM 기반 AI 프로젝트를 더욱 고도화할 예정"이라고 말했다.

2024.08.08 10:38정석규

리턴제로, '로직Kor' 리더보드 sLLM 파트서 1위

음성인식 AI 스타트업 리턴제로(대표 이참솔)가 한국어 언어모델의 다분야 사고력을 측정하는 '로직Kor' 리더보드에서 sLLM(경량화된 거대언어모델) 가운데 1위를 달성했다고 2일 밝혔다. 매개변수(파라미터) 9B의 모델 크기를 갖는 리턴제로 LLM은 지난 31일 로직Kor에서 총점 8.67점을 기록, 매개변수 13B이하인 sLLM 모델 중 최고 성능을 보여 신기록을 달성했다. 이는 직전 최고기록인 8.21점을 웃도는 수치다. 로직Kor은 오픈AI·앤스로픽 등 글로벌 빅테크와 국내 기업들이 모두 참여하는 한국어 언어모델 벤치마크로, LLM의 한국어 추론·수학·글쓰기·코딩·이해 등 6개 요소를 측정한다. 특히 리턴제로 LLM은 '이해' 능력 파트에서 두각을 드러냈다. 리턴제로 LLM 이해 능력은 10점을 기록하며, 동일 크기의 LLM은 물론 모든 크기의 매개변수를 가진 LLM을 모두 통틀어 가장 높은 점수를 나타냈다. 추론 능력에서도 미스트랄 AI, 오픈AI 등 글로벌 빅테크 외에는 처음으로 최상위권인 9점대를 기록했다. 또 리턴제로 LLM은 짧은 기간 내에 높은 수준의 성능을 구현했다. 이번에 선보인 리턴제로의 LLM 모델은 한 달 정도의 신규 파운데이션 모델 파인튜닝 기간을 거쳐 탄생했음에도, 로직Kor 리더보드의 성능 평가에서 높은 점수를 받았다. 최근 업무에 AI를 도입하는 기업이 빠르게 늘어나면서, AI 모델을 빠르게 파인튜닝하는 역량의 중요성이 높아지고 있는 추세다. 리턴제로 팀이 선보인 매개변수가 13B 이하인 sLLM은 현재 AI를 도입하려는 기업들 사이에서 가장 인기가 많은 크기로 꼽힌다. 방대한 매개변수와 데이터를 필요로 하는 기존의 LLM은 천문학적인 비용 탓에 기업 입장에서는 부담스럽지만, sLLM은 적은 매개변수에도 고도화를 통해 성능을 높이고 비용 부담은 줄일 수 있다. 특히 최근 들어 온디바이스 AI에 대한 관심도가 높아지면서 경량화된 sLLM에 대한 수요는 더욱 커지는 모양새다. 리턴제로는 음성인식 AI 스타트업으로 고객관리를 돕는 AI컨택센터(AICC) 플랫폼 구축부터 모바일음성뱅킹, AI콜센터 상담사 등 다양한 핵심 서비스를 제공하고 있다. 실제로 리턴제로는 신한금융그룹의 공통 AICC 모델 구축에 필요한 STT 솔루션을 제공하는 등 전사적인 AX를 가속화하고 있다. 특히 1시간 분량의 유튜브 동영상을 3.5초 만에 정확하게 텍스트로 변환이 가능한 속도와 정확성을 갖춘 음성인식 기술을 보유하고 있다. 이참솔 리턴제로 대표는 "리턴제로 LLM이 더욱 매개변수가 많은 일부 모델보다도 우수한 성능을 보여주면서 리턴제로의 기술 역량을 증명한 것 같아 기쁘다"며 "앞으로도 리턴제로의 노하우를 접목해 글로벌 빅테크와 견주어도 손색없는 최고 수준의 기술을 선보일 것"이라고 말했다.

2024.08.02 18:05백봉삼

메타, 'GPT-4o'와 본격 경쟁…'라마3' 최상위 버전 23일 출격

메타가 오픈소스 거대언어모델(LLM) 라마3 시리즈 중 가장 상위 버전을 공개하며 'GPT-4o'를 비롯해 '제미나이', '클로드3 소네트' 등과 본격 경쟁을 벌인다. 16일 디 인포메이션에 따르면 메타는 오는 23일 기존 8B와 70B에 이어 매개변수 4천50억(405B) 규모의 LLM '라마3'를 공개한다. 이 모델은 텍스트 외 이미지를 이해하고 생성할 수 있는 멀티모달을 지원하는 것이 특징으로, AI 모델이 질문에 어떻게 응답하는지를 결정하는 '설정' 기능도 제공한다. 앞서 메타는 지난 4월 '라마3' 시리즈 중 80억 개(8B), 700억 개(70B) 등 소형 버전 2종을 출시한 바 있다. 이어 6월에는 80억 매개변수의 '라마3 8B' 모델을 기반으로 시각적 정보를 이해하는 비전 모델 '라마3-V'를 선보였다. 이에 대해 개발자들은 8B와 70B 소규모 모델로도 충분히 강력하다는 긍정적인 평가를 내놨다. 또 '라마3' 상위 버전이 나오지 않았음에도 개발자들은 '라마3' 소형 버전으로 테스트를 진행해 좋은 결과를 얻어 '라마3'로 교체하는 것을 검토 중인 것으로 알려졌다. 디인포메이션은 한 창업자 발언을 인용해 "LMSYS 리더보드에서 영어로 성능을 테스트한 결과 오픈AI GPT-4 터보만 라마3 70B를 넘어섰다"고 밝혔다. 업계 관계자는 "메타가 이번에 출시될 모델이 LLM 중 유일한 오픈소스라는 점에서 향후 AI 음성 비서 개발 등에서 오픈소스 진영이 큰 도움을 얻을 가능성이 있다"며 "하지만 메타가 오픈소스 LLM으로 어떻게 수익을 낼지는 불분명하다"고 말했다.

2024.07.16 10:32장유미

[유미's 픽] 삼성도 챗GPT로 기밀 샐까 골머리…'AI 보안' 선두 경쟁 본격화

#. 지난해 5월. 삼성전자는 회사 내부 기기에서 생성형 인공지능(AI) 사용을 금지했다. 삼성전자 반도체(DS) 부문 직원들이 같은 해 3월 소프트웨어 소스코드의 오류를 확인하고 회의 내용을 요약하는 등의 업무를 위해 챗GPT에 소스코드, 회의 내용 등을 입력했다가 문제가 발생했기 때문이다. 이에 삼성전자는 "사내 PC를 통한 생성형 AI 사용을 일시적으로 제한한다"며 "사외에서 챗GPT 등 생성형 AI를 사용하는 경우에도 회사와 관련된 정보, 본인 및 타인의 개인정보 등은 입력하지 않도록 각별히 유의해 달라"고 당부했다. 이처럼 오픈AI '챗GPT', 구글 '제미나이' 같은 생성형 AI를 통한 검색이 최근 활발히 이뤄지며 기밀 정보 유출 우려가 높아진 가운데 기업을 중심으로 '보안'의 중요성이 점차 커지고 있다. 보안이 AI 산업의 한 축이 될 것으로 전망되면서 국내외 업체들도 앞 다퉈 대응에 나선 모양새다. 7일 업계에 따르면 마이크로소프트(MS)는 지난달 1일 '코파일럿 포 시큐리티(Copilot for Security)'를 출시하며 기업 공략에 본격 나섰다. 이 서비스는 IT 및 보안 담당자를 위한 생성형 AI 보안 솔루션으로, 오픈AI GPT-4와 MS 자체 보안 특화 AI 모델을 기반으로 구동된다. MS는 지난해 3월 사이버보안 업계 첫 생성형 AI 보안 서비스라는 이름으로 이 시장에 첫 발을 내딛었다. 당시 이 서비스는 챗봇처럼 위협 요인을 알려주는 구동 방식에 그쳤다. 이번에 나온 '코파일럿 포 시큐리티'는 프롬프트 입력 시 사고 요약, 취약점 분석도 가능하다는 점에서 한 단계 더 진화됐다는 평가다. 이에 맞춰 체크포인트 소프트웨어 테크놀로지스는 보안 작업 필요 시간을 10%로 줄이는 AI 보안 솔루션 '인피니티 AI 코파일럿'을 올해 2월 선보였다. 체크포인트는 MS의 오랜 파트너인 사이버 보안 플랫폼 기업으로, 현재 프리뷰 형태로 이 서비스를 제공 중이다. 2분기에 정식 출시를 앞둔 '인피니티 AI 코파일럿'은 보안 정책을 변경하고 직원 내 담당 권한을 변경하는 작업도 가능한 것이 특징이다. 글로벌 보안 시장을 이끌고 있는 팔로알토 네트웍스는 AI 열풍 이전인 12여년 전부터 사이버 보안에 AI·머신러닝(ML)을 활용해 업계 선구자로 통한다. 최근에는 보안관제 인력난에 대한 해결책으로 '확장된 보안 인텔리전스 자동화 관리(XSIAM)'를 내세워 AI를 통한 보안운영센터(SOC)의 운영 효율을 높이기 위해 애쓰고 있다. 구글도 AI로 보안 강화에 나설 것이란 뜻을 내비쳤다. 순다르 피차이 구글 최고경영자(CEO)는 지난 2월 독일 뮌헨 안보회의에서 "사이버 해커는 시스템을 공격하기 위해 한 번만 성공하면 되지만, 방어자는 시스템을 보호하기 위해 매번 성공해야 한다는 딜레마가 있다"며 "(AI는) 이러한 딜레마를 줄여줄 것"이라고 밝혀 눈길을 끌었다. 국내 업체 역시 AI 기술을 적용해 서비스 경쟁력을 끌어 올리고 있다. 안랩은 현재 연구소 산하에 '인공지능팀'을 두고 머신러닝 기술을 통한 솔루션·서비스 탐지 기능 고도화 작업에 집중하고 있다. 또 AI를 악성코드와 피싱 이메일, 스미싱 문자 등을 탐지하는데도 활용 중이다. 여기에 생성형 AI 기술 개발을 통해 확장된 탐지 및 대응(XDR) 플랫폼 '안랩 XDR'에서 보안 담당자의 업무를 더 끌어올릴 수 있는 'AI 시큐리티 어시스턴트'도 개발 중이다. 업계 관계자는 "보안업체들은 판정형 AI업체의 서비스를 생성형 AI와 결합해 기술을 고도화 하던가, 생성형 AI가 기존에 가지고 있는 보안 문제를 최소화 하는 것에 집중하고 있다"며 "이들이 다양한 방식으로 AI 기술을 활용하는 것은 자연스러운 흐름"이라고 말했다. 일부 기업들은 AI를 활용해 보안 위협을 탐지하는 것에 그치지 않고 기업용 AI 시장에 직접 뛰어들고 있다. 내부 보안 혹은 사이버 위협·악성코드 분석 등 비정형 데이터를 포함한 데이터 분류와 필터링 기술에 강점을 갖고 있다는 점을 앞세워 보다 안전한 맞춤형 AI 서비스를 제공할 수 있다고 강조하고 나섰다. 데이터·애플리케이션 보안 사업에 집중했던 파수는 지난 3월 경량언어모델(sLLM) '엘름(ELLM)'을 출시하며 본격적으로 LLM 시장 경쟁에 나섰다. 구축형(온프레미스)으로 제공되는 엘름은 코딩, 법률, 세무, 금융 등 다양한 직군, 산업 환경에서 활용할 수 있는 것이 특징이다. 또 특정 작업이나 도메인에 맞는 작은 데이터 세트를 활용해 모델을 추가적으로 훈련시킬 수 있다. 이에 기업에선 특정 부서나 조직에서만 사용할 수도 있다. 사이버 위협 인텔리전스(CTI) 기업 S2W도 sLLM 플랫폼 'S-AIP(S2W Artificial Intelligence Platform)'를 내놨다. S-AIP는 각 기업이 가지고 있는 보안 수준에 맞춰 아키텍처를 구현하고, 데이터 보안 기술을 기반으로 기업용 프라이빗 sLLM 구축을 지원할 수 있다. 보안업계에서 떠오르고 있는 샌즈랩도 AI 기반 사이버 보안 사업 영역을 빠르게 고도화하고 있다. 이곳은 지난 2월 기업 내부 인프라에서 직접 운영, 제어가 가능한 온프레미스 sLLM '샌디(SANDY)'를 개발했다. 샌디는 기존에 사람이 직접 했던 보고서 요약·교정, 기업 내 해킹 대응 정보 검색을 대신 수행하며 최신 사이버 위협에 선제 대응할 수 있는 역량도 갖췄다. 이 외에 샌즈랩은 샌디를 기반으로 최근 포티투마루, LG유플러스와 사이버 보안을 강화할 수 있는 LLM 기술을 공동 개발키로 해 주목 받고 있다. 업계 관계자는 "국내 보안기업들이 생성형 AI 시장에 뛰어드는 이유는 데이터 보안·악성코드 분석 등의 분야에서 다년간 축적된 기술력과 노하우가 AI 데이터 학습에 유리하다는 판단 때문"이라며 "정보유출 등에 민감한 기업용 AI 분야에선 강점이 될 수 있을 것"이라고 분석했다. 이어 "보안 시장이 AI처럼 폭발적인 성장 잠재력을 갖추기 어렵다는 점에서 기존 보안 사업과 연계할 경우 AI를 새로운 성장동력으로 삼을 수 있을 것이란 점도 영향을 미친 듯 하다"며 "글로벌 단위에서 아직까지 AI 보안 시장을 이끄는 선두 업체가 마땅히 없다는 것도 매력적인 요소"라고 덧붙였다.

2024.05.07 16:19장유미

[MWC]유영상 SKT "AI로 시장 판도 바꾸겠다"

“우리는 항상 글로벌에 대한 갈망과 피해의식이 있었다. 통신을 포함해 한국 서비스 기업이 글로벌 스케일을 가진 적이 많지 않다. 제조업은 글로벌 활약이 두드러지는데, 서비스는 왜 글로벌 강자가 탄생하지 못할까 자책도 해봤다.” 유영상 SK텔레콤 사장은 26일(현지시간) 스페인 바르셀로나에서 개막한 MWC24 현장에서 '글로벌 텔코 AI 얼라이언스(GTAA)'에 모인 회사들이 AI 합작법인을 추진키로 한 이유를 묻자 이같이 말했다. 기존과 같은 사업 운영으로는 ICT 시장의 주도권을 되찾기 어려웠지만, 글로벌 통신사들과 AI 협력으로 판도를 바꿀 자신감을 얻게 됐다는 것이다. 이날 SK텔레콤은 도이치텔레콤, 이앤(e&)그룹, 싱텔그룹, 소프트뱅크와 함께 AI 거대언어모델(LLM) 공동 개발과 사업 협력을 수행할 합작법인을 공동으로 설립하기로 했다. AI 언어모델 개발에 SK텔레콤과 뜻을 모은 회사들은 각각 유럽, 중동, 동남아 지역에서 통신사업을 주도하는 회사들이다. 또 소프트뱅크는 혁신 투자에 뛰어난 회사다. "AI 시대 리더십 위해 모였다" 유 사장은 여러 통신사들이 뜻을 모은 과정을 두고 “함께 하는 회사들과 비교하면 (SK텔레콤은) 가입자도 제일 적고 시총도 가장 작은 수준이다”며 “글로벌 강자가 되기 위해서는 동맹 체계를 우선 구축해야 했고, 이들을 설득하는 과정이 어려웠는데 AI(로 인한) 성장 모멘텀이 있어서 가능했다”고 회고했다. 이어, “통신 사업자들이 인터넷이나 모바일(을 통한 ICT 산업 발전) 모멘텀에 적극적으로 나서지 않고 분열됐다가 주도권을 잃게 됐는데, AI 시대에는 그렇게 하지 않았으면 좋겠다는 생각을 모은 것”이라고 설명했다. 그러면서 “챗GPT 등장 후 통신사들이 힘을 모아 제대로 AI 시대에 대응해보자고 생각했다"며 "왜 함께해야 하는지, 또 AI여야만 하는지 질문이 많았는데 (얼라이언스 구축 이후) 1년이 지났고, 이제 모든 기업이 AI를 외치고 있다”고 강조했다. 글로벌 유수의 통신사들과 뜻을 모은 것은 단순히 AI 경쟁력 확보를 넘어 글로벌 AI 강자로 나서겠다는 야심찬 포부인 셈이다. 텔코 LLM, 남들이 가질 수 없는 무기 유 사장은 SK텔레콤 대표 취임 1년이 지난 후부터 'AI 컴퍼니' 비전을 강조해왔다. 본업은 통신이지만 AI로 기존 사업과 신사업을 일구며 일하는 방식도 바꿔야 한다고 강조해왔다. 지난해 MWC에서는 AI 협력사들과 뜻을 모았는데, 지난해 하반기부터는 GTAA를 결성하면서 통신사만의 AI도 갖춰야 한다는 철학에 따라 텔코 거대언어모델(LLM) 구축의 필요성을 외쳤다. 자강과 협력을 키워드로 AI 피라미드 전략을 내세우며 AI 컴퍼니로의 전환 의지는 더욱 커졌다. 유 사장은 “1년 전 거대언어모델(LLM) 매개변수 크기를 따졌다면, 지금은 활용 방안과 어떤 비즈니스모델(BM)을 마련할지 여부에 관심이 쏠리고 있다”며 “텔코 LLM 같은 버티컬(특화형) LLM 발전이 하나의 기업을 넘어 산업 전체에 AI 전환을 불러일으키고, 수익화하는 데 중요한 축이 될 것”이라고 내다봤다. 범용 LLM이 아니라 통신에 특화된 버티컬 LLM은 꾸준한 데이터 학습과 함께, 규모의 경제를 통해 시간이 지나 큰 경쟁력을 가지며 산업 판도를 바꿀 수 있다는 자신감이다. AI 피라미드 전략 주효했다...게임체인저 도약 SK텔레콤의 AI 피라미드 전략에 따르면 데이터센터와 같은 AI 인프라를 갖추고 전 산업 영역에 걸쳐 AI 전환을 추진하며 실제 AI 서비스를 구현해야 글로벌 AI 회사로 성장하는 발판을 다질 수 있다. 구체적인 AI 서비스로 에이닷과 같은 AI 개인비서를 꼽았다. 즉, 통신사가 가장 잘할 수 있는 AI 개인비서(PAA, 퍼스널 AI 어시스턴트)로 글로벌 시장에서도 통할 수 있는 무기를 가지고 승부를 내겠다는 뜻이다. 유 사장은 “에이닷을 비롯한 PAA는 현 AI 시대 흐름과 궤를 같이하고 있다”며 “이는 빅테크의 전유물이 아니라 GTAA에서 서비스가 나올 수 있지 않을까 생각한다”고 말했다. 그는 또 “지금은 한 산업분야에 특화된 LLM이 해당분야의 변화를 이끌어가는 시대”라며, “글로벌 통신사들이 텔코 LLM 등 AI 분야 협력을 통해 시장 변화를 주도하는 게임 체인저가 되려는 것”이라고 강조했다. 그러면서 “기존 혁신에 그치지 않고 국내외 시장에서 과감한 도전을 계속할 것”이라며, “이를 통해 진정한 글로벌 AI 컴퍼니로 거듭날 것”이라고 밝혔다.

2024.02.27 08:00김성현

"MS 애저보다 빠르다"…美 스타트업 그로크, AI 칩으로 시장 판도 흔들까

거대언어모델(LLM)의 추론·응답 속도를 높인 인공지능(AI) 칩이 나왔다. 엔비디아 그래픽처리장치(GPU)보다 더 빠른 속도를 갖췄다는 점에서 업계의 주목을 받고 있다. 22일 미국 IT 매체 뉴아틀라스에 따르면 미국 AI 스타트업 그로크는 지난 20일 LLM의 추론과 응답 속도를 높이는 AI 칩 '언어처리장치(LPU)'를 출시했다. 그로크는 구글 개발자 출신들이 모여 2016년 설립한 반도체 기업이다. 설립자 중에는 구글 머신러닝(ML) 칩을 개발한 조나단 로스가 최고경영자(CEO)다. 보도에 따르면 LPU는 LLM을 탑재한 챗봇인 오픈AI의 '챗GPT', 구글의 '제미나이' 등의 응답 속도 향상에 특화됐다. 사용자 질문에 1초도 안 되는 시간에 영어 기준 수백 단어의 답변을 생성할 수 있다. 벤치마크 테스트에서도 LPU는 마이크로소프트의 애저 클라우드 인프라 성능을 능가했다. 메타의 700억 매개변수 '라마 2'는 마이크로소프트 애저 클라우드상에서 초당 19개 토큰을 생성했지만, 그로크를 탑재했을 때 초당 241개 토큰을 만들었다. LLM이 그로크를 탑재할 경우 18배 이상 빠른 추론 속도를 갖출 수 있는 셈이다. 또 LPU는 100개 토큰을 생성하는 데 0.8초가 걸렸지만, 마이크로소프트의 애저 클라우드는 10.1초 소요됐다. 현재 개발자는 그로크챗 인터페이스에서 LPU 엔진을 이용할 수 있다. 승인된 사용자는 라마 2, 미스트랄, 팰컨 등을 통해 엔진을 시험해 볼 수 있다. 조나단 로스 그로크 CEO는 "LLM의 추론 속도는 개발자의 아이디어를 사업화할 수 있다"며 "이는 AI 사업 생태계 필수 요소"라고 밝혔다.

2024.02.22 11:05김미정

마이디포 "오픈소스 AI-LLM 잘 꿰어야 보배"

속담에 '구슬이 서 말이라도 꿰어야 보배'(아무리 좋은 것이라도 쓸모 있게 만들어 놓아야 값어치가 있다는 뜻)라 했다. 다양한 인공지능(AI) 기술들이 쏟아져 나왔지만, 아직 사람들의 일상과 업무에 눈에 띄게 사용되는 제품이나 서비스가 기대만큼 많지 않은 게 사실이다. 그나마 지난해 초거대 언어모델(LLM)과 생성형 AI 기술 고도화가 무르익으면서 실생활에 쓰이는 AI 제품과 서비스들이 하나둘 늘어나는 추세다. 이런 한계를 딛고, 개별적인 AI 기술과 서비스들을 한 데 모아 업무 효율성과 완성도를 높이는 기업이 있다. 그야말로 구슬(AI)을 하나하나 꿰어(조합) 보배(앱)로 만드는 AI 매시업 기업 '마이디포'가 그 주인공이다. 매시업이란 웹서비스 업체들이 제공하는 각종 콘텐츠와 서비스를 융합해 새로운 웹서비스를 만들어내는 것을 뜻한다. 예를 들어 AI 기술을 활용해 번역서를 출간한다고 하면, 도서 표지는 '스테이블 디퓨젼'이 디자인하고, 교정과 윤문은 '챗GPT'가, 번역은 'DeepL'이 담당하는 식이다. 그 동안에는 출판사가 디자이너·편집자·번역가 등을 채용해 번역서를 펴냈다면, 마이디포는 마치 오케스트라 지휘자처럼 결과물에 적합한 최적의 AI 서비스들을 조합해 결과물을 만들어낸다. 이처럼 마이디포는 각각의 AI 모델(서비스)들을 모듈화하고, 사용자가 필요로 하는 서비스(앱)에 적합한 모듈을 가져다 쓸 수 있도록 했다. 요청하는 작업은 각각의 모듈에 뿌려져 분산·병렬 처리되기 때문에 사용자는 시간 단축 효과를 볼 수 있다. 마이디포 솔루션은 먼저 판례 및 사건 분석 등이 필요한 변호사, 보고서 작성이 많은 금융사, 초벌 번역 등이 필요한 출판사, 외신 번역과 기사 작성이 주 업무인 언론사 등에게 유용하게 쓰일 수 있다. 또 벤처캐피털의 투자심사 보고서 작성 등에도 활용할 수 있다. 류승훈 대표, 코트라 직원서 창업가로...생성 AI 가능성 보고 '마이디포' 창업 마이디포를 창업한 류승훈 대표는 대한무역투자진흥공사(KOTRA) 출신이다. 2012년 퇴직 후 '플랫클'이란 회사를 창업해 '거인의 서재' 앱을 출시, 출판계의 디지털 마케팅을 혁신했다. 그 후 거인의 서재는 체인지그라운드에 매각됐고, 류 대표는 300명의 뛰어난 개발자를 육성하겠다는 취지로 '300Dev'라는 회사를 세웠다. 베네수엘라를 중심으로 중남미 개발자들에게 글로벌 네트워크와 글로벌 비즈니스 기회를 제공, 북미 시장에 실력 있는 각국 개발자들이 접근할 수 있는 토양을 만들었다. 류 대표의 도전은 여기에서 멈추지 않았다. 본인 지분을 매각한 뒤, 지난해 생성형 AI 가능성을 보고 마이디포를 창업했다. 류승훈 대표는 “라틴아메리카에 있는 6명의 팀원은 기술 개발과 마케팅 담당을 하고, 국내에는 3명의 직원들이 B2B 영업과 기획, 디자인 등의 업무를 맡고 있다”면서 “마이디포는 파편화된 AI 서비스들을 하나하나 모듈화 시키고 조합함으로써 대용량을 병렬, 분산처리 해 고속으로 결과물을 얻을 수 있다”고 설명했다. 류 대표에 따르면 마이디포는 현재 '팔만대장경 프로젝트'를 진행 중이다. 이 프로젝트는 1971년 미국 일리노이대 학생이던 마이클 하트가 시작한 '구텐베르크 프로젝트'라는 사회 운동을 모티브로 한다. 저작권 문제가 해결된 고전을 직접 타이핑해 모두가 무료 또는 최소한의 비용으로 읽을 수 있도록 한 이 프로젝트는 50년도 넘게 진행돼 현재 7만권이 넘는 세계 각국의 도서가 인터넷을 통해 공유되고 있다. 마이디포는 구텐베르크 프로젝트의 문서를 LLM AI를 활용해 읽기 쉬운 우리말 도서로 변환하는 작업을 하고 있다. 번역, 교정, 표지 디자인, 전자책 출간 등의 작업이 과거에는 수주에서 몇 달이 걸렸다면, 팔만대장경 프로젝트는 300페이지 외서 초벌 번역을 5분까지 단축시키는 것이 목표다. 류 대표는 “여전히 구텐베르크 프로젝트의 과실은 영어 사용자들이 주로 누리고 있는데, 생성형 AI 시대에는 모든 게 달라질 것”이라며 “언어 장벽 탓에 쉽게 접근할 수 없었던 구텐베르크 프로젝트의 문서를 읽기 쉬운 현대 우리말로 만들 것으로 기대, LLM 인공지능을 활용해 구텐베르크 도서를 한국어 도서로 변환하고 있다. 수주에서 몇 달 걸리던 작업을 단 5분으로 단축하고자 하는데 이것이 우리의 팔만대장경 프로젝트”라고 말했다. 종착지는북미 시장..."누구나 쉽게 이용하고 조합할 수 있는 AI 서비스 지향" 류 대표가 궁극적으로 바라보는 시장은 히스패닉 시장을 교두보로 한 북미 지역이다. 창업 초기부터 글로벌 개발팀을 꾸렸는데, 챗GPT 상위 국가에 미국·인도, 그 뒤로 콜롬비아와 브라질 등 히스패닉 국가가 상위 5위권에 오른 것을 눈여겨봤다. 미국 내 히스패닉 인구가 이미 6천500만을 넘었는데, 류 대표는 히스패닉 시장을 교두보 삼아 세계 최대 시장인 북미 지역으로 진출한다는 구상이다. 류 대표는 “마이디포를 지난해 3월에 개발해 그해 5월 개념증명(PoC)을 했고, 7월 최소기능제품(MVP)을 출시, 현재는 서비스 고도화에 집중하고 있다”면서 “현재 이용 고객의 70%가 히스패닉 시장에서 발생하고 있는데, 서비스 안정화와 완성도가 갖춰지면 글로벌 시장뿐 아니라 국내에서도 마케팅 활동을 펼칠 계획”이라고 밝혔다. 마이디포 AI 서비스는 크게 세 가지로 구분된다. 먼저 월 구독 모델로 AI 매시업 프레임워크를 제공한다. 또 마이디포 AI 컨설턴트들이 AI 활용 방법을 상담해준다. 끝으로 프롬프트 엔지니어링 등 기업 맞춤형 매시업 솔루션을 제작, 공급해준다. 개인 또는 기업은 필요로 하는 나만의 AI 서비스(앱)를 마이디포에 직접 제작 의뢰해 최적의 결과물을 얻을 수도 있으며, 다른 창작자들이 공개해 놓은 오픈마켓에서 적합한 서비스를 골라 유료로 구매한 크레딧을 지불하고 이용할 수도 있다. 이 때 창작자는 앱 사용 수익의 70%를 받는 구조다. 류승훈 대표는 “마이디포 서비스 고도화 맵에 있어 기술적인 목표는 LLM을 어떻게 나에게 더 잘 맞는 서비스로 만드느냐가 있다. 데이터를 양과 질을 고도화 시켜 맥락에 맞는 결과물을 얻는 것”이라면서 “각 AI 기술과 서비스들의 장점을 활용해 누구나 쉽게 이용하고 조합할 수 있도록 확장시키는 것이 마이디포의 목표”라고 말했다. 이어 “우리가 생각하는 범용인공지능(AGI)은 단순한 만물박사가 아니라, 여러 가지가 조합돼 결국은 우리가 원하는 결과를 얻어내는 것”이라며 “각 모듈들이 AGI 내에서 하나의 플러그인으로 활용될 수 있다. 마이디포의 리퀘스트 마켓이 적극 활용되고 집단적인 프롬프터들이 쌓인다면 다양한 AI 서비스들이 보다 쉽고 널리 쓰일 것”이라고 말했다.

2024.01.31 14:14백봉삼

비아이매트릭스, 데이터 분석 AI비서용 자체 LLM 출시

비아이매트릭스는 자체 개발한 LLM(거대 언어 모델) 'G-매트릭스(G-MATRIX) MX-7B'를 출시했다고 10일 밝혔다. 이번에 발표한 'G- 매트릭스 MX-7B'는 자연어 기반 데이터 분석 및 시각화 서비스에 특화된 언어 모델이다. 업무 담당자가 AI와 대화를 하듯이 기업의 데이터베이스에서 데이터를 조회하고, 조회한 데이터를 바탕으로 분석 화면을 제작하는 생성형 AI 솔루션 G-매트릭스에 최적화했다. G- 매트릭스 MX-7B는 70억 개의 매개변수를 가진 경량 언어 모델이다. 산업군에 특화된 5만 개 이상의 데이터 분석용 질문과 다양한 시각화 대시보드 탬플릿을 학습해, 자연어로 기업의 데이터를 추출하고 데이터 특성에 맞는 시각화 화면을 추천하는 것이 가능하다. 모든 기업에서는 그동안 생성형 AI를 활용한 업무혁신을 희망하였으나, 보안을 이유로 도입을 망설였던 기업을 위하여 온프레미스형 LLM으로 내부망에서 구축 가능한 환경을 제공한다. 지금까지 다양한 시스템 구축을 필요로 했던 데이터 분석 업무 혁신 분야에 특화됐다. 또한 데이터 분석 업무용으로 최적화, 경량화되어 하드웨어 자원의 최소화가 가능하여 타사 대비 도입 비용이 절감되고 빠른 처리 속도를 제공한다. 이번에 출시된 MX-7B는 전 세계 인공지능 솔루션이 모여있는 허깅페이스에도 등록되어 있다. 비아이매트릭스는 2023년 데이터 분석용 생성형 AI 솔루션 G-매트릭스 2.0을 출시한데 이어 기업에서 보안 걱정없이 사용할 수 있는 자체 LLM까지 출시하여 실용적 AI를 구현하는 회사로써의 이미지를 부각시킴과 동시에 기업의 업무 생산성 혁신에 기여할 예정이다. 올해 생성형 AI 분야의 R&D 인력을 대폭 강화하고, 그동안 보유한 데이터 기반 특허 기술들과 융합하여 상반기에는 데이터 예측 및 아우디(AUD) 플랫폼 코팡일럿도 선보일 예정이다. 또한 이번 출시로 더 나은 비즈니스 환경과 업무 효율성을 추구하는 기업들에게 혁신적이고 안전한 솔루션을 제공하고 성공 가능한 사업 모델을 지속적으로 제시하여 현실성있는 생성형 AI 분야에서 시장을 선도해 나가겠다는 포부를 밝혔다.

2024.01.10 11:32남혁우

  Prev 1 2 3 Next  

지금 뜨는 기사

이시각 헤드라인

2나노에 묶인 삼성 '엑시노스' 로드맵…최적화가 성패 가른다

서로 닮아가는 채용 플랫폼…데이팅·사주로 차별화 꾀하기도

작고 강하게…한국형 '로봇 손' 주도권 놓고 각축전

"따로 또 같이"...글로벌 서비스 ‘라인’은 현지화+기술통합 어떻게 하나

ZDNet Power Center

Connect with us

ZDNET Korea is operated by Money Today Group under license from Ziff Davis. Global family site >>    CNET.com | ZDNet.com
  • 회사소개
  • 광고문의
  • DB마케팅문의
  • 제휴문의
  • 개인정보취급방침
  • 이용약관
  • 청소년 보호정책
  • 회사명 : (주)메가뉴스
  • 제호 : 지디넷코리아
  • 등록번호 : 서울아00665
  • 등록연월일 : 2008년 9월 23일
  • 사업자 등록번호 : 220-8-44355
  • 주호 : 서울시 마포구 양화로111 지은빌딩 3층
  • 대표전화 : (02)330-0100
  • 발행인 : 김경묵
  • 편집인 : 김태진
  • 개인정보관리 책임자·청소년보호책입자 : 김익현
  • COPYRIGHT © ZDNETKOREA ALL RIGHTS RESERVED.